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ABSTRACT 

Due to the widespread usage of image and video editing tools, an alarming problem has 

emerged in an era characterised by the rapid spread of multimedia content on social media 

platforms. The combination of the simplicity and complexity of these innovations presents a 

substantial risk to the genuineness and reliability of the information included in multimedia 

files. This thesis emphasises the necessity to create robust systems for detecting dangerous 

alterations in multimedia data by using the potential of deep learning techniques. This is 

achieved by using the potential of deep learning algorithms. The susceptibility of audiovisual 

content to harmful changes has significantly increased, reaching unprecedented levels. This 

results from implementing modern technologies that facilitate the production of counterfeits 

with a high degree of authenticity. The objective of this study is to leverage the capabilities of 

deep learning to identify and mitigate such manipulations effectively. This research examines 

the incorporation of multimodal approaches, considering the many characteristics of 

multimedia material that are widespread in our present digital environment. Given that social 

media platforms are the main channels for sharing information, the suggested detection systems 

utilising deep learning aim to ensure the reliability and accuracy of multimedia material. As a 

result, this will enhance the establishment of a digital ecosystem characterised by increased 

reliability and credibility. This thesis tackles this manipulation detection challenge by 

proposing four novel deep-learning architectures and a novel image manipulation dataset that 

aids in training such forgery detection models.  

The first two models, namely MRT-Net and Face-NeSt are dedicated to the problem of face 

manipulation detection. Facial manipulation is an extremely serious form of identity 

manipulation that can easily be used to mislead others and perform fraudulent activities. MRT-

Net is a dual-branch architecture that extracts manipulation residuals and textural features to 

detect forgery in facial images. An auto-adaptive mechanism lets it dynamically choose the 

best proportion of the two features. Face-NeSt extracts the discriminative information from 

multiple scales of features extracted from a baseline model. Specifically, it extracts multi-scale 

attentional features fused adaptively, representing the best proportion of discriminative 

features. MRT-Net and Face-NeSt are evaluated on three public benchmark datasets: the 

FaceForensics ++ (FF++), DeepFake Detection Challenge (DFDC) and the CelebDF datasets. 

Experimental results prove that the proposed models are superior to the existing state-of-the-

art methods. 
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The next two models are dedicated to the problem of detecting splice manipulation in 

images. The first framework has a dual-branch structure with a spatial and compression branch. 

The spatial branch leverages transfer learning to extract discriminative spatial clues without 

adding any significant computational cost. The second branch highlights inconsistencies in the 

DCT coefficient histograms caused by the splice forgery. The second model is a splice 

localization framework. It contains a unique "visually attentive multi-domain feature extractor" 

(VA-MDFE) that extracts attentional features from the RGB, edge and depth domains. Next, a 

"visually attentive downsampler" (VA-DS) is responsible for fusing and downsampling the 

multi-domain features. Finally, a novel "visually attentive multi-receptive field upsampler" 

(VA-MRFU) module employs multiple receptive field-based convolutions to upsample 

attentional features by focussing on different information scales. Experimental results 

conducted on the public benchmark dataset CASIA v2.0 prove the potency of the proposed 

model. A novel splice manipulation dataset has also been created from Python code and Adobe 

Photoshop software since the existing splice detection datasets have very few samples and are 

not ideally suited to train deep-learning models. 

Lastly, the role of visual attention models is studied in the context of forgery detection. 

Specifically, five recently proposed visual attention mechanisms are integrated with a baseline 

convolutional neural network. The performance boost for each type of attention model is 

measured. Also, the increase in the computational cost for each type of attention is measured, 

and this tradeoff of performance vs complexity is presented.  
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Chapter 1: Introduction  

In today's digital era, the alteration of multimedia information poses a widespread danger in 

our society. Various tampering techniques, from basic modifications to advanced forgeries, 

present substantial obstacles to the validity and integrity of multimedia products. Common 

types of forgeries are image alterations, video editing, audio adjustments, and deepfake 

technologies, which may all be utilized to deceive, misinform, or influence individuals and 

groups. Detecting and detecting tampering is essential for protecting the reliability of media 

sources, maintaining the credibility of information, and defending the integrity of digital 

material when misinformation spreads quickly. The advancement of technology necessitates 

the creation of practical techniques to identify and prevent the manipulation of multimedia to 

lessen the adverse effects on society's understanding of truth and reality. This chapter presents 

the introductory study of malicious manipulation detection of multimedia content.  

1.1 Growing Popularity of Social Media Platforms 

The last decade has witnessed a tremendous rise in social media platforms. An extensive 

online presence has become a normal part of daily human lives. The number of active users on 

social media has grown tremendously, from just over 2 million active users at the beginning of 

2015 to almost 4 million active users by the end of 2020 [1]. Also, the average person had 

about 8.6 social media accounts in 2020 [1]. It is an understatement to say that social media 

has become integral to everyday life. The importance of social media is discussed as follows: 

• Social media connects people together. 

• Social media provides a platform for sharing information, exchanging ideas, expressing 

opinions, etc. 

• Social media also attracts a large number of passive information consumers. Users 

create and share multimedia data and view and explore data shared by other community 

users, group, organization, etc. 

• Social media has an enormous impact on individuals’ mental and emotional states. 

1.2 Role of Big Data 

With the growth of social media platforms, a massive amount of multimedia content is being 

created every hour. This gigantic and ever-increasing amount of multimedia data has been 

termed as ‘Big Data’. Users on different platforms freely share various aspects of their lives 
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via images, videos and text posts. The large amount of content, especially visual content with 

images and videos, creates a fast-changing, dynamic, and impactful impression on society as a 

whole. Some critical aspects of big data are: 

• Big Data is a massive collection of multimedia content, including text, audio, images 

and videos. 

• Such a massive collection of multimedia data has never been created before in human 

history and is largely due to the growing social media platforms. 

• Big Data provides a clear picture of the personal lives of individuals, the functioning of 

organizations and the collective psyche of society as a whole. 

1.3 Creation of Multimedia Manipulation Tools and Approaches 

Several tools like Adobe Photoshop, Premier Pro, and Illustrator allow for modifying 

multimedia content, including images and videos. Such tools provide an extensive list of 

options to modify content and create enhanced and yet realistic manipulations. While these 

tools are primarily meant to modify multimedia content to improve the visual quality of 

samples, they can be easily used to harm individuals, groups or society. The same applies to 

the endless number of mobile applications targeted to modify and manipulate multimedia 

content.  

Several recent state-of-the-art (SOTA) methods have been developed in the research domain 

to create realistic manipulations of images and videos. Manipulations such as deepfakes [2] 

provide serious identity manipulations that are so realistic that it is humanly difficult to 

distinguish between an original and a deepfake. Other manipulations include splicing [3], [4], 

copy-move [5], [6] and many more.  

In this era of widespread social media popularity, the design and development of methods 

for malicious multimedia manipulation are proving harmful to society. While social media is 

the main engine behind producing massive amounts of multimedia data or big data, several 

malicious manipulation approaches can be enforced to use this unending source of images and 

videos to inflict harm upon individuals/organizations and promote the spread of 

misinformation.  

1.4 Harmful Impacts of Multimedia Manipulation 

Some harmful effects of manipulation approaches are discussed below: 
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• Defamation: An individual or an organization can be defamed by posting maliciously 

manipulated images/videos that create a false impression of wrong doings. 

• Frauds: Facial manipulation methods facilitate faking identities. By pretending to be 

someone else in an image/video, fraudsters attempt to cause monetary losses to an 

unsuspecting individual. 

• Misdirection: Manipulated multimedia can also be used to create misdirection and 

sway public opinion, often times to gain political advantage. 

• Fake News: Maliciously editing images or repurposing an old multimedia sample to 

promote untrue news or rumours causes panic and distress in society. 

• Other Manipulations: While the list of possible manipulations is endless, most of 

these can be used in some form or another to mislead, lie, manipulate and cause harm 

to individuals/organizations. 

Fig. 1 clearly demonstrates the sensitive nature of the present time. Given the scenario of 

rising social media presence and the development of numerous malicious manipulation 

approaches for images and videos, undesirable communications such as hoaxes, scams, frauds, 

defamation, misdirection, etc., have become quite common and robust detection systems are 

required to prevent the damage caused to society through such manipulations. Hence, it is of 

paramount importance to develop novel manipulation detection approaches that are capable of 

detecting and finding tampered regions within multimedia images and videos [7], [8], [9], [10]. 

 

Fig. 1 Quadrant IV, with high social media popularity and the creation of numerous multimedia manipulation 
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There are several motivations behind proposing tamper detection methods: 

• Preventing Financial Fraud: One of the key reasons for forgery detection systems in 

the financial sector is to avoid fraud. This includes identifying fake checks, counterfeit 

cash, and fraudulent credit card transactions. 

• Protection of Intellectual Property: In the domain of intellectual property, forgery 

detection is used to safeguard copyrights, trademarks, and patents from being 

counterfeited or exploited. 

• Ensuring Document Authenticity: Forgery detection technologies are critical in legal 

and government contexts for validating the validity of documents such as passports, 

driver's licences, birth certificates, and immigration paperwork. 

• Art Authentication: In the art world, artwork authentication is vital to preventing art 

fraud. Forgery detection methods aid in determining if a work of art is genuine or a 

forgery. 

• Maintaining Data Integrity: Forgery detection methods ensure data integrity in the 

digital era. Detecting falsified digital signatures, changed electronic documents, and 

modified photos or videos is part of this. 

• Protecting Brand Reputation: Companies and brands use forgery detection to safeguard 

their reputation by identifying and blocking counterfeit items from entering the market. 

• Securing Identification and Access Control: Forgery detection methods are used in 

security applications for biometric authentication (e.g., fingerprint, face recognition) 

and access control systems to prevent unauthorised access. 

• Ensuring Trust in Digital Transactions: Forgery detection aids in establishing trust 

between parties in e-commerce and online financial transactions by confirming the 

legitimacy of digital identities and transactions. 

• Regulation Compliance: Rules require various sectors to deploy forgery detection 

technologies as part of their compliance activities. Financial institutions, for example, 

are frequently required to implement anti-money laundering (AML) and know-your-

customer (KYC) procedures. 

• Legal and Forensic Investigations: Forgery detection procedures are used by law 

enforcement agencies and forensic professionals to gather evidence, create cases, and 

solve crimes involving forged papers, signatures, or identities. 

• Identity Theft Prevention: Forgery detection is crucial in preventing identity theft, 

which occurs when people's personal information is faked or taken for fraud. 
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• Improving Cybersecurity: Forgery detection methods are used in the cybersecurity 

arena to identify and prevent many sorts of cyberattacks, such as email spoofing, 

phishing, and malware that attempt to fool or mimic people. 

1.6 Types of Malicious Multimedia Manipulations 

This section describes the common manipulation methods in images and videos. 

Deepfakes: Image splicing combines parts, objects, or areas from many source pictures into 

a single composite image. These elements include people, objects, backdrops, and other visual 

components. Image splicing may be used for various objectives, ranging from artistic 

inventiveness and photo editing to generating deceiving or misleading images for nefarious 

goals such as disinformation dissemination or digital forgeries. Deep learning techniques, 

namely generative adversarial networks (GANs) and deep neural networks, enable deepfakes. 

GANs comprise two neural networks—a generator and a discriminator—that work in tandem 

to generate extremely realistic synthetic material. Deepfake technology enables the amazingly 

accurate modification of faces, sounds, or whole scenarios. This includes modifying facial 

expressions, swapping faces, adjusting lip-syncing in films, and more. Deepfakes aren't just for 

visual content. They may also be used to make false audio recordings or voiceovers by 

synthesising sounds that resemble a certain person's voice.  

Splicing: Image splicing is a digital image alteration method that combines various bits or 

aspects from numerous source pictures to generate a new composite image. This method entails 

cutting or copying portions from one or more source pictures and pasting them into a 

destination image. Image splicing can be used for legal purposes like image editing and 

composition or for deceitful purposes like generating misleading or fraudulent visual 

information. Image splicing combines parts, objects, or areas from many source pictures into a 

single composite image. These elements include people, objects, backdrops, and other visual 

components. Image splicing may be used for various objectives, ranging from artistic 

inventiveness and photo editing to generating deceiving or misleading images for nefarious 

goals such as disinformation dissemination or digital forgeries.  

Copy-Move: Copy-move forgery is a digital image forgery or manipulation in which a 

specific picture section is frequently copied and pasted within the same image to fool viewers 

or modify the content. This sort of forgery is especially prevalent in the digital arena, where it 

is used to produce duplicate or cloned objects or pieces inside an image. The duplicated piece 
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is generally pasted over another image area to hide or reproduce an item or scene, making the 

original information look intact. A part of the picture is reproduced in a copy-move fake. 

Copying an object, text, or any other visual element is an example of this. The copied section 

is then put into another part of the same picture. This frequently entails changing the cloned 

element's location, orientation, or size. The main purpose of copy-move forgery is to trick 

people into thinking the edited image is authentic and unaltered. It may be used to conceal or 

add things, eliminate undesired features, or change the image's composition.  

Object Removal: In digital image processing and computer vision, object removal refers to 

removing or concealing certain objects or areas within an image while keeping the picture's 

visual coherence and consistency. This approach is extensively used in picture editing, image 

modification, and computer vision applications for various goals, including improving an 

image's attractiveness, deleting undesired items, and changing the content. It has applications 

in a variety of disciplines, but its usage in particular settings necessitates careful evaluation of 

the ethical implications.  

Other Manipulations: Several other manipulations are also possible, including recolouring, 

resampling, seam carving, inpainting, shadow removal, etc.  

Several research contributions have been proposed to counter these common manipulations, 

such as copy-move detection methods [11], [12], [5] [6], splice detection approaches [3] [4], 

facial manipulation detection contributions [13] [14], facial retouching detection [15] etc. 

This study explores deep learning-based manipulation detection approaches in images and 

videos. Because of the explosive rise of social media platforms in recent years and the 

development of harmful manipulation techniques, it is now easier than ever to generate and 

change multimedia material. Deep learning-based approaches have proven superior to hand-

crafted feature-designing methods in computer vision applications.  

1.7 Sources of Research Works Studied 

This section highlights the approach used to prepare this thesis. This thesis includes research 

papers from top journals, conferences and workshops of several popular repositories like IEEE 

Xplore, Science Direct, Springer, ACM and Google Scholar. Relevant publications were 

included using keyword searches for “forgery detection”, “manipulation detection”, “images”, 

“videos”, “deep”, “review”, “survey”, etc. High-quality journals such as ACM Transactions, 

IEEE Transactions and top computer vision conferences such as the European Conference on 
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Computer Vision (ECCV), Conference on Computer Vision and Pattern Recognition (CVPR), 

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 

International Conference on Computer Vision (ICCV) were prioritized while including 

research contributions.  

Fig. 2 shows the year-wise distribution of contributions, demonstrating that the major 

contributions are from recent years. 

 
Fig. 2 Year-wise Papers of Manipulation Detection Literature 
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Fig. 3 The distribution of papers discussed in this thesis is presented in the above pie charts. The first graph gives 

a comparison of the number of conference and journal papers cited. The second graph shows the publisher-wise 

distribution of papers. The third graph shows the number of high-quality research papers from transaction journals. 

Fig. 3 shows the distribution of papers cited in this thesis. The first graph presents the 

number of conference and journal papers cited in this thesis. Next, the second graph shows the 

publisher-wise distribution of papers. And last, the third pie chart shows the number of papers 

from high-quality transaction journals. 

1.8 Thesis Overview 

This dissertation contains six chapters. 

Chapter 2 is dedicated to the review of the literature that highlights the existing state-of-the-

art methods for detecting manipulation in multimedia content. Specifically, it presents the 

research works categorized by the type of manipulations they detect, the research gaps 

identified, the research objectives targeted and the research contributions made. 

Chapter 3 is dedicated to the problem of face manipulation detection. Two novel deep-

learning architectures are proposed for this purpose. The first model contains an auto-adaptive 

weighting mechanism that intelligently chooses the best proportion of manipulation residuals 

and textural features. The second model contains an intelligent multi-scale attentional module 

that fuses multi-scale features dynamically to detect facial manipulation in images. 

Chapter 4 is dedicated to the problem of splice detection and localization in images. A novel 

splice detection dataset is proposed by creating spliced samples from Python code and Adobe 

Photoshop software. A novel light-weight splice detection framework is proposed that extracts 

discriminative features from spatial and compression domains. Another novel splice 

localization network is proposed to extract multi-domain features from the input images' RGB, 
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edge, and depth domains. It also upsamples features using attentional multi-receptive field 

convolution operation to localize the region of splice forgery in images. 

Chapter 5 studies the impact of visual attention mechanisms in face forgery detection. Five 

recently proposed visual attention models are incorporated in a baseline CNN, and the tradeoff 

between performance and computational cost is studied. 

Chapter 6 presents the conclusion of the research work done in this dissertation and possible 

future research directions. 

Chapter 7 includes the references cited in this thesis. 
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Chapter 2: Literature Review 

This chapter explores the existing literature on the problem of manipulation detection in 

multimedia content. 

 

Fig. 4 Taxonomy of Malicious Manipulation Detection in Multimedia 
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This chapter explores the literature related to detecting malicious manipulation of 

multimedia data. Specifically, the detection methods have been categorized into DeepFake 

detection methods, splice detection methods, and copy-move detection methods. Then, the 

research gaps are elaborated in Section 2.5. Next, Section 2.6 describes the research objectives 

covered in this dissertation. Finally, Section 2.7 explains the research contributions made 

towards these research objectives. 

2.1 DeepFake Detection Methods 

Deepfake is any multimedia content synthesized using an artificially-intelligent approach 

[2], [16], [17]. Deepfakes are ultra-realistic identity manipulations that cannot be manually 

differentiated by a human [18], [19]. These manipulations commonly include swapping facial 

regions, transferring facial pose/expression or synthesizing a complete artificial face [20], [21], 

[22], [23].  

Some contributions have used handcrafted feature-based methods to detect deepfake videos, 

such as texture analysis from Local Derivative Patterns on Three Orthogonal Planes [24]. 

While these methods claim to achieve good detection scores, they seriously lack localisation 

capabilities and require comprehensive manual feature designing, a classic drawback of 

handcrafted feature methods. The most effective deepfake detection/localization methods are 

based on deep architectures learning discriminative features automatically using a variety of 

novelties in input pre-processing, architectures or both.  

The most common approach towards deepfake detection is to use visual information from 

images or video frames as input and employ novel deep architectures to learn discriminative 

features. Yang et al. [25] extract multi-scale textural features and demonstrate their high 

relevance in detecting deepfakes. Authors propose a novel “central difference convolution” 

(CDC) operator to compute texture difference from pixel gradient information. The texture 

difference is combined at multiple scales using “atrous spatial pyramid pooling” (ASPP). Based 

on the novel CDC and ASPP, CNN shows strong generalization capability and robustness to 

distorted test data. Some methods have targeted optical flow to detect deepfakes. Amerini et 

al. [26] propose to learn inter-frame dissimilarities from optical flow. Guo et al. [27] extract 

structure forgery clues, dividing faces into strong and weak correlation regions and highlighting 

potential tampering areas.  
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Fig. 5 Categories of DeepFake Detection Methods 
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A novel “Fundamental Lip Feature Extraction” (FFE-Net) subnet captures lip motion patterns, 

reducing the impact of static lip features such as lip shape and appearance. Another novel, 

“Representative Lip Feature Extraction and Classification” (RC-Net) subnet, captures a 

person's talking habits by extracting high-level lip features.  

Several contributions have been made towards generalizations of deepfake detection. Wang 

et al. [44] use pixel-wise Gaussian blurring and a novel adversarial training practise to train 

models on adversarially crafted inputs to boost generalization capability. Korshunov et al. [45] 

propose to boost generalized deepfake detection by trying several data augmentation 

techniques, including a novel data farming approach. The authors also demonstrate the 

effectiveness of a few-shot tuning approaches to achieve the same. Wang et al. [46] prevent a 

drop in detection performance against compression degradation by training on a siamese 

network setup that processes input image and its degraded quality equivalent in pairs. In [47], 

the authors propose a Locality Aware Autoencoder (LAE) that uses a pixel-level mask to learn 

discriminative features from forged regions instead of finding superficial correlations. Hu et 

al. [48] use disentangled representation learning (DRL) to separate forgery-relevant 

information from other non-forgery-based noise features. Ablation study indicates that the 

disentanglement module plays a significant role in detecting deepfakes. 

The recently proposed “attention-mechanism” has greatly enhanced the learning capability of 

deep models in detecting the manipulation of images/videos [49]. Several novel contributions 

have used attention to highlight discriminative regions within input that help to refine deepfake 

localization. Dang et al. [50] improve the binary classification capability of CNN by using an 

attention mechanism. A novel attention-layer is proposed that takes any high-dimensional CNN 

feature map 𝔽 as input and produces an attention map 𝕄𝑎𝑡𝑡 using a novel “manipulation 

appearance model” (MAM) and then performing channel-wise multiplication with 𝔽 to produce 

𝔽̃. Choi et al. [51] use attention to uncover key video frames that have a high impact on the 

final prediction score. A certainty-aware attention map is generated that computes the certainty 

of frame-level prediction from a video, and then certainty-attentive features are generated based 

on the previously learned attention map to produce a binary classification. Experimentation 

results suggest that the attention mechanism improves the AUC scores from 0.92 to 0.94 and 

the accuracy score from 0.89 to 0.92.  

While most deepfake detection methods have focused on using visual data, some 

contributions include multi-modal approaches. Chugh et al. [52] infer that fake videos will have 
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dissimilarities in their audio and video channels. A two-branch architecture extracts features 

from visual and audio channels of 1-second videos. The two branches are trained individually 

on binary cross-entropy loss. The contrastive loss enforces the dissimilarities between audio 

and visual information of fake samples. A novel “Modality Dissonance Score” (MDS) 

measures the aggregate dissimilarity of visual-audio modality. Building on a similar idea, 

Mittal et al. [53] utilize the audio-visual channel and learn perceived emotions from the audio 

and visual channels to detect deepfakes. Chu et al. [54] extract facial expression representations 

and lip motion patterns using an Action Unit Transformer and Temporal Convolutional 

Network, respectively, to predict deepfake manipulation. 

2.2 Splice Detection Methods 

Splice manipulation involves copying and pasting one image's region(s) onto another. 

Fundamentally, all splice detection approaches rely on the simple idea that the pasted region 

and the original region of a spliced sample hold distinct properties, and any competent splice 

detection framework must highlight this difference. The most common splice detection clues 

include 1) Noise variations 2) Compression traces 3) Source camera property differences 4) 

Illumination inconsistencies.  

Traditional Splice Detection Methods: Traditional splice detection methods primarily 

focused on designing handcrafted features that highlight discriminative differences between 

original and spliced samples. Some methods are based on image characteristics such as 

detecting sharp transitions of edges and corners [55], chroma information [56], etc. Methods 

based on source device identification, such as [57], [58] proved ineffective when the extracted 

camera signal was weak. Certain hash-based methods such as [59], [60] have also been 

attempted to solve splice manipulation but cannot be regarded as blind splice manipulation 

detection methods. 

Deep Learning-based Splice Detection methods: Deep learning-based approaches for 

splice detection are divided into two categories, namely, 1) Deep Spatial Splice Detection 

Methods 2) Deep Hybrid Splice Detection Methods.  

Deep Spatial Splice detection methods directly input pixel information from images/videos 

and employ architectural novelties to automatically extract discriminative features for 

manipulation detection and localization of spliced regions [61], [62]. Deep Hybrid Splice 

detection methods perform automatic feature extraction from a variety of input information, 
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including spatial information [63], CbCr channels [64], illumination maps [65], resampling 

features [66], DCT histograms [67], residual features [68], source device patterns [69] etc to 

obtain the robust classification of manipulated samples. Some approaches combine these 

distinct inputs with spatial pixel data to obtain higher metric scores [70],  [66], [71] etc. 

Traditional splice manipulation methods suffer from several drawbacks. Image 

Characteristic methods prove weak if forgery is followed by a post-processing operation. 

Source Device Properties methods fail if the signals extracted are dilute and provide very little 

discriminative information. Hash methods for splice detection require a hash of the original 

non-forged image, which defeats the purpose of blind splice manipulation detection. 

Watermarking methods like [72] also require original images, which presents the same problem 

as in the case of hash-based splice detection methods. Another serious drawback of traditional 

splice manipulation detection methods is that while these methods are able to classify original 

and spliced samples to some degree, they demonstrate very weak localization ability. Hence, 

the automatic feature extraction capability of deep learning proves paramount towards accurate 

splice detection and localization.  

Splice manipulation leaves distinct compression artifacts, and several contributions have 

been targeted to exploit this [73], [70]. Specifically, if an original single-compressed image is 

spliced and recompressed a second time, the double compression leaves distinct traces. The 

DCT histograms of doubly compressed images obtain a distinct shape by exhibiting a higher 

frequency of missing values as compared to histograms from the original single compressed 

image [74]. Some contributions combine spatial and compression information to 

detect/localize splice manipulation. In [73], authors train a novel deep model by combining 

DCT coefficients and uncompressed pixel information for splice detection and beat traditional 

hand-crafted based splice detection methods. In [70], researchers prove that spatial and DCT 

compression information prove complimentary in detecting double jpeg compression that 

indicates splice forgery. A dual-branch deep architecture is trained on spatial and DCT features 

and attains high accuracy scores (93 to 99% accuracy) for cases when first compression quality 

(QF1) is less than second compression quality (QF2), i.e., QF1 < QF2. However, these model 

performances suffer for the case QF1 > QF2 due to small statistical differences. This is still a 

persistent research gap that needs to be addressed by upcoming tampering detection models. 

Liu et al. [75] propose a fusion of noise and compression information for splice detection. 

Specifically, the proposed Fusion-Net contains two blocks of the novel DenseNet architecture. 
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A novel residual loss is proposed that enforces the network to learn forensic features of noise 

and compression, and a novel discrepancy loss is used to enhance the traces from multiple 

sources within an image patch. The two novel losses combined with classification loss help the 

proposed model to achieve 0.97 and 0.90 auc scores on the Columbia and Realistic Tampering 

datasets, respectively, making it highly robust for splice localization. Another similar method 

utilizing noise and compression features is proposed in [63]. Since splice manipulations copy 

an image region onto a different image, the spliced sample contains source device traces of 

multiple cameras. Several splice detection methods exploit this characteristic by judging if a 

given image contains patterns from multiple cameras, thereby indicating splice forgery. Bondi 

et al. [69] use a pre-trained CNN to extract features from non-overlapping image patches and 

then utilize a clustering algorithm to decide if each patch includes traces from single or multiple 

cameras. A patch confidence score indicating the contribution of a given patch in finding 

discriminative source camera information helps the clustering algorithm to choose correct 

patches for splice detection results, but it contributes little to the localization process. The 

proposed model achieves 0.91 accuracy for known camera images and 0.81 accuracy for 

unknown camera categories. 

PRNU pattern is a popular source camera characteristic that aids in splice detection. 

However, estimating PRNU requires a large number of images from a given camera. Also, rich 

semantic image content interferes with PRNU estimation. Cozzolino et al. [76] propose a novel 

camera model fingerprint called noiseprint that outputs camera residual signals that are much 

stronger than PRNU. The main novelty of noiseprint lies in the fact that the uncovered camera 

patterns don’t match the entirety of two images from the same camera, but only when the 

patches are from the same spatial regions within the images since camera artifacts vary spatially 

within images. Two CNNs with the same architecture and weights are trained to suppress image 

content and highlight discriminative noise residuals using a distance-based logistic loss. The 

proposed noise residual extraction method achieves splice detection and localization scores. 

However, experimental results suggest that the extracted pattern is not robust enough to train 

with uncompressed image data or resize operation on test images, as both scenarios lead to 

significant drops in performance. Another study combines noiseprint with PRNU for device 

source identification [77]. 

Wang et al. [78] propose an architecture based on a novel weight combination module that 

combines YCbCr, Edge and PRNU features in a weighted manner. Four such modules are 
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connected in serial, and the weight parameters are autotuned with backpropagation. The 

ablation study reveals that individual PRNU features are more discriminative than YCbCr or 

Edge features. However, the best results are obtained by a weighted combination of the three, 

scoring 99.45% accuracy on CASIA v1.0 and 99.32% on CASIA v2.0 for size 64 𝕩 64. 

2.3 Copy-Move Detection Methods 

Copy Move is one of the most popular types of image tampering, in which a portion of a 

picture is copied onto one or more parts of the same image. 

Traditional Copy-Move Detection Methods: Traditional copy-move manipulation 

detection methods primarily focused on handcrafted features such as discrete cosine transform 

(DCT) [79], chroma features [80], discrete wavelet transform (DWT) [81], principle 

component analysis (PCA) [82], Zernike moments [83], Blur moments [84], Local Binary 

Pattern (LBP) [85], Oriented Fast and Rotated Brief (ORB) [86], Speeded up Robust Features 

(SURF) [87], Scale-Invariant Feature Transform (SIFT) [88], Color Filter Array (CFA) [89]. 

The traditional copy-move detection approaches are categorized as block-based and keypoint-

based approaches. In block-based detection approaches, an image is broken down into 

overlapping blocks. Then handcrafted features such as DWT, DCT, chroma features, PCA, 

etc., are extracted for each block, and finally, a block matching algorithm compares the 

uncovered features from each block. In keypoint algorithms, features are extracted to compare 

only high-entropy regions within images using local descriptors like SIFT, SURF and ORB. 

 

Fig. 6 Traditional Copy-Move Detection Approaches 
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of all overlapping regions within an image and only aim to match extracted keypoint features. 

However, these methods demonstrate poor localization capabilities and cannot solve the 

smoothing manipulation snippet [90]. 

Deep learning-based Copy-Move Detection methods: Copy-move manipulation can be 

plain, affine or complex [91]. Plain copy-move comprises a simple copy-paste operation with 

no transformations and is easy to detect. Affine copy-move includes scaling and rotation 

transformation before pasting the object. Complex copy-move includes not only affine 

transformations but also utilizes extra image processing steps such as blending edges of pasted 

objects and color/brightness enhancements to suppress the manipulation artifacts. Affine copy-

move requires advanced tools such as Adobe Photoshop.  

BusterNet [91]  is the first major end-to-end deep learning architecture to detect and localize 

copy-move manipulation. It comprises a dual-branch CNN network utilizing the first four 

VGG16 architectures. A ‘manipulation detection’ branch predicts regions of possible 

manipulation. A ‘similarity detection’ branch is responsible for finding copy-move regions 

using self-correlation by measuring region-wise similarity and percentile pooling for additional 

statistical analysis. Pretrained on the ImageNet dataset and fine-tuned on a synthetically 

prepared dataset with attacks including blending, rotation, scaling and translation, a three-stage 

training strategy ensures that the branches learn to maximize their feature extraction capability 

before training the model end-to-end. BusterNet outperforms the then state-of-the-arts, 

achieving a high image level auc score of 0.8 on the CASIA dataset. It proves robust against 

most attacks or postprocessing methods of the CoMoFoD dataset.  

One key challenge in copy-move manipulation detection is identifying and distinguishing 

between original image regions with similar textural data and copy-move manipulated regions 

since both cases have identical visual information. Islam et al. [6] try to solve this problem by 

using a dual-attention-based architecture. The authors compute an affinity matrix with second-

order statistics on features extracted from a CNN. Then, a first-order attention module 

highlights all similar regions within an image, and a second-order attention module separates 

similar-looking original regions from copy-moved regions. High values in off-diagonal 

elements indicate copy-move forgery. The proposed method is designed for adversarial training 

where a generator produces a copy-move forgery mask, and a discriminator is trained to 

differentiate generated masks from actual ground truths. 
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Zhu et al. [5] propose a novel Adaptive Attention and Residual Refinement Network (AR-

Net) that utilizes positional and channel attention to highlight discriminative parts of features. 

Deep matching is used to learn self-correlation among feature maps, and atrous spatial pyramid 

pooling is used to obtain multi-scale features. Zhong et al. [90] propose the Dense InceptionNet 

network having a pyramid feature extractor (PFE) to extract multi-dimensional and multi-scale 

features, feature correlation matching (FCM) to learn the correlation of dense features and 

hierarchical post-processing (HPP) to improve training through a combination of entropies. 

2.4 Other Manipulation Detection Methods 

While copy move, splicing and facial tampering are the most common forms of 

manipulations, several other types of manipulation detection and localization approaches have 

also been proposed. Some of these manipulations are discussed below.  

Nam et al. [92] tackle seam carving by proposing an ILFNet architecture containing five 

blocks to detect local artefacts caused by seam insertion or removal operation. Li et al. [93] 

handle inpainting manipulation through a C-based architecture with four ResNet blocks trained 

on image residuals to localize the inpainting region. Yan et al. [94] approach recolouring 

detection using a CNN with three feature extraction blocks and one feature fusion block. To 

identify recoloring, the picture is used as input, along with illumination consistency and inter-

channel correlation Yarlagadda et al. [95] take the issue of shadow removal detection by 

training a cGAN to output localization mask of shadow removal region. Long et al. [96] 

perform frame deletion detection in videos by using 3D convolutions in the network that 

threshold the L2 distance of color histograms, optical flow and motion energy of two 

consecutive frames to detect deleted frames. 

2.5 Research Gaps 

On the basis of the literature presented in the above section, several research gaps have been 

identified. 

• Several multi-branch approaches have proven highly effective for face manipulation 

detection. While multi-branch architectures are well suited to learning complementary 

features from multiple domains, they usually suffer from a common flaw at the feature 

fusion stage. The domain features are always fused equally in terms of proportion. This 

may not be true in most cases, as there may be more discriminative information in any 
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one of the domain features. Intelligent deep learning architectures that are capable of 

automatically choosing the best proportion of multi-domain features need to be 

designed. 

• Recent contributions have focussed on extracting multi-scale features that uncover 

more discriminative information than single-scale feature extraction networks for face 

manipulation detection [97, 98, 99]. One key issue with the existing multi-scale feature 

extraction methods is the implicit assumption that each scale of features holds equal 

importance and is directly fused for the final prediction. However, this may not always 

be true as different scales of features may carry different levels of important information 

crucial for identifying face tampering. A better approach is to develop a dynamic 

weighting scheme that allows the model to weigh each scale of feature based on their 

relevance before making the final prediction.  

• The size of splice detection datasets is very small for image splice detection, and there 

is an important need to develop larger splice detection datasets. 

• Given the small size of splice detection datasets, there is a need to develop lightweight 

models for splice detection to prevent the problem of overfitting. 

• Visual attention has played a key role in boosting the performance of deep learning 

models in various computer vision tasks. However, these attention mechanisms come 

at the expense of added computational costs. No research studies the tradeoff between 

performance and computational cost while utilizing these visual attention mechanisms 

in manipulation detection models. 

2.6 Research Objectives 

The research objectives for this thesis are: 

• To develop a manipulation detection dataset with labelled samples (original/forged) and 

binary masks to train the state-of-the-art deep learning models for robust and accurate 

manipulation detection in multimedia information.  

• To conduct a comparative performance analysis of several state-of-the-art methods for 

fraudulent multimedia detection on the proposed dataset. 

• To propose novel manipulation detection approaches achieving high robustness against 

the most competent and prevailing approaches for creating fraudulent images or videos. 

• To design manipulation localization approaches that perform detection and locate the 

regions of manipulation within data. 
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2.7 Research Contributions 

The following research contributions have been made in this research thesis: 

• Proposed MRT-Net, a novel end-to-end architecture for facial manipulation detection 

in deepfake videos that utilizes an auto-adaptive weighting mechanism of manipulation 

residuals and textural information to find the best proportion of the two features. The 

proposed model uses a recently proposed attention mechanism that aggregates features 

along two dimensions to capture long-range dependencies and accurate positional 

information. MRT-Net achieves high AUC scores of 0.9964 on DFDC, 0.9921 on 

CelebDF, 0.9910 on FF++(DeepFake), 0.9974 on FF++(Face2Face), 0.9942 on 

FF++(FaceShifter), 0.9933 on FF++(FaceSwap) and 0.9662 on FF++(NeuralTextures) 

datasets beating several state-of-the-art methods. 

• Proposed Face-NeSt, a novel deepfake detection architecture that dynamically chooses 

a suitable proportion of multi-scale features to identify face manipulation. Face-NeSt 

contains a novel ‘adaptively weighted multi-scale attentional’ module that weighs 

multi-scale features according to their relevance before combining them for the final 

prediction. Four auto-adaptive 𝛽 weight parameters are added to the computation graph 

of the proposed Face-NeSt model and help to dynamically control the proportion of 

multi-scale attentional features used in making the final prediction. The attention 

mechanism highlights important local and global feature regions across the channel and 

spatial dimensions. The AUC scores are 0.9823 on CelebDF, 0.9947 on DFDC, 0.9945 

on DeepFake (FF++), 0.9905 on Face2Face (FF++), 0.9978 on FaceShifter (FF++), 

0.9948 on FaceSwap (FF++) and 0.9548 on NeuralTextures (FF++) beating all state-

of-the-arts. 

• Proposed a novel splice detection dataset – BiometricLab-DTU-Splice Dataset is 

proposed. The proposed dataset has two variants. The first variant is autogenerated from 

code, while the second contains handmade spliced samples. Binary masks are available 

in both variants. A novel lightweight, dual-branch, information-preserving, spatial-

compression modal splice detection framework is proposed to detect spliced jpeg 

images while restricting the computational complexity to a small fraction of the usual 

computational cost in deep learning. The proposed model contains a novel ‘spatial 

branch’ to extract discriminative spatial information for detecting image splicing. 

Transfer learning is used to leverage the strong classification capabilities of deep 
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models in the spatial domain at minimal computational costs. The proposed model 

contains a novel information-preserving ‘compression branch’ that uses original 

resolution compression data to extract double compression artifacts from spliced jpgs. 

Experimentations with several variants of the proposed spliced detection framework 

and comparisons with existing splice detection methods prove the potency of the 

proposed splice detection framework at minimum computational costs. 

• Proposed a novel, visually-attentive splice localization model with multi-domain 

feature extractor and multi-receptive field upsampler. Specifically the “visually 

attentive multi-domain feature extractor” (VA-MDFE) extracts attentional features 

from the RGB, edge and depth domain of input images. Next, a “visually attentive 

downsampler” (VA-DS) is responsible for fusing the multi-domiain feature and 

downsampling them. Lastly, a “visually attentive multi-receptive field upsampler” 

(VA-MRFU) upsamples features using multiple receptive fields during the convolution 

operation. Experimental results clearly indicate the superiority on the proposed splice 

localization model against the existing state-of-the-art methods. 

• Conducted an exhaustive study of recent visual attention models and demonstrated their 

effectiveness in detecting face forgery. Five attention models, namely, Coordinate 

Attention [100], Selective Kernel Attention [101], Triplet Attention [102], CoT 

Attention [103] and Shuffle Attention [104] have been studied. The attention modules 

are evaluated by measuring their performance on the popular face forgery dataset 

FaceForensics++. A study of the computational complexity of each type of visual 

attention has been conducted. The tradeoff between performance and computational 

cost associated with each attention mechanism is presented. 
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Chapter 3: Face Manipulation Detection in Images 

3.1 Scope of this Chapter 

This chapter is dedicated to the problem of face manipulation detection in images. To this 

end, two novel deep-learning architectures are proposed. The first model is MRT-Net, which 

uses an auto-adaptive weighting mechanism of manipulation residuals and textural information 

to find the best proportion of the two features crucial to detecting face forgery. MRT-Net is an 

end-to-end, multi-domain architecture that utilizes channel attention to capture long-range 

dependencies along the depth. The second model is Face-NeSt, a visual attention-based, multi-

scale deepfake detection architecture that extracts visually attentive multi-scale features to 

detect face manipulation. Four auto-adaptive 𝛽 parameters are added to the computation graph 

of Face-NeSt and help to dynamically control the proportion of multi-scale attentional features 

used in making the final prediction. The attention mechanism highlights important local and 

global feature regions across the channel and spatial dimensions. Experimental results on three 

public benchmark datasets for face manipulation detection prove that both MRT-Net and Face-

NeSt models beat the existing state-of-the-art models comfortably, clearly establishing their 

superiority.  

3.2 MRT-Net: Auto-Adaptive Weighting of Manipulation Residuals and 

Texture Clues for Face Manipulation Detection 

3.2.1 Abstract 

Due to the increasing prevalence of social media and the proliferation of deceptive 

manipulation techniques, it is now more effortless than ever to deceive and disrupt society by 

altering information on social media platforms. Therefore, it is imperative to develop robust 

manipulation detection systems. This publication presents an innovative architecture, MRT-

Net, that extracts distinct "manipulation residuals" (MR) and "textural" (T) characteristics for 

the purpose of detecting face manipulation. The fusion step of most multi-branch designs 

commonly exhibits a fault, wherein it combines multi-domain properties in equal proportion. 

This proves detrimental as not all features may hold equal significance in determining the final 

prediction. MRT-Net addresses this issue by including an auto-adaptive weighting technique 

to determine the optimal balance of manipulation residual and textural information, which 

mutually enhance each other. More precisely, the proposed neural network incorporates two 
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weighting factors, denoted as ∝1 and ∝2, for the MR and T features. These parameters are 

dynamically updated by backpropagation, enabling MRT-Net to discover the optimal 

combination of residual and textural information. In addition, MRT-Net utilises a channel 

attention method to enhance its performance to a greater extent. MRT-Net demonstrates 

exceptional performance on three widely recognised benchmark datasets, namely Deep Fake 

Detection Challenge (DFDC), CelebDF, and FaceForensics++ (FF++). The AUC scores 

obtained are as follows: 0.9964 for DFDC, 0.9921 for CelebDF, 0.9910 for FF++(DeepFake), 

0.9974 for FF++(Face2Face), 0.9942 for FF++(FaceShifter), 0.9933 for FF++(FaceSwap), and 

0.9662 for FF++(NeuralTextures). The model also attains accuracy scores of 0.9760 on DFDC, 

0.9815 on CelebDF, 0.9670 on FF++(DeepFake), 0.9767 on FF++(Face2Face), 0.9611 on 

FF++(FaceShifter), 0.9676 on FF++(FaceSwap), and 0.9025 on FF++(NeuralTextures).  The 

outstanding outcomes clearly showcase the effectiveness of MRT-Net, as it surpasses other 

cutting-edge techniques for detecting face tampering with ease. 

3.2.2 Proposed Methodology 

This section presents an in-depth description of MRT-Net, highlighting its core components, 

explaining their role in the overall detection process and how they are integrated. Fig. 8 shows 

the architecture of the proposed model. 

3.2.2.1 MRT-Net Overview 

This section provides a visual overview of the working of the proposed model. Specifically, 

the the algorithm and the flowchart are presented here. Algorithm 1 presents the pseudo-code 

for training MRT-Net. 

Algorithm 1 Pseudocode for training the proposed MRT-Net  

Input:  

 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = {𝕏𝑖 , 𝕐𝑖}𝑖=1
𝑛  such that 𝕏𝑖 ∈ ℝ

3×128×128 represents face images and 𝕐𝑖 ∈ {0,1} is the true label. 

Model parameters 𝜃 

Batch Size ℬ 

Total Batches 𝒷𝑡𝑜𝑡𝑎𝑙  
Epoch ℰ 

Initial Learning Rate ℓ𝓇 

Learning Rate Decay factor 𝛾 after every 𝓃 epochs. 𝛾 ∈ [0,1] 
Auto-Adaptive weights ∈ {𝛼1, 𝛼2} 

Output:   

 Trained MRTNet model for face manipulation detection 

1. Initialize 𝜃 and auto-adaptive weights {𝛼1, 𝛼2}  

2. for ℯ = 1,2,3… ℰ do Train for ℰ epochs. 

3.  for 𝒷 = 1,2,3…𝒷𝑡𝑜𝑡𝑎𝑙  do Loop through all batches in an epoch. 

4.   (𝕏, 𝕐) ~ 𝒮 Randomly sample one batch of size ℬ. 

5.   𝕐𝑀𝑅 ←ℳℛ(𝕏) 
Extract residual features 𝕐𝑀𝑅 from 

manipulation residual branch ℳℛ(). 



Chapter 3: Face Manipulation Detection in Images  

25 

 

6.   𝕐𝑇 ← 𝒯(𝕏) 
Extract textural features 𝕐𝑇 from texture 

branch 𝒯(). 

7.   𝕐𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 ← (𝛼1 × 𝕐𝑀𝑅) ⊕ (𝛼2 × 𝕐𝑇) 
Auto-Adaptive Weighting of features 

𝕐𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 . ⊕ denotes concatenation. 

8.   𝕐𝑓𝑖𝑛𝑎𝑙 ← ℒ(𝕐𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒) Get the final prediction of the model 𝕐𝑓𝑖𝑛𝑎𝑙 . 

9.   𝜃 ← 𝜃 − ℓ𝓇 △𝜃 ℒ𝐶𝐸(𝕐𝑓𝑖𝑛𝑎𝑙 , 𝕐) 
Update model parameters to minimize cross-

entropy loss ℒ𝐶𝐸  via backpropagation. 

10.   𝛼1 ← 𝛼1 − ℓ𝓇 △𝛼1 ℒ𝐶𝐸(𝕐𝑓𝑖𝑛𝑎𝑙 , 𝕐) Update 𝛼1 and 𝛼2 through backpropagation 

(auto-adaptive). 11.   𝛼2 ← 𝛼2 − ℓ𝓇 △𝛼2
ℒ𝐶𝐸(𝕐𝑓𝑖𝑛𝑎𝑙 , 𝕐) 

12.   if ℯ % 𝑛 = 0 then 
Decay learning rate after every ‘𝑛’ epochs. 

13.    ℓ𝓇 ← ℓ𝓇 ×  𝛾 

14.  end for  

15. end for  

Fig. 7 shows the flowchart of the proposed MRT-Net model. 

 

Fig. 7 Flowchart of the MRT-Net model  
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Fig. 8 Architecture of MRT-Net having manipulation residual and textural branch. BTL stands for BottleNeck 

layers, DS stands for Down-Sample layers and CDC stands for Central Difference Convolution. 
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3.2.2.2 Manipulation Residual Branch 

Detecting manipulation in images requires uncovering manipulation traces. The semantic 

content of an image plays little role in this process and hence, it makes intuitive sense to 

suppress such semantic content. This approach allows deep neural nets to extract relevant 

features from manipulation residuals.  

Several research contributions such as [105, 106, 107], aim to learn discriminative features 

from predicted manipulation traces. A special predictor operator ∅(∙) predicts pixel values 

𝒽𝑜𝑢𝑡𝑝𝑢𝑡 from input 𝒽𝑖𝑛𝑝𝑢𝑡 as shown in Eq. 1. 𝒽𝑜𝑢𝑡𝑝𝑢𝑡 represents the features focussing on the 

semantic content of the input image. The manipulation residual can be computed by removing 

the semantic features 𝒽𝑜𝑢𝑡𝑝𝑢𝑡 from the input image. Hence, the manipulation residual 

𝒽𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑 is computed by the operation described in Eq. 2. 

𝒽𝑜𝑢𝑡𝑝𝑢𝑡 = ∅(𝒽𝑖𝑛𝑝𝑢𝑡)          (1) 

𝒽𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑 = 𝒽𝑜𝑢𝑡𝑝𝑢𝑡 − 𝒽𝑖𝑛𝑝𝑢𝑡        (2) 

In the proposed model, the predictor ∅(∙) has been designed as a single convolutional layer. 

Since deep models have convolutional kernels that are auto-adaptive, they learn the best kernel 

coefficient values via backpropagation, ensuring an iteratively improving manipulation 

residual extractor. The manipulation residual extractor convolution layer has three kernels of 

size 3 × 3 with padding value 1 to ensure same dimensions for 𝒽𝑜𝑢𝑡𝑝𝑢𝑡 and 𝒽𝑖𝑛𝑝𝑢𝑡 and is 

placed at the beginning of the manipulation residual branch as shown in Fig. 8. 

The manipulation residual module is followed by a resnet50 architecture whose pooling and 

fully connected layers are trimmed. The resnet50 architecture contains blocks of three, four, 

six and three bottleneck layers respectively, and one attention module is added at the end of 

each bottleneck layer block. All kernels are initialized with pre-trained ImageNet weights 

except the manipulation residual extraction module. This approach significantly boosts model 

performance as demonstrated in the experiment section. 

3.2.2.3 Textural Branch 

Texture has proven to be a beneficial modality for facial manipulation detection [25, 24, 

108]. Hence, the second branch of the proposed model extracts texture information from a 

facial image. Intuitively, this proves complementary to feature learning from the first branch 

which aims to suppress the semantic content of the input image. The idea of texture extraction 
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is derived from [109] by utilizing a novel operator called central difference convolution (CDC), 

as demonstrated in Fig. 9.  

 

Fig. 9 Central Difference Convolution (CDC) [109] 

Eq. 3 describes the standard vanilla convolution operation where the output feature map 𝓎 

is obtained for the current location ℓ𝑐. Specifically, a convolutional kernel is placed onto the 

input image with  its center value overlapping with the input image at ℓ𝑐. ℓ𝑛 denotes locations 

in the local receptive field ℱ and is is used to calculated a weighted sum of the input pixel 

values with the corresponding weights in the convolution kernel. 𝕩 represents the input matrix 

and 𝕨 are the convolutional weights. 

𝓎(ℓ𝑐) = ∑ 𝕨(ℓ𝑛) ∙ 𝕩(ℓ𝑐 + ℓ𝑛)ℓ𝑛∈ℱ        (3) 

𝓎(ℓ𝑐) = 𝜑 (∑ 𝕨(ℓ𝑛) ∙ (𝕩(ℓ𝑐 + ℓ𝑛) − 𝕩(ℓ𝑐))ℓ𝑛∈ℱ⏟                        
𝐶𝐷𝐶

) + (1 − 𝜑)(∑ 𝕨(ℓ𝑛) ∙ 𝕩(ℓ𝑐 + ℓ𝑛)ℓ𝑛∈ℱ⏟                
𝑣𝑎𝑛𝑖𝑙𝑙𝑎 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

)   (4) 

Eq. 4 describes the CDC operation which is a modified version of the vanilla convolution. 

When the CDC kernel is placed onto the input image, instead of taking the weighted sum of 

input pixels and convolutional kernel weights directly, a center matrix is computed by copying 

the center value from the region of overlap of the input image. This center value is then 

subtracted from each input pixel value which is then convolved with the kernel weights. The 

subtracted pixel values are represented by the  𝕩(ℓ𝑐 + ℓ𝑛) − 𝕩(ℓ𝑐) term in equation 4. 𝜑 is a 

hyperparameter in the range [0,1], specifying the degree of tradeoff between intensity and 

gradient information [109]. A higher value of 𝜑 specifies more emphasis on extracting texture 

difference information. 
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The texture branch is created by replacing all convolution kernels of resnet50 architecture 

with CDC except in the downsample layers. The pooling and fully connected layers are pruned, 

just like in the manipulation residual branch. Weights are initialized randomly in this branch. 

3.2.2.4 Attention Module 

Several attention-based research methods have established the importance of the attention 

mechanism in facial manipulation detection [50, 51, 110]. A recently proposed Coordinate 

Attention [100] mechanism has been used in the proposed model to boost the classification 

capability. Coordinate attention employs a lightweight computation model explicitly designed 

for mobile networks. It maps channel attention from two direction-aware features, learning 

long-range dependencies and precise positional information. Fig. 10 demonstrates the structure 

of coordinate attention. The proposed model contains two resnet50 branches. A single 

coordinate attention block has been employed after each bottleneck layer block in both 

branches as shown in Fig. 8. 

 

Fig. 10 Structure of Coordinate Attention [100] 
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The auto-adaptive weighted fusion is the main novelty of the proposed model. Unlike other 
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MRT-Net can decide what proportion of manipulation residual and textural information is best 

suited for detecting facial manipulation.  

The proposed model contains two branches based on resnet50 architecture. The shape of 

output features from both branches is 4 × 4 × 2048. Two weight parameters namely, ∝1  and 

∝2 are added to introduce a weighted fusion of the features 𝒻1 and 𝒻2 from manipulation 

residual and texture branch, respectively. The fused features 𝒻3 is obtained by Eq. 5: 

𝒻3 = (∝1× 𝒻1) ⨁  (∝2× 𝒻2)         (5) 

Here, × represents the arithmetic multiplication and ⨁ is channel-wise concatenation 

operation. Other fusion techniques are explored in the ablation study. Specifically, sum and 

mean fusion approaches were also tried. However, channel-wise concatenation yielded the best 

results. Fused feature 𝒻3 having 4096 channels is then passed through two convolutional layers 

to reduce the dimensionality of features. 

The main novelty of the proposed model is the auto-adaptive updating of ∝1 and ∝2. These 

two weights are added to the computation graph of MRT-Net. This means that they are added 

to the weight parameters of MRT-Net. Hence, they are updated automatically via 

backpropagation and the model finds the ideal proportion of feature fusion in the training phase. 

To experiment with different proportions of manipulation residual and textural features, ∝1 and 

∝2 are initialized with different value combinations, as mentioned in Table VIII. 

3.2.3 Experimental Setup 

This section presents the experimental settings used for the training and evaluation of the 

proposed MRT-Net model. 

3.2.3.1 Datasets 

FaceForensics++ (FF++): The FaceForensics++ (FF++) [111] dataset is a widely used 

collection of data for detecting face manipulations. It includes several types of manipulations 

such as Deepfakes [112], FaceSwap [113], Face2Face [114], FaceShifter [115], and Neural 

Textures [116]. The dataset has a total of 1000 authentic videos and 5000 altered videos, 

encompassing all five modification categories. The dataset comprises samples of three distinct 

qualities: raw, high (c23), and poor quality (c40). 
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The Deepfake Detection Challenge (DFDC): The DFDC dataset [117] comprises 5214 videos 

generated by two unknown modification algorithms including 66 people. The ratio of 

manipulated samples to original samples is 1:0.28. 

Celeb-DF: The Celeb-DF [118] is a large dataset of deepfakes. The dataset comprises 590 

authentic video samples captured from 59 performers, with 5639 deepfake videos. The videos 

that have been tampered with in this collection exhibit a remarkably authentic level of 

alteration, which poses a challenge for identification. Videos are recorded at a frame rate of 30 

frames per second (fps) and have an average duration of 13 seconds. 

3.2.3.2 Train, Validation and Test Splits 

This section defines the allocation of the dataset into distinct subsets for the purposes of 

training, validation, and testing of the proposed model. The suggested model was trained, 

validated, and tested using the number of face images shown in Table I. 

Table I Details of train, validation and test split. 

Dataset Train Split Validation Split Test Split 

Deepfakes (FF++) 48000 6400 9600 

Face2Face (FF++) 48000 6400 9600 

FaceShifter (FF++) 48000 6400 9600 

FaceSwap (FF++) 48000 6400 9600 

NeuralTextures (FF++) 48000 6400 9600 

Celeb DF 160000 26432 22400 

DFDC  112000 22400 27424 

3.2.3.3 Evaluation Metrics 

This section defines the evaluation metrics employed to quantify the classification proficiency 

of the proposed model, as seen in Table II. 

Table II Classification metrics used in this experiment. 

Metric Formula Range Acronym 

Accuracy 
𝕋ℙ + 𝕋ℕ

𝕋ℙ + 𝕋ℕ + 𝔽ℙ + 𝔽ℕ
 [0,1] ACC 

Precision  
𝕋ℙ

𝕋ℙ + 𝔽ℙ
 [0,1] P 

Recall  
𝕋ℙ

𝕋ℙ + 𝔽ℕ
 [0,1] R 

F1 score 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 [0,1] F1 

Area Under Curve - [0,1] AUC 

Mathews Correlation 

Coefficient 

𝕋ℙ ∗ 𝕋ℕ − 𝔽ℙ ∗ 𝔽ℕ

√(𝕋ℙ + 𝔽ℙ)(𝕋ℙ + 𝔽ℕ)(𝕋ℕ + 𝔽ℙ)(𝕋ℕ + 𝔽ℕ)
 [-1,1] MCC 

3.2.3.4 Face Extraction 

RetinaFace [119] has been used to extract face images from video frames. It is superior to 

other face extraction models such as dlib [24, 28, 120] or MTCNN [121, 110, 122]. 
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3.2.3.5 Preprocessing and Data Augmentation 

In this experiment, each facial image has been resized to dimensions of 128 × 128. The pixel 

values are scaled to fit inside the range of [0,1]. Random horizontal and vertical flip 

augmentations are applied to the face images. 

3.2.3.6 Training Settings & Hardware 

The initial learning rate is set to 0.01. 32 consecutive frames are sampled from each video. 

The batch size is set to 128  face images. Face images are shuffled within a batch for the 

randomness of the input sequence. SGD optimizer is used to update the weights of the neural 

network. A linear learning rate scheduler decays the learning rate by 10% after every 2 epochs. 

All training operations are run for 50 epochs. All experiments are run on two 24 GB NVIDIA 

TITAN RTX GPUs running in parallel. 

3.2.4 Experimental Results & Analysis 

This section presents the experimental results achieved by the proposed MRT-Net model.  

3.2.4.1 Performance of MRT-Net on Benchmark Datasets 

This section presents the accuracy (ACC), precision (P), recall (R), F1, AUC and MCC 

scores of MRT-Net on the FF++, DFDC and CelebDF datasets. 

Table III Performance of MRT-Net on FF++, CelebDF and DFDC datasets.  

Datasets 
Alpha Initial Alpha Final 

ACC P R F1 AUC MCC 
∝1 ∝2 ∝1 ∝2 

Deepfakes (FF++) 0.75 0.25 0.7890 0.2110 0.9670 0.9867 0.9504 0.9682 0.9910 0.9347 

Face2Face (FF++) 0.75 0.25 0.8150 0.1850 0.9767 0.9704 0.9857 0.9780 0.9974 0.9534 

FaceShifter (FF++) 0.75 0.25 0.8147 0.1853 0.9611 0.9589 0.9627 0.9608 0.9942 0.9223 

FaceSwap (FF++) 0.75 0.25 0.8348 0.1652 0.9676 0.9671 0.9697 0.9684 0.9933 0.9353 

NeuralTextures (FF++) 0.75 0.25 0.8160 0.1840 0.9025 0.8689 0.9232 0.8952 0.9662 0.8056 

Celeb DF 0.75 0.25 0.7550 0.2450 0.9815 0.9833 0.9959 0.9896 0.9921 0.9084 

DFDC  0.75 0.25 0.7920 0.2080 0.9760 0.9805 0.9891 0.9848 0.9964 0.9279 

Table III displays the classification scores achieved by MRT-Net. The model scores above 

0.96 accuracy for most cases signifying excellent classification capability. MRT-Net achieves 

high F1 scores of 0.96  and above for most cases, measuring the balance between precision 

and recall. MRT-Net also achieves excellent AUC scores of 0.99 and above for most cases as 

shown in Fig. 11. This proves that MRT-Net makes high-confidence predictions and can clearly 

identify manipulated samples. 
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Fig. 11 ROC curves for MRT-Net on FaceForensics++, CelebDF and DFDC datasets. 

Most manipulation detection methods specify the performance in terms of accuracy, 

precision, recall, F1 and AUC scores but these metrics are asymmetric. However, MCC is a 

robust metric for measuring the model's ability to identify both classes instead of just the 

positive class. Table III shows high MCC scores above 0.90 in most cases. This proves that 

MRT-Net is equally good at identifying original face images and facial manipulations. 

3.2.4.2 Comparison Against Existing State-of-the-Arts 

This section compares the performance of MRT-Net against the recent state-of-the-art 

methods for face manipulation detection.  

Table IV Result comparison of MRT-Net with the state-of-the-art methods on the FF++ dataset. 

Methods Year 
DeepFake Face2Face FaceShifter FaceSwap NT Average 

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

Yang et al. [123] 2023 - - - - - - - - - - - 0.8709 

Guo et al. [124] 2023 - - - - - - - - - - - 0.9755 

Lin et al. [97] 2023 - - - - - - - - - - 0.9074 0.9486 

Guo et al. [27] 2023 - - - - - - - - - - - 0.9879 

Yang et al. [125] 2023 - - - - - - - - - - 0.9382 0.9827 

Xu et al. [126] 2023 - - - - - - - - - - - 0.9034 

Yang et al. [127] 2022 - - - - - - - - - - - 0.7888 

Nirkin et al. [128] 2022 0.9450 - 0.8030 - - - 0.8450 - 0.7400 - - - 

Liu et al. [129] 2021 0.9348 - 0.8602 - - - 0.9226 - 0.7678 - 0.8713 - 

*AMTENnet 

[107] 
2021 0.9285 0.9801 0.9204 0.9756 0.9273 0.9837 0.8995 0.9665 0.7728 0.8455 0.8897 0.9502 

*Coordinate-

Attention [100] 
2021 0.8675 0.9430 0.5932 0.6295 0.7536 0.8276 0.7562 0.8441 0.6162 0.6514 0.7173 0.7791 

Shang et al. [130] 2021 0.9563 - 0.9015 - - - 0.9493 - 0.8001 - - - 
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Methods Year 
DeepFake Face2Face FaceShifter FaceSwap NT Average 

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

Chen et al. [131] 2021 - 0.9595 - - - - - 0.9787 - - - - 

Hu et al. [132] 2021 0.9464 0.9800 0.8648 0.9400 - - 0.8527 0.9400 0.8005 0.9000 - - 

* CDCN++ [109] 2020 0.9074 0.9727 0.8715 0.9458 0.9081 0.9716 0.9086 0.9601 0.7639 0.8422 0.8719 0.9384 

Qian et al. [133] 2020 0.9597 - 0.9532 - - - 0.9653 - 0.8332 - 0.9278 - 

Baek et al. [134] 2020 0.7180 - 0.6860 - - - 0.6310 - 0.7070 - - - 

Zi et al. [135] 2020 0.9210 - 0.8390 - - - 0.9250 - 0.7820 - - - 

Rössler et al. [111] 2019 0.7450 - 0.7590 - - - 0.7090 - 0.7330 - - - 

Amerini et al. [26] 2019 - - 0.8161 - - - - - - - - - 

Afchar et al. [136] 2018 0.8727 - 0.5620 - - - 0.6117 - 0.4067 - 0.6132 - 

MRT-Net 

(Proposed) 
- 0.9670 0.9910 0.9767 0.9974 0.9611 0.9942 0.9676 0.9933 0.9025 0.9662 0.9550 0.9884 

Table IV shows the performance comparison of MRT-Net against the recent state-of-the-

arts on the FF++ dataset. MRT-Net achieves better scores across all different manipulations of 

FF++. MRT-Net comfortably beats all the state-of-the-arts including CDCN++, AMTENnet 

and CoordinateAttention network, clearly proving its superiority. Additionally, Fig. 12 presents 

a visual comparison of the ACC, AUC and MCC scores of MRT-Net against CDCN++, 

AMTENnet and CoordinateAttention networks on the FF++ (DF) dataset category.  

 

Fig. 12 Comparison of MRT-Net against the base papers on the FF++ (DF) dataset. 

Table V presents results achieved by MRT-Net obtained on the CelebDF dataset are 

reported and compared against the state-of-the-art methods. Once again, MRT-Net proves its 

superiority against CDCN++, AMTENnet and CoordinateAttention network and all the other 

state-of-the-arts. 

Table V Result comparison of MRT-Net with the state-of-the-art methods on the CelebDF dataset. 
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Methods Year ACC AUC 

Asha et al. [137] 2023 0.8800 0.8400 

Yang et al. [123] 2023 - 0.9108 

Guo et al. [124] 2023 - 0.6743 

Ke et al. [138] 2023 0.8892  

Guo et al. [27] 2023 - 0.6950 

Xu et al. [126] 2023 - 0.9332 

Li et al. [139] 2023 0.7169 0.7659 

Nadimpalli et al. [140] 2022 0.6200 0.6700 

Yang et al. [127] 2022 - 0.8561 

Nirkin et al. [128] 2022 - 0.6600 

Li et al. [141] 2021 - 0.7600 

Hu et al. [48]  2021 - 0.7884 

Trinh et al. [142] 2021 - 0.7176 

Luo et al. [143] 2021 0.7435 0.9234 

Chen et al. [144] 2021 0.9575 - 

Chen et al. [131] 2021 - 0.8765 

Hu et al. [132] 2021 0.8074 0.8700 

*AMTENnet [107] 2021 0.9254 0.8804 

*CoordinateAttention [100] 2021 0.8904 0.8026 

Qian et al. [133] 2020 0.8706 0.8148 

*CDCN++ [109] 2020 0.9180 0.8982 

Dang et al. [50] 2020 - 0.7120 

Choi et al. [51] 2020 0.9200 0.9400 

Li et al. [145] 2020 - 0.7476 

Afchar et al. [136] 2018 0.6750 0.6681 

MRT-Net (Proposed) - 0.9815 0.9921 

 

Table VI Result comparison of MRT-Net with the state-of-the-art methods on the DFDC dataset. 

Methods Year ACC AUC 

Deng et al. [146] 2023 0.9216 0.9784 

Mohiuddin et al. [147] 2023 0.7534 0.8567 

Asha et al. [137] 2023 0.8700 0.9100 

Guo et al. [124] 2023 - 0.9597 

Ke et al. [138] 2023 0.9108 - 

Lin et al. [97] 2023 - 0.8847 

Guo et al. [27] 2023 - 0.9827 

Yu et al. [148] 2023 0.9593 0.9896 

Zhao et al. [149] 2023 0.9210 - 

Yang et al. [125] 2023 - 0.9911 

Heo et al. [150] 2023 - 0.9780 

Xu et al. [126] 2023 - 0.8037 

Ganguly et al. [151] 2022 0.7321 0.8632 

Ganguly et al. [152] 2022 0.7520 0.8359 

Nadimpalli et al. [140] 2022 0.9100 0.8600 

*AMTENnet [107] 2021 0.9139 0.9402 

*CoordinateAttention [100] 2021 0.8917 0.8830 

Shang et al. [130] 2021 - 0.9778 

Xu et al. [28] 2021 0.8453 0.9347 

Li et al. [141] 2021 - 0.7600 

Luo et al. [143] 2021 0.8841 0.9496 

Li et al. [145] 2020 - 0.8090 

*CDCN++ [109] 2020 0.9174 0.9492 

Li et al. [153] 2020 0.8511 - 

Qi et al. [42] 2020 0.6410 - 

Mittal et al. [53] 2020 - 0.8440 

Chugh et al. [52] 2020 - 0.9160 

Montserrat et al. [17] 2020 0.9188 - 
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Methods Year ACC AUC 

MRT-Net (Proposed) - 0.9760 0.9964 

Table VI shows the results of MRT-Net on the DFDC dataset. Here again, it is observed 

that the proposed model outperforms all the state-of-the-art methods including base paper 

methods CDCN++, AMTENnet and CoordinateAttention network. 

3.2.4.3 Complexity Analysis of MRT-Net 

This section presents the computational complexity of the proposed MRT-Net architecture 

and compares it against the popular computer vision models. The computational factors under 

consideration include the number of trainable parameters, the number of ‘Multiply-

Accumulate’ (MACs) operations, accuracy achieved on the DF (FF++) dataset, inference time 

on CPU and GPU.  

In the MAC metric, “multiply” means to perform the multiplication operation on two 

numbers or elements, usually elements found in matrices within deep learning. “Accumulate” 

means to sum together the outcomes of several multiplication processes. A single multiply-

accumulate process entails multiplying two integers and adding the product to an accumulating 

total. The MAC measure quantifies the number of multiply-accumulate operations needed to 

calculate the neural network's output.  

 

Fig. 13 Complexity analysis of MRT-Net against popular computer vision models. 

The intricacy of a deep learning model is indicated by its MAC count, as a larger MAC 

count often signifies that the model demands more computing resources, such as CPU cycles 
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or GPU RAM, to carry out the required computations. Models with larger MAC counts are 

usually more intricate and need robust hardware for efficient training and deployment. 

Fig. 13 presents a visual complexity analysis of MRT-Net against popular computer vision 

models. The vertical axis specifies the model accuracy achieved on the FF++ (DF) dataset. The 

horizontal axis specifies the number of trainable parameters in millions. The size of each circle 

represents the number of ‘multiply-accumulate’ operations per input image. Larger circles have 

higher MAC values. The MRT-Net circle is at the top left corner of the diagram, which signifies 

high performance. EfficientNet and Resnet152 have a similar number of trainable parameters 

but achieve less accuracy. ResNeXt, ConvNeXt, Swin Transformer, and EfficientNet v2 are 

larger models regarding trainable parameters, yet MRT-Net achieves better accuracy than all. 

Table VII Comparison of Computational Complexity of MRT-Net against popular computer vision models. 

Model ACC 
Parameter 

(millions) 

MACs  

(× 𝟏𝟎𝟗) 
CPU time (s) GPU time (s) 

ConvNeXt 0.9436 88.59 5.02 4.95 1.18 

EfficientNet 0.9402 66.34 1.75 7.27 1.43 

EfficientNet v2 0.9396 118.51 4.05 6.61 0.96 

Swin Transformer 0.9300 87.93 3.38 6.69 0.93 

ResNet152 0.9352 60.19 3.79 4.41 0.32 

ResNeXt 0.9524 88.79 5.40 4.75 0.87 

CDCN++ 0.9074 2.38 13.08 18.16 1.28 

AMTENnet 0.9285 1.93 0.13 0.65 0.07 

CoordinateAttention 0.8675 2.67 0.11 1.33 0.43 

MRT-Net (proposed) 0.9670 66.96 2.78 5.74 0.51 

Table VII presents a tabular view of MRT-Net complexity against similar-sized computer 

vision models as well as the three base papers, CDCN++, AMTENnet and CoordinateAttention 

network. MRT-Net beats all models in terms of the accuracy score. In terms of trainable 

parameters, MRT-Net lies in between, where EfficientNet v2 is the largest model with 118.51 

million parameters. The base papers CDCN++, AMTENnet and CoordinateAttention network 

are fairly small-sized networks with just 2.38, 1.93 and 2.67 million parameters respectively. 

These models are fairly lightweight when compared to MRT-Net having  66.96 million 

parameters. 

The CDCN++ architecture has an unusually high number of MAC operations per image 

causing the highest inference time per input batch on both CPU and GPU as compared to other 

models. 

3.2.4.4 Ablation Study of MRT-Net 

This section conducts ablation study to establish the benefits of its individual components. 
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Classification by Dual Branch 

This section features a dual-branch architecture incorporating joint learning from spatial and 

textural domains. ResNet50 acts as the backbone architecture for both branches. The average 

pool and fully connected layers are trimmed from the end of resnet50 in both branches. 

Therefore, the output shape from both branches is 4 × 4 × 2048, as is the case for resnet50. 

Features from both branches are fused in a weighted manner as mentioned in the proposed 

architecture section. Table VIII presents the results obtained from joint feature learning with 

different initial values of ∝1 and ∝2. 

Table VIII Classification results on dual branch-architecture having a fusion of color and texture modality.  

Initial Final 
ACC P R F1 AUC MCC 

∝𝟏 ∝𝟐 ∝𝟏 ∝𝟐 

without adaptive weights 0.7562 0.7865 0.7413 0.7632 0.8377 0.5136 

0.5 0.5 0.4681 0.5319 0.7627 0.7395 0.8327 0.7833 0.8497 0.5276 

0.6 0.4 0.5048 0.4952 0.7770 0.7776 0.7651 0.7713 0.8752 0.5539 

0.4 0.6 0.4133 0.5867 0.7911 0.7738 0.7823 0.7780 0.8739 0.5808 

0.75 0.25 0.5526 0.4474 0.7928 0.7814 0.8370 0.8083 0.8796 0.5851 

0.25 0.75 0.3195 0.6805 0.7847 0.7933 0.7871 0.7902 0.8684 0.5691 

Table VIII shows the performance due to joint feature learning architecture. The model 

achieves the worst scores when there is no adaptive weighting. Alternatively, the model when 

trained with adaptive weighting achieves accuracy in the range 76% to 80% for different initial 

values of ∝1 and ∝2. Also, it can be inferred that color and texture features yield the best results 

when fused with 75% and 25% weighted composition.  

Choice of Weight Initialization Strategy 

This section aims to improve model performance by changing the weight initialization 

strategy. Both branches were initialized with random weights in the previous section. In this 

section, the color branch is initialized with ImageNet pre-trained weights, while the texture 

branch is randomly initialized. Experimental results obtained from this new weight 

initialization strategy are shown in Table IX. 

The results demonstrate the superiority of the new weight initialization approach. For the 

FF++ (DF) dataset, the best accuracy with random weight initialization was 0.7928, which 

increased to 0.9568 after initializing the color branch with pre-trained ImageNet weights. The 

same is true for all classification metrics reported. AUC increased from 0.8796 to 0.9913, F1 

increased from 0.8083 to 0.9561, and the MCC score is boosted from 0.5851 to 0.9137. This 

presents substantial evidence of the benefits of using such a weight initialization. 
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Table IX Classification results on dual branch architecture having a fusion of color and texture modality with 

imagenet weights in color branch. 

 Initial Final 
ACC P R F1 AUC MCC 

 ∝1 ∝2 ∝1 ∝2 

D
F

 

without adaptive weights 0.9276 0.9169 0.9319 0.9243 0.9768 0.8550 

0.5 0.5 0.6937 0.3063 0.9432 0.9631 0.9238 0.9430 0.9850 0.8873 

0.6 0.4 0.7516 0.2484 0.9506 0.9549 0.9476 0.9512 0.9887 0.9013 

0.4 0.6 0.6226 0.3774 0.9490 0.9460 0.9442 0.9451 0.9847 0.8976 

0.75 0.25 0.7977 0.2023 0.9568 0.9613 0.9511 0.9561 0.9913 0.9137 

0.25 0.75 0.5381 0.4619 0.9394 0.9559 0.9193 0.9372 0.9856 0.8795 

F
2

F
 

without adaptive weights 0.9264 0.9441 0.9101 0.9268 0.9781 0.8535 

0.5 0.5 0.6214 0.3786 0.9465 0.9582 0.9270 0.9423 0.9766 0.8929 

0.6 0.4 0.6559 0.3441 0.9563 0.9701 0.9436 0.9567 0.9861 0.9130 

0.4 0.6 0.5977 0.4023 0.9379 0.9489 0.9295 0.9391 0.9847 0.8760 

0.75 0.25 0.7017 0.2983 0.9584 0.9729 0.9507 0.9616 0.9850 0.9165 

0.25 0.75 0.5183 0.4817 0.9484 0.9473 0.9485 0.9479 0.9843 0.8968 

F
ac

eS
w

ap
 

without adaptive weights 0.9278 0.9129 0.9336 0.9231 0.9731 0.8553 

0.5 0.5 0.6336 0.3664 0.9445 0.9501 0.9337 0.9419 0.9787 0.8890 

0.6 0.4 0.6744 0.3256 0.9474 0.9548 0.9510 0.9529 0.9804 0.8935 

0.4 0.6 0.6100 0.3900 0.9356 0.9350 0.9338 0.9344 0.9781 0.8711 

0.75 0.25 0.6884 0.3116 0.9479 0.9649 0.9386 0.9515 0.9824 0.8956 

0.25 0.75 0.5139 0.4861 0.9395 0.9235 0.9349 0.9292 0.9748 0.8590 

D
F

D
C

 

without adaptive weights 0.9075 0.9172 0.9684 0.9421 0.9507 0.7199 

0.5 0.5 0.6209 0.3791 0.9246 0.9364 0.9703 0.9530 0.9578 0.7651 

0.6 0.4 0.6719 0.3281 0.9373 0.9534 0.9680 0.9607 0.9758 0.8068 

0.4 0.6 0.5742 0.4258 0.9230 0.9355 0.9686 0.9518 0.9552 0.7645 

0.75 0.25 0.7341 0.2659 0.9441 0.9532 0.9775 0.9652 0.9763 0.8249 

0.25 0.75 0.5119 0.4881 0.9189 0.9421 0.9579 0.9499 0.9500 0.7365 

Fig. 14 plots the variation of ∝1 and ∝2 values for the two weight initialization approaches. 

Graphs in the first column of  Fig. 14 represent random weight initialization with different 

initial values for ∝1 and ∝2. The second column represents ImageNet weight initialization in 

the color branch. In row a) of Fig. 14, having ∝1  (blue) and ∝2  (orange) initialized to 0.5 and 

0.5, the random weight initialization causes the texture coefficient ∝2  to increase to 0.5319 

while ∝1  decreases to 0.4681.  

A similar pattern of ∝1  decreasing and ∝2  increasing can be observed in the first column 

for rows b), c), d) and e) for the random weight initialization. 
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 Random Weight Initialization in Both Branches ImageNet weight initialization in Color Branch 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

 

Fig. 14 Comparison of changes in values of ∝1 and ∝2 for random weight initialization in both branches (first column) and ImageNet 

weights initialization in the color branch (second column). 
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The values for ∝1  and ∝2  change from 0.6 and 0.4 to 0.5048 and 0.4952 respectively in 

row b), from 0.4 and 0.6 to 0.4133 and 0.5867 respectively in row c), from 0.75 and 0.25 to 

0.5526 and 0.4474 respectively in row d) and lastly, from 0.25 and 0.75 to 0.3195 and 0.6805 

respectively in row e). This means that the model gives more weightage to textural features 

from the second branch when both branches are initialized randomly. However, the accuracy 

metrics achieved from such weight initialization (Table VIII) lie roughly in the range of 0.76 

to 0.80, which is not impressive compared to existing state-of-the-art methods. 

The second column of Fig. 14 represents the ImageNet weight initialization of the color 

branch. An opposite trend is observed in this column where ∝1 increases and ∝2 decreases for 

different initial values. The values for ∝1 and ∝2 change from 0.5 and 0.5 to 0.6937 and 0.3063 

respectively in row a), from 0.6 and 0.4 to 0.7516 and 0.2484 respectively in row b), from 0.4 

and 0.6 to 0.6226 and 0.3774 respectively in row c), from 0.75 and 0.25 to 0.7977 and 0.2023 

respectively in row d) and lastly, from 0.25 and 0.75 to 0.5381 and 0.4619 respectively in row 

e). This clearly indicates that when the color branch is initialized with ImageNet weights, the 

model gives more weightage to color features learned from the first branch. But the main 

advantage is the massive jump in classification scores. The accuracy scores of the model now 

reach roughly in the range of 0.93 to 0.95 (Table IX), which is a significant improvement. 

Similarly, results on F2F, FaceSwap and DFDC datasets confirm that the best initial values for 

∝1 and ∝2 are 0.75 and 0.25. Additionally, it can be seen that the performance with no adaptive 

weighting is worse than all cases of adaptive weighting, clearly highlighting the importance of 

the auto-adaptive weighting mechanism. 

Hence, moving forward, the color branch is initialized with ImageNet weights and initial 

values of ∝1 and ∝2 are set to 0.75 and 0.25, respectively, since that case produces the best 

results. 

Choice of Fusion Strategy 

This section explores the fusion strategy for merging color and texture modality. So far, the 

fusion process involved concatenating features along the depth. In this section, the sum and 

mean operations are tried as the fusion strategy. Initial value of ∝1 and ∝2 are set to 0.75 and 

0.25, since they yielded the best results in the previous section. 

Table X Comparison of feature fusion strategies – concatenation, sum and mean. 

 Fusion Strategy ACC P R F1 AUC MCC 

D F
 

Concatenation 0.9568 0.9613 0.9511 0.9561 0.9913 0.9137 
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 Fusion Strategy ACC P R F1 AUC MCC 

Sum 0.9557 0.9415 0.9667 0.9539 0.9905 0.9115 

Mean 0.9454 0.9743 0.9204 0.9466 0.9834 0.8925 

F
2

F
 Concatenation 0.9584 0.9729 0.9507 0.9616 0.9850 0.9165 

Sum 0.9483 0.9529 0.9390 0.9459 0.9828 0.8965 

Mean 0.9426 0.9611 0.9253 0.9429 0.9778 0.8859 

F
ac

eS
w

ap
 

Concatenation 0.9479 0.9649 0.9386 0.9515 0.9824 0.8956 

Sum 0.9355 0.9513 0.9184 0.9345 0.9780 0.8715 

Mean 0.9301 0.9264 0.9417 0.9340 0.9617 0.8599 

D
F

D
C

 Concatenation 0.9441 0.9532 0.9775 0.9652 0.9763 0.8249 

Sum 0.9267 0.9413 0.9650 0.9530 0.9653 0.7871 

Mean 0.9152 0.9338 0.9602 0.9468 0.9498 0.7396 

Results from Table X clearly show that concatenation fusion performs best. Henceforth, 

concatenation fusion is treated as the default choice for feature fusion. 

Impact of Manipulation Residual Module 

This section studies the impact of extracting manipulation residuals on facial manipulation 

detection. Three experiments are designed to extract manipulation residuals from the color, 

texture, or both branches. 

Table XI Comparison of Manipulation Residual Extraction Module in color branch only, texture branch only and 

both branches. 

 Branch with MR ACC P R F1 AUC MCC 

D
F

 Color Only 0.9606 0.9580 0.9648 0.9614 0.9911 0.9212 

Texture Only 0.9491 0.9636 0.9366 0.9499 0.9894 0.8987 

Both 0.9527 0.9560 0.9507 0.9534 0.9918 0.9055 

F
2

F
 Color Only 0.9664 0.9860 0.9446 0.9648 0.9912 0.9335 

Texture Only 0.9224 0.9451 0.9116 0.9280 0.9776 0.8446 

Both 0.9300 0.8946 0.9494 0.9212 0.9817 0.8596 

F
ac

eS
w

ap
 

Color Only 0.9574 0.9751 0.9391 0.9568 0.9848 0.9156 

Texture Only 0.9202 0.9057 0.9410 0.9230 0.9753 0.8409 

Both 0.9330 0.9319 0.9339 0.9329 0.9759 0.8661 

D
F

D
C

 Color Only 0.9656 0.9757 0.9793 0.9775 0.9916 0.9041 

Texture Only 0.9350 0.9489 0.9687 0.9587 0.9718 0.8069 

Both 0.9358 0.9510 0.9692 0.9600 0.9741 0.7989 

Table XI results show that the manipulation extraction module in the color branch works 

best for all datasets evaluated. 

Impact of Attention Module 

In this section, three recently proposed novel attention mechanisms, namely, Triplet Attention 

[102], Shuffle Attention [104] and Coordinate Attention [100] are integrated with the dual 



Chapter 3: Face Manipulation Detection in Images  

43 

 

branch architecture. Table XII presents the results obtained by trying the abovementioned 

attention mechanisms. 

Table XII Comparison of three state-of-the-art attention modules: Triplet attention [102], Shuffle attention [104] 

and Coordinate attention [100] 

 Attention Type ACC P R F1 AUC MCC 

D
F

 Triplet Attention  0.9451 0.9701 0.9226 0.9458 0.9830 0.8915 

Shuffle Attention  0.9381 0.9504 0.9175 0.9336 0.9805 0.8762 

Coordinate Attention  0.9670 0.9867 0.9504 0.9682 0.9910 0.9347 

F
2

F
 Triplet Attention  0.9555 0.9698 0.9348 0.9520 0.9863 0.9112 

Shuffle Attention  0.9379 0.9567 0.9160 0.9359 0.9787 0.8765 

Coordinate Attention  0.9767 0.9704 0.9857 0.9780 0.9974 0.9534 

F
ac

eS
w

ap
 

Triplet Attention  0.9452 0.9393 0.9516 0.9454 0.9788 0.8906 

Shuffle Attention  0.9263 0.9202 0.9262 0.9232 0.9699 0.8524 

Coordinate Attention  0.9676 0.9671 0.9697 0.9684 0.9933 0.9353 

D
F

D
C

 Triplet Attention  0.9236 0.9479 0.9530 0.9505 0.9642 0.7839 

Shuffle Attention  0.9177 0.9239 0.9761 0.9493 0.9562 0.7403 

Coordinate Attention  0.9760 0.9805 0.9891 0.9848 0.9964 0.9279 

Table XII demonstrate that coordinate attention works best with the proposed model. A 

detailed description of coordinate attention is mentioned in the proposed architecture section. 

Final Model – MRT-Net 

Based on the ablation study so far, the characteristics of the proposed model MRT-Net, are 

as follows. It contains two resnet50 backbone networks for spatial and textural feature learning. 

It is initialized with ImageNet weights in the spatial branch. It fuses auto-adaptive weighted 

spatial and textural features using depth-wise concatenation. It implements a manipulation 

trace extraction module in the color branch. Finally, it utilizes coordinate attention in both 

branches to boost classification capability.  

Fig. 15 and Fig. 16 present a visual demonstration of the increase in performance due to the 

addition of the manipulation residual and attention modules on the FF++ (F2F) and DFDC 

datasets respectively. 
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Fig. 15 Increase in model accuracy on the F2F dataset by adding the MR and Attention modules.  

 

 

Fig. 16 Increase in model accuracy on the DFDC dataset by adding the MR and Attention modules. 

3.2.4.5 Qualitative Analysis of MRT-Net 

This section presents a qualitative analysis of the MRT-Net model. Specifically, the 

visualization diagram demonstrating the regions of focus for MRT-Net have been plotted. 

Several methods exist that predict class activation maps (CAM) for a given CNN. LayerCAM 

[154], a recently proposed CNN visualization method, is used to produce reliable CAM maps 

for different layers of MRT-Net as shown in Fig. 17. 
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3.2.5 Conclusion 

This section proposed a novel facial manipulation detection network MRT-Net. The 

proposed network is a dual-branch architecture learning discriminative features from 

manipulation residuals and textural information. MRT-Net enjoys an auto-adaptive weighting 

strategy for fusing features learned from the two branches. A recently proposed coordinate 

attention boosts MRT-Net's classification capabilities by highlighting important feature 

channels. Experimental results on FF++, CelebDF and DFDC datasets clearly prove the 

superiority of the proposed model achieving high scores in terms of accuracy, precision, recall 

and F1 scores. MRT-Net achieves above 0.99 AUC score in most cases as shown in Fig. 11. 

MRT-Net also attains over 0.90 MCC scores in most cases, indicating that the proposed model 

not only learns to identify the positive class (manipulated facial images) with high confidence 

but also identifies the negative class (original face images) with certainty. Comparison results 

from Table IV, Table VI and Table V prove that MRT-Net is superior to the existing state-of-

the-art facial manipulation detection methods. 

The ablation study presented in Table IX demonstrates the superiority of the auto-adaptive 

weighting mechanism of the two features as compared to the direct fusion of features from the 

two branches. This is primarily because MRT-Net can choose the ideal proportion of 

manipulation residual and textural features due to this adaptive weighting mechanism. 
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Fig. 17 MRT-Net’s region of focus from the perspective of b) Manipulation Residual Branch c) Manipulation 

Residual Attention d) Texture Branch e) Texture Attention f) Combined Overall Prediction of MRT-Net. 
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3.3 AW-MSA: Adaptively Weighted Multi-Scale Attentional Features for 

DeepFake Detection 

3.3.1 Abstract 

With the recent rise of realistic face manipulation methods, building robust face tampering 

detection methods has become more critical than ever before. Several research works have 

focussed on extracting multi-scale features to enhance the feature learning process. However, 

most of such works suffer from a design flaw of combining multiple scale information in equal 

proportion. This is not the best approach, as a feature from one scale could be more important 

than other scale features. To this end, a novel deepfake detection architecture, Face-NeSt has 

been proposed. Face-NeSt has the unique ability to choose an ideal proportion of multi-scale 

features best suited for the final prediction. Specifically, Face-NeSt employs a novel 

‘adaptively weighted multi-scale attentional’ (AW-MSA) module that is capable of choosing 

the best proportion of multi-scale features. Face-NeSt uses an attention mechanism that allows 

it to highlight important feature regions along the spatial and channel dimensions, both locally 

and globally. Unlike the popular computer vision models of recent times, Face-NeSt is 

designed to be computationally light-weight. Face-NeSt performs admirably on three publicly 

available benchmark datasets: FaceForensics++ (FF++), CelebDF and Deep Fake Detection 

Challenge (DFDC). The AUC scores are 0.9823 on CelebDF, 0.9947 on DFDC, 0.9945 on 

DeepFake (FF++), 0.9905 on Face2Face (FF++), 0.9978 on FaceShifter (FF++), 0.9948 on 

FaceSwap (FF++) and 0.9548 on NeuralTextures (FF++). These excellent findings highlight 

Face-NeSt's efficacy since it easily outperforms all state-of-the-art (SOTA) approaches for 

facial tampering detection. 

3.3.2 Proposed Architecture 

This section describes the proposed model Face-NeSt and its novel components. Fig. 18 

presents a visual overview of the proposed architecture Face-NeSt.  
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Fig. 18 The architecture of the proposed Face-NeSt model. GLCS stands for Global Local Channel Spatial 

attention. 

Algorithm 2 Pseudocode for Face-NeSt 
 

Input:  

 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = {𝕏𝑖 , 𝕐𝑖}𝑖=1
𝑛  having facial images 𝕏𝑖 ∈ ℝ

3×128×128 and labels 𝕐𝑖 ∈ {0,1}. 
Trainable parameters 𝜃 

Size of each batch ℬ 

No. of batches 𝒷𝑡𝑜𝑡𝑎𝑙 
Total number of epochs ℰ 

Initial Learning Rate ℓ𝓇 

Learning Rate Decay factor 𝛾  

Factors for Adaptive weighting (𝛽) ∈ {𝛽1, 𝛽2, 𝛽3, 𝛽4} 
Output:   

 Trained Face-NeSt model. 

1. Initialize 𝜃 and the adaptive weights 𝛽.  

2. for ℯ = 1,2,3… ℰ do Training epochs loop. 

3.  for 𝒷 = 1,2,3…𝒷𝑡𝑜𝑡𝑎𝑙  do Reading batch loop. 

4.   (𝕏, 𝕐) ~ 𝒮 Randomly select one batch. 

5.   for feature ℱ𝑖 at scale ‘𝑖’ do Loop through features at each scale ℱ𝑖 

6.    ℱ𝑖,𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 = ∅(ℱ𝑖) 
Compute the attentional features from each 

scale (ℱ𝑖,𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙) 

7.    
ℱ𝑖,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙

= 𝕄𝕌𝕃(ℱ𝑖,𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 , 𝛽𝑖) 

Adaptively weight attentional features from 

each scale (ℱ𝑖,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙) 

8.   end for  

9.   ℱ𝑓𝑢𝑠𝑒𝑑 =∑(ℱ𝑖,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙)

4

𝑖=1

 

Fuse the adaptively weighted multi-scale 

attentional features (ℱ𝑓𝑢𝑠𝑒𝑑). ∑(. ) represents 

feature fusion along the depth. 

10.   ℱ𝑓𝑖𝑛𝑎𝑙 ← ℒ(ℱ𝑓𝑢𝑠𝑒𝑑) The final prediction (ℱ𝑓𝑖𝑛𝑎𝑙). 

11.   𝜃 ← 𝜃 − ℓ𝓇 △𝜃 ℒ𝐶𝐸(ℱ𝑓𝑖𝑛𝑎𝑙 , 𝕐) 
Improvise weights to minimize loss ℒ𝐶𝐸  via 

backpropagation. 
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12.   for 𝛽𝑖 in 𝛽 do Loop through each 𝛽 weighting parameter 

13.    𝛽𝑖 ← 𝛽𝑖 − ℓ𝓇 △𝛽𝑖 ℒ𝐶𝐸(ℱ𝑓𝑖𝑛𝑎𝑙 , 𝕐) 
Update the 𝛽 weighting parameters 

automatically via backpropagation. 

14.   end for  

15.   if ℯ % 𝑛 = 0 then 
Decay learning rate after every ‘𝑛’ epochs. 

16.    ℓ𝓇 ← ℓ𝓇 ×  𝛾 

17.  end for  

18. end for  

Algorithm 2 presents the training process for the Face-NeSt model. 

3.3.2.1 Baseline Architecture 

The ResNet architecture [155], with its famous skip connection blocks, has proven 

extremely powerful for image classification tasks. Several improvements to ResNet have been 

proposed recently [156, 157, 158]. The architecture in [158] is taken as the baseline architecture 

for this experiment due to its combined strength of multi-path and split-attentional feature 

representation capability. 

Specifically, a feature map is divided into 𝐺 groups, given by the ‘cardinality’ 

hyperparameter 𝐾, and each group is further divided into split attentional subgroups given by 

the ‘radix’ hyperparameter 𝑅. The relation of 𝐺 with 𝐾 and 𝑅 is given by 𝐺 = 𝐾𝑅. Split 

attention within a cardinal group [158] comprises global average pooling 𝑠𝑘
𝑘 as shown in Eq. 

6. 

The weighted fusion of a cardinal group 𝑉𝑘 as shown in Eq. 7 with soft attention along the 

channel dimension as shown in Eq. 8. 

𝑠𝑐
𝑘 =

1

𝐻×𝑊
∑ ∑ 𝑈̂𝑐

𝑘𝑊
𝑗=1

𝐻
𝑖=1 (𝑖, 𝑗)         (6) 

𝑉𝑐
𝑘 = ∑ 𝑎𝑖

𝑘(𝑐)𝑈𝑅(𝑘−1)+𝑖
𝑅
𝑖=1          (7) 

𝑎𝑖
𝑘(𝑐) =

{
 
 

 
 𝑒

𝐺𝑖
𝑐(𝑠𝑘)

∑ (𝑒
𝐺𝑗
𝑐(𝑠𝑘)

)𝑅
𝑗=1

 , 𝑖𝑓 𝑅 > 1

1

1+𝑒−𝐺𝑖
𝑐(𝑠𝑘)

, 𝑖𝑓 𝑅 = 1

        (8) 

A single block contains the cardinal groups concatenated along the channel dimension 

𝐶𝑜𝑛𝑐𝑎𝑡(𝑉1, 𝑉2, 𝑉3…𝑉𝑘) and then finally integrated as a shortcut connection 𝑌 = 𝑉 + 𝑋. 

Choice of Multi-Scale Features: The baseline architecture used in this experiment [158] 

forms the basis for selecting the type and number of multi-scale features. Specifically, this 
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baseline produces different scales of features from its distinct layers. For an input image of size 

3 × 128 × 128, the initial layers having convolution, batch norm and ReLU activation produce 

an output shape of 64 × 32 × 32 which is the first scale of features. Next, the three skip 

connection modules produce output shapes of 256 × 32 × 32, 512 × 16 × 16 and 

1024 × 8 × 8 respectively, thereby forming three more feature scales. The fourth skip 

connection block of the baseline is discarded in the proposed model. Hence, based on the 

feature size produced by the baseline model, these four scales are used as the multi-scale 

features in the proposed model.  

3.3.2.2 Adaptive Weighting of Multi-Scale Attentional Features 

The main novelty of Face-NeSt is its ability to select an ideal proportion of multi-scale 

attentional features automatically. This section describes the ‘adaptively weighted multi-scale 

attentional’ module. The light-green box in Fig. 18 represents this novel module. 

Global-Local-Channel-Spatial (GLCS) Attention 

The research in computer vision has been largely boosted by attention mechanisms in recent 

years. However, most attention-based implementations focus only on a small subset of the 

input. The attention mechanisms either focus on channel or spatial attention across feature 

dimensions. Similarly, the attention mechanism is either used locally or globally. 

 

Fig. 19 Global Local Channel Spatial Attention Block [159] 
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The attention mechanism from [159] has been used in Face-NeSt to aggregate spatial and 

channel attention both locally and globally. Fig. 19 shows how input features are transformed 

using four forms of attention: channel-wise, spatially, locally, and globally. The size of input 

feature (F) is 𝑐 × ℎ ×  𝑤. 

Firstly, a local channel attention map (A𝑐
𝑙 ) is computed from (F) using the global average 

pooling 𝐺𝐴𝑃(. ) , 1 × 1 convolution 𝐶𝑜𝑛𝑣1×1(. ) and sigmoid 𝑆𝑖𝑔(. ) operation as shown in 

Eq. 9. Then using this local channel attention map (A𝑐
𝑙 ), the local channel attentional features 

(F𝑐
𝑙 ) are computed as shown in Eq. 10. 

A𝑐
𝑙 = 𝑆𝑖𝑔(𝐶𝑜𝑛𝑣1×1(𝐺𝐴𝑃(F))         (9) 

F𝑐
𝑙 = F + (F × A𝑐

𝑙 )                    (10) 

Secondly, a global channel attention map (A𝑐
𝑔
) is computed from (F) using the same 

functions as shown in Eq. 11. The global channel attentional features (F𝑐
𝑔

) are computed as 

shown in Eq. 12. 

A𝑐
𝑔
= F × (𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝑖𝑔(𝐶𝑜𝑛𝑣1×1,1(𝐺𝐴𝑃(F)) × 𝑆𝑖𝑔(𝐶𝑜𝑛𝑣1×1,2(𝐺𝐴𝑃(F))))            (11) 

F𝑐
𝑔
= F × A𝑐

𝑔
                     (12) 

Thirdly, the local spatial attention map (A𝑠
𝑙 ) is computed from (F) using the following 

equations. This is then used to produced local spatial attentional features (F𝑙). 

F′ = 𝐶𝑜𝑛𝑣1×1(F)                    (13) 

A𝑠
𝑙 = 𝐶𝑜𝑛𝑣1×1(∑(𝐶𝑜𝑛𝑣3×3(F

′), 𝐶𝑜𝑛𝑣5×5(F
′), 𝐶𝑜𝑛𝑣7×7(F

′)))              (14) 

F𝑙 = F𝑐
𝑙 + (F𝑐

𝑙 × A𝑠
𝑙 )                    (15) 

Fourthly, the global spatial attention map (A𝑠
𝑔

) is computed to calculate the global spatial 

attentional features (F𝑔) as shown in the following equations. 

A𝑠
𝑔
= 𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑣1×1(F) × (𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑜𝑛𝑣1×1(F) × 𝐶𝑜𝑛𝑣1×1(F))))                        (16) 

F𝑔 = F𝑐
𝑔
+ (F𝑐

𝑔
× A𝑠

𝑔
)                               (17) 

Finally, the local attentional features (F𝑙) and global attentional features (F𝑔) are multiplied 

with weighted factors and fused together to compute the final attentional features attended both 

locally and globally across channels as well as the spatial dimension (F𝑔𝑙) as shown in Eq. 18. 
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F𝑔𝑙 = (𝑤 × F) + (𝑤𝑙 × F
𝑙) + (𝑤𝑔 × F

𝑔)                 (18) 

When integrated with the proposed novel multi-scale attentional block, this attention 

mechanism produces multi-scale attentional feature extraction capabilities. The local channel 

attention uses global average pooling and 1D convolution operation to generate a local channel 

attention map 𝐴𝑐
𝑙 . Local spatial attention uses convolutional filters of size 3 × 3, 5× 5 and 7× 7 

to extract spatial information at different scales (𝐴𝑠
𝑙 ). The global channel and spatial attention 

both utilize non-local filtering to obtain a global attention map in the channel and spatial 

dimension. Output features are a weighted average of the original, local, and global branch 

features, which have undergone summation operation. This GLCS module is employed within 

the multi-scale attentional block of the proposed model. 

Adaptively Weighted Multi-Scale Attentional Module 

Face-NeSt’s main novelty lies in its ability to extract an ideal proportion of multi-scale 

attentional features automatically. To this end, a novel ‘adaptively weighted multi-scale 

attentional’ module is intended to teach the optimal percentage of discriminative characteristics 

at multiple scales. (Fig. 18). The GLCS attention module is utilised to improve the model's 

performance even further. Four features of different spatial resolutions are extracted from the 

baseline architecture and input to this block. Each scale feature is then passed through 

individual GLCS attention modules to highlight the important channel and spatial regions both 

locally and globally.  

The ‘Reduce & Weight’ operation enforces spatial reduction followed by the adaptive 

weighting mechanism for features from each scale, as shown in (19). 

ℱ𝑖,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 = 𝕄𝕌𝕃(∅(ℱ𝑖), 𝛽𝑖)                (19) 

Here, ℱ𝑖,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 represents the adaptively weighted attentional feature at a 

given scale ‘𝑖’. ℱ𝑖 represents the input feature at scale ‘𝑖’.  ∅(. ) represents the spatial reduction 

operation implemented as a two-dimensional MaxPool operation. 𝛽𝑖 is the weighting parameter 

for feature at scale ‘𝑖’, which is used to extract a certain proportion of features. 𝕄𝕌𝕃(. ) 

represents the multiply operation. 

Specifically, the features extracted at four scales [ℱ1, ℱ2, ℱ3, ℱ4] are first passed through 

separate GLCS attentional modules to find important spatial and channel regions both locally 

and globally. Next, the multi-scale features are proportioned with the weighting parameters 

[𝛽1, 𝛽2, 𝛽3, 𝛽4] giving weighted attentional features from multiple scales.  



Chapter 3: Face Manipulation Detection in Images  

53 

 

The weighting parameters are added to the computation graph of the proposed model and 

hence, are updated automatically via backpropagation. This automatic updation mechanism 

allows Face-NeSt to change the weighting parameters, allowing for the dynamic selection of 

the multi-scale attentional features. Each weighting parameter is initialized to 0.25 and as the 

network is trained, the individual 𝛽 parameters get updated according to the importance of 

attentional features from each scale. 

Fig. 18 shows the multi-scale features extracted from the baseline architecture. 𝛽1 is the 

weighting factor for features of size 64 × 32 × 32, 𝛽2 is the weighting factor for features of 

size 256 × 32 × 32, 𝛽3 is the weighting factor for features of size 512 × 16 × 16 and 𝛽4 is 

the weighting factor for features of size 1024× 8 × 8. 

Finally, the ‘adaptively weighted multi-scale attentional features’ are concatenated along 

the channel dimension and passed through a 1 × 1 convolutional layer to reduce the feature 

map depth. Algorithm 2 presents the pseudocode of Face-NeSt with its novel adaptive 

weighting mechanism. 

3.3.2.3 Reduced Computational Complexity 

The baseline architecture contains the initial layers including a convolution layer, followed 

by a batch norm layer, relu activation, and maxpooling. Then there are four bottleneck blocks 

implementing skip connections with multi-path and split-attentional feature extraction. Finally,  

the adaptive average pooling and dense layers are attached. The total number of trainable 

parameters in this four-block model is 25.43 million. The last bottleneck block has been 

removed from the proposed model. This reduces the model size by removing more than half of 

the total trainable parameters making the proposed model computationally light-weight. This 

three-bottleneck architecture, along with the adaptively weighted multi-scale attentional block 

contains only 11.82 million parameters, making it light-weight compared to recent computer 

vision models. 

3.3.2.4 Layer Details of Face-NeSt 

This section details the layer-wise configuration of the proposed Face-NeSt architecture. 

Fig. 20 presents the layers in the proposed model. The input size is 32 × 3 × 128 × 128 for a 

batch of 32 images. The output shape and the number of parameters are given for each layer. 

The novel “Adaptively Weighted Multi-Scale Attentional Block” contains 2,545,528 

parameters. 
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Layers 
Output shape 

(𝑏𝑎𝑡𝑐ℎ × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ) 
Number of 

Parameters 

Conv 2D 32 × 32 × 64 × 64 864 

BatchNorm 2D 32 × 32 × 64 × 64 64 

ReLU 32 × 32 × 64 × 64 0 

Conv 2D 32 × 32 × 64 × 64 9,216 

BatchNorm 2D 32 × 32 × 64 × 64 64 

ReLU 32 × 32 × 64 × 64 0 

Conv 2D 32 × 64 × 64 × 64 18,432 

BatchNorm 2D 32 × 64 × 64 × 64 128 

ReLU 32 × 64 × 64 × 64 0 

MaxPool 2D 32 × 64 × 32 × 32 0 

Skip Connection Block 1 32 × 256 × 32 × 32 235,296 

Skip Connection Block 2 32 × 512 × 16 × 16 1,320,704 

Skip Connection Block 3 32 × 1024 × 8 × 8 7,696,640 

Adaptively Weighted Multi-Scale 

Attentional Block 
32 × 1024 × 8 × 8 2,545,528 

GlobalAvgPool2d 32 × 1024 0 

Linear 32 × 2 2,050 

Total Parameters 11,828,986 

Fig. 20 Layer details of the proposed Face-NeSt model. 

3.3.3 Experimental Setup 

This section explains the experimental steps taken to establish the validity of the proposed 

model. 

3.3.3.1 Datasets and Classification Metrics 

This section examines the most current datasets that are publicly available. 

Celeb-DF Dataset: CelebDF [118] contains 590 original and 5639 deepfake videos having 

highly realistic manipulation quality. Original videos are recorded using 59 actors. 

Deepfake Detection Challenge Dataset: The Deepfake Detection Challenge (DFDC) dataset 

[117] contains videos recorded by 66 actors, which are then processed by two unknown 

manipulations. There are a total of 5214 videos, and the ratio of original to tampered videos is 

0.28:1. 

FaceForensics++: The FaceForensics++ (FF++) [111] contains several manipulations such as 

Deepfakes [112], FaceSwap [113], Face2Face [114], FaceShifter [115], and Neural Textures 

[116]. Each manipulation category contains 1000 videos created from 1000 original samples. 

Videos are available in raw, high (c23), and low (c40) compression levels. In this experiment, 

c23 samples are utilised. 
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WildDeepFake: The WildDeepFake [135] dataset contains 7314 facial video clips derived from 

707 deepfake videos collected from diverse sources across the web. This dataset is very 

challenging due to its diverse scenes and a rich variety of facial expressions. 

Table XIII Classification metrics used to evaluate the proposed model. 

Metric Name Formula Value Range 

Accuracy (ACC) 
𝕋ℙ + 𝕋ℕ

𝕋ℙ + 𝕋ℕ + 𝔽ℙ + 𝔽ℕ
 [0,1] 

Precision (P)  
𝕋ℙ

𝕋ℙ + 𝔽ℙ
 [0,1] 

Recall (R) 
𝕋ℙ

𝕋ℙ + 𝔽ℕ
 [0,1] 

F1 score (F1) 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 [0,1] 

Area Under Curve 

(AUC)  
-- [0,1] 

Mathews Correlation 

Coefficient (MCC) 

𝕋ℙ ∗ 𝕋ℕ − 𝔽ℙ ∗ 𝔽ℕ

√(𝕋ℙ + 𝔽ℙ)(𝕋ℙ + 𝔽ℕ)(𝕋ℕ + 𝔽ℙ)(𝕋ℕ + 𝔽ℕ)
 [-1,1] 

Classification Metrics: The above table lists the categorization metrics utilized in this 

experiment. 

3.3.3.2 Hardware, Preprocessing, Hyperparameters and Weight 

Initialization 

Hardware Specifications: All experimental tests are run in parallel on two NVIDIA GPUs, 

namely A5000 having 24GB memory each. System RAM is 128GB. 

Preprocessing: This section describes the preprocessing steps followed in this experiment. 

• Face Extraction: Popular deepfake detection algorithms have primarily used the dlib 

library [24, 28, 120] or MTCNN [121, 110, 122] for face detection and extraction. 

RetinaFace [34] is used in this experiment to extract facial images from video frames, 

given its low failure rate compared to MTCNN [119].  

• Resizing, Normalization, and Data Augmentation: Facial images cropped from video 

frames are resized to 128 × 128. Pixel values are normalized to the range [0,1]. Facial 

images are flipped randomly in vertical and horizontal directions with a flipping 

probability of 0.5. 

Hyperparameters and Training Conditions: All experiments are run for 30 epochs. The batch 

size is set to 4. The Adam optimizer is used to update the model weights. The initial learning 
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rate is set to 0.01. After every two epochs, the learning rate is decayed linearly by 10%. Table 

XIV presents size of train, validation and test sets in terms of the number of face images. 

Table XIV Train, validation and test split size used in this experiment. 

Dataset Train Split Validation Split Test Split 

Deepfakes (FF++) 48000 6400 9600 

Face2Face (FF++) 48000 6400 9600 

FaceShifter (FF++) 48000 6400 9600 

FaceSwap (FF++) 48000 6400 9600 

NeuralTextures (FF++) 48000 6400 9600 

Celeb DF 160000 26432 22400 

DFDC  112000 22400 27424 

Model Weight Initialization: Deep models outperformed random weight initialization on 

classification tasks when trained with pre-learned ImageNet weights. Hence, the model weights 

in this experiment are initialized with ImageNet pre-trained weights for the ResNeSt 

architecture. 

3.3.4 Experimental Results & Analysis 

This section presents the experimental results for the proposed Face-NeSt model. 

3.3.4.1 Face-NeSt Performance on the Benchmark Datasets 

In this section, the performance scores achieved by the Face-NeSt model on the benchmark 

datasets has been presented. Table XV shows the performance on the CelebDF, FF++, 

WildDeepFake and DFDC benchmark datasets.  

Table XV Results of Face-NeSt on three publicly available datasets, namely FF++, CelebDF and DFDC 

Datasets ACC R P F1 AUC MCC 

Deepfakes  

FF++ 

[111] 

0.9805 0.9830 0.9769 0.9800 0.9945 0.9610 

FaceShifter 0.9854 0.9761 0.9943 0.9851 0.9978 0.9711 

Face2Face 0.9760 0.9844 0.9681 0.9762 0.9905 0.9510 

FaceSwap 0.9779 0.9760 0.9812 0.9786 0.9948 0.9557 

NeuralTextures 0.9128 0.9230 0.8907 0.9066 0.9548 0.8254 

Celeb DF [118] 0.9612 0.9984 0.9585 0.9780 0.9823 0.8247 

DFDC [117] 0.9742 0.9946 0.9728 0.9836 0.9947 0.9243 

WildDeepFake [135] 0.9087 0.9148 0.9357 0.9251 0.9689 0.8745 

Face-NeSt achieves more than 0.95 accuracy scores for most manipulation categories of 

FF++ on CelebDF and the DFDC dataset, indicating high classification capabilities for 

tampered facial images. Regarding AUC scores, Face-NeSt achieves more than 0.98 for all 

cases except NeuralTextures which is a challenging facial manipulation technique. These high 

AUC scores also imply that Face-NeSt performance is not vulnerable to class imbalance 

problems. 
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Fig. 21 The final β values for Face-NeSt on the benchmark datasets, a) DF b) F2F c) FaceShifter d) FaceSwap e) 

NT f) DFDC g) CelebDF.  

MCC score measures the model's capability to identify both the positive as well as the 
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than 0.90 MCC, showing that it can recognise not just the positive class (tampered face photos), 

but also both classes. 

Face-NeSt's adaptive weighting technique allows it to determine the appropriate proportion 

of multi-scale attentional characteristics. Each of the four weighting factors β𝑖 are initialized 

to 0.25 at the beginning of the training procedure. As the model is trained, the β values get 

adjusted automatically via backpropagation. Fig. 21 presents the final β values on each 

benchmark dataset. The changed value of each β𝑖 clearly indicates that the features from 

different scales hold different levels of importance to the final prediction. 

In most cases, the value of β1and  β2 is less than that of β3 and β4. This means that features 

corresponding to β3 and β4 are more important for the final prediction. It also implies that 

features extracted from deeper layers of the baseline network are more important than those 

from the initial layers. 

Another observation is that β4 obtains the maximum value (except in the case of 

FaceShifter) signifying the highest contribution in detecting facial manipulation. Fig. 21 

demonstrates the dynamic nature of such a weighting mechanism that allows Face-NeSt to 

extract maximum discriminative information from multiple scales of features. 

 
Fig. 22 AUC-ROC curves for Face-NeSt on the FF++, CelebDF, and DFDC datasets. 
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Fig. 22 shows the AUC-ROC curve for Face-NeSt on the DFDC, CelebDF and the FF++ 

datasets, indicating high values of True Positive Rate (TPR) and low False Positive Rate (FPR). 

This implies that Face-NeSt has high confidence in its predictions. 

3.3.4.2 Comparison of Face-NeSt Against the Existing State-of-the-Art 

Approaches 

The performance of Face-NeSt for face tampering detection is compared against the recent 

state-of-the-arts in this section.  

Table XVI presents a comparison of Face-NeSt against several recent state-of-the-arts in 

face tampering identification on the CelebDF dataset. Face-NeSt beats the state-of-the-art 

methods by scoring the highest accuracy and AUC scores. 

Table XVI Face-NeSt result comparison on the CelebDF dataset. 

Methods Year ACC AUC 

Guo et al. [124] 2023 - 0.6743 

Ke et al. [138] 2023 0.8892 - 

Guo et al. [27] 2023 - 0.6950 

Xu et al. [126] 2023 - 0.9332 

Li et al. [139] 2023 0.7169 0.7659 

Nirkin et al. [160] 2022 - 0.6600 

*AMTENnet [107] 2021 0.9254 0.8804 

Li et al. [141] 2021 - 0.7600 

Hu et al. [48] 2021 - 0.7884 

Chen et al. [131] 2021 - 0.8765 

Chen et al. [144] 2021 0.9575 - 

Luo et al. [143] 2021 0.7435 0.9234 

Trihn et al. [142] 2021 - 0.7176 

Dang et al. [50] 2020 - 0.7120 

Choi et al. [51] 2020 0.9200 0.9400 

Hu et al. [161] 2021 0.8074 0.8700 

Li et al. [145] 2020 - 0.7476 

Face-NeSt (Proposed) - 0.9612 0.9823 

Table XVII shows the superiority of Face-NeSt on the DFDC dataset. It easily outperforms 

all the recent SOTA approaches of facial manipulation detection. 

Table XVII Face-NeSt result comparison on the DFDC dataset. 

Methods Year ACC AUC 

Guo et al. [124] 2023 - 0.9597 

Yu et al. [148] 2023 0.9593 0.9896 

Zhao et al. [149] 2023 0.9210 - 

Ke et al. [138] 2023 0.9108 - 

Yang et al. [125] 2023 - 0.9911 

Lin et al. [97] 2023 - 0.8847 

Guo et al. [27] 2023 - 0.9827 

Heo et al. [150] 2023 - 0.9780 

Xu et al. [126] 2023 - 0.8037 

*AMTENnet [107] 2021 0.9139 0.9402 
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Methods Year ACC AUC 

Guo et al. [124] 2023 - 0.9597 

Yu et al. [148] 2023 0.9593 0.9896 

Zhao et al. [149] 2023 0.9210 - 

Ke et al. [138] 2023 0.9108 - 

Yang et al. [125] 2023 - 0.9911 

Lin et al. [97] 2023 - 0.8847 

Guo et al. [27] 2023 - 0.9827 

Heo et al. [150] 2023 - 0.9780 

Li et al. [141] 2021 - 0.7600 

Luo et al. [143] 2021 0.8841 0.9496 

Xu et al. [28] 2021 0.8453 0.9347 

Qi et al. [42] 2020 0.6410 - 

Li et al. [153] 2020 0.8511 - 

Mittal et al. [53] 2020 - 0.8440 

Montserrat et al. [17] 2020 0.9188 - 

Chugh et al. [52] 2020 - 0.9160 

Face-NeSt (Proposed) - 0.9742 0.9947 

Table XVIII shows that Face-NeSt outperforms all recent state-of-the-arts on different 

manipulation types of the FF++ dataset. Scores are compared based on accuracy and AUC 

metric. 

Table XVIII Face-NeSt result comparison on the FF++ dataset. 

Methods Year 
DeepFake Face2Face FaceShifter FaceSwap NT Average 

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

Yang et al. 

[123] 
2023 - - - - - - - - - - - 0.8709 

Guo et al. 

[124] 
2023 - - - - - - - - - - - 0.9755 

Lin et al. 

[97] 
2023 - - - - - - - - - - 0.9074 0.9486 

Yang et al. 

[125] 
2023 - - - - - - - - - - 0.9382 0.9827 

Xu et al. 

[126] 
2023 - - - - - - - - - - - 0.9034 

Yang et al.  

[127] 
2022 - - - - - - - - - - - 0.7888 

Nirkin et al. 

[160] 
2022 0.9450 - 0.8030 - - - 0.8450 - 0.7400 - - - 

Liu et al. 

[129] 
2021 0.9348 - 0.8602 - - - 0.9226 - 0.7678 - 0.8713 - 

Shang et al. 

[130] 
2021 0.9563 - 0.9015 - - - 0.9493 - 0.8001 - - - 

Chen et al. 

[131] 
2021 - 0.9595 - - - - - 0.9787 - - - - 

Hu et al. 

[161] 
2021 0.9464 0.9800 0.8648 0.9400 - - 0.8527 0.9400 0.8005 0.9000 - - 

Qian et al. 

[133] 
2020 0.9597 - 0.9532 - - - 0.9653 - 0.8332 - 0.9278 - 
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Methods Year 
DeepFake Face2Face FaceShifter FaceSwap NT Average 

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

Baek et al. 

[134] 
2020 0.7180 - 0.6860 - - - 0.6310 - 0.7070 - - - 

Zi et al. 

[135] 
2020 0.9210 - 0.8390 - - - 0.9250 - 0.7820 - - - 

Rössler et al. 

[111] 
2019 0.7450 - 0.7590 - - - 0.7090 - 0.7330 - - - 

Amerini et 

al. [26] 
2019 - - 0.8161 - - - - - - - - - 

Afchar et al. 

[136] 
2018 0.8727 - 0.5620 - - - 0.6117 - 0.4067 - 0.6132 - 

Face-NeSt 

(Proposed) 
- 0.9805 0.9945 0.9760 0.9905 0.9854 0.9978 0.9779 0.9948 0.9128 0.9548 0.9665 0.9864 

Table XIX Face-NeSt result comparison on the WildDeepFake dataset. 

Methods Year ACC AUC 

Zhao et al. [162] 2023 0.8332 - 

Liu et al.  [163] 2023 0.8559 - 

Wang et al. [164] 2023 0.8441 0.9257 

Shi et al. [165] 2023 0.8453 0.9327 

Jin et al. [166] 2023 0.7855 0.8641 

Khormali et al. [167] 2023 0.8137 0.8124 

Sun et al. [168] 2023 - 0.8355 

Sun et al. [169] 2023 0.8339 0.9040 

Hu et al. [170] 2022 0.7588 0.8138 

Gu et al. [171] 2022 0.8414 0.9162 

Cao et al. [172] 2022 0.8325 0.9202 

Qian et al. [133] 2020 0.8066 0.8753 

Face-NeSt (Proposed) - 0.9087 0.9689 

Table XIX presents a comparison of Face-NeSt’s performance against state-of-the-arts on 

the WildDeepFake dataset. As usual, Face-NeSt comfortably beats all the existing approaches 

for face manipulation detection. 

3.3.4.3 Complexity Analysis of Face-NeSt 

This section presents an analysis of the computational complexity of Face-NeSt and 

compares it against popular computer vision models. Complexity analysis has been done by 

comparing the inference time on GPU and CPU, the accuracy achieved on the DeepFake, the 

number of ‘multiply-accumulate’ (MACs) operations for each image input and the count of 

trainable parameters (millions).  

Fig. 23 compares Face-NeSt against popular computer vision models. All models are trained 

on the Deepfake (FF++) dataset. The vertical axis represents the accuracy scores. The 

horizontal axis shows the number of trainable parameters in each network. Each circle's size 

indicates the MAC value for each model. Larger circles have a higher MAC value. Face-NeSt 
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achieves the highest accuracy scoring 0.9805 accuracy. Additionally, it is light-weight with 

just 11.82 million parameters.  

 
Fig. 23 Face-NeSt's complexity is compared to that of common computer vision models. 

Table XX Face-NeSt's computational complexity is compared to prominent computer vision models. 

Architectures 
Parameters 

(millions) 
ACC 

MACs 

operations 

(× 𝟏𝟎𝟗) 

CPU 

inference 

time 

(seconds) 

GPU 

inference 

time 

(seconds) 

EfficientNet [173] 66.34 0.9552 1.75 7.27 1.43 

ConvNeXt [174] 88.59 0.9436 5.02 4.95 1.18 

EfficientNet v2 [175] 118.51 0.9396 4.05 6.61 0.96 

Swin Transformer [176] 87.93 0.9100 3.38 6.69 0.93 

ResNet152 [155] 60.19 0.9352 3.79 4.41 0.32 

VGG16 [177] 138.35 0.8801 5.13 3.50 0.35 

VGG19 [177] 143.66 0.8950 6.49 4.25 0.37 

DenseNet161 [178] 28.68 0.9399 2.56 3.65 0.56 

ResNet50 [155] 25.55 0.9540 1.35 1.83 0.14 

ResNeXt [156] 88.79 0.9650 5.40 4.75 0.87 

Face-NeSt (Proposed) 11.82 0.9805 1.81 11.63 0.48 

Face-NeSt easily outperforms the other heavier networks such as ResNeXt (88.79 million 

parameters), EfficientNet-v2 (118.51 million parameters), VGG16 (138.35 million parameters) 

and VGG19 (143.66 million parameters). Table XX presents the inference time of Face-NeSt 

on CPU and GPU for one batch of facial images. 
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Fig. 24 The t-SNE visualizations for the Face-NeSt model on the benchmark datasets a) DF b) F2F c) FaceShifter 

d) FaceSwap e) NT f) DFDC g) CelebDF 
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3.3.4.4 Qualitative Analysis of Face-NeSt 

This section presents a qualitative visualization of the Face-NeSt predictions by showing 

the t-SNE plots (Fig. 24) and the class activation map visualizations (Fig. 25).   

Specifically, t-SNE visualization presents the discriminative feature extraction capabilities 

of the Face-NeSt model as shown in Fig. 24. It can be seen clearly that Face-NeSt extracts 

discriminative features for each manipulation type such that the plotted features from the test 

samples exist closely within their respective class clusters. There is some overlap only in the 

case of the Neural Texture (NT) dataset of FF++ which is a challenging case with realistic face 

tampering. Notably, for the DFDC and CelebDF datasets, the number of manipulated faces is 

far more than real face images, making them highly imbalanced datasets, which is challenging. 

However, Face-NeSt demonstrates strong classification capabilities on these datasets as well.  

Fig. 25 shows the focus region for Face-Nest for the multi-scale features extracted by the 

baseline architecture (bottleneck 1, 2, and 3 layers) and the ‘adaptively weighted multi-scale 

attentional’ module. The maps are generated via the LayerCAM method [154]. 

 

Fig. 25 The region of focus for Face-NeSt. 

3.3.4.5 Generalization Study of Face-NeSt 

This section evaluates the generalization ability of the proposed Face-NeSt model. 

Specifically, the five manipulation categories of the FF++ dataset, DeepFake (DF), Face2Face 
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(F2F), FaceShifter (FSh), FaceSwap (FSw) and NeuralTextures (NT) are used for the cross-

dataset evaluation.  

  

  

  

Fig. 26 Comparison of Face-NeSt performance for same and cross-dataset evaluation on metrics a) Accuracy b) 

Precision c) Recall d) F1-score e) AUC f) MCC score. 
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Table XXI Generalization Study of DenseTrace-Net on the FF++ dataset. 

Train Datasets Test Datasets ACC P R F1 AUC MCC 

F2F + FSh + FSw + NT DF 0.8434 0.9620 0.6964 0.8079 0.9634 0.7164 

DF + FSh + FSw + NT F2F 0.8112 0.9633 0.7389 0.8363 0.9102 0.7482 

DF + F2F + FSw + NT FSh 0.8437 0.8888 0.7500 0.8135 0.8761 0.7204 

DF + F2F + FSh + NT FSw 0.8712 0.8733 0.8001 0.8350 0.8925 0.8211 

DF + F2F + FSh + FSw NT 0.8387 0.8973 0.7218 0.8000 0.9192 0.7518 

Any four categories are selected as the combined training set while the fifth unseen category 

is used to test Face-NeSt’s performance on unseen data. Table XXI presents the cross-dataset 

evaluation scores and Fig. 26 compares Face-NeSt’s performance for the same and cross-

dataset evaluation. 

3.3.4.6 Ablation Study of Face-NeSt 

This section includes an ablation investigation to validate the adaptive weighting 

mechanism's contribution to multi-scale attentional aspects in the Face-NeSt model. 

Specifically, Face-NeSt is trained on the DF and F2F categories of the FF++ dataset. The 

following cases are evaluated: 

• Case A: The model is trained only on baseline architecture with no multi-scale feature 

learning. 

• Case B: The model is trained with multi-scale feature learning. 

• Case C: The model is trained with multi-scale feature learning boosted by the attention 

mechanism. 

• Case D: The model is trained with non-adaptive weighting of attentional multi-scale 

features. This means that each of the 𝛽𝑖 is set to a fixed value of 0.25 that does not 

change during training. 

• Case E: (proposed model): The model is trained with an adaptive weighting of 

attentional multi-scale feature learning. This means that the 𝛽𝑖 parameters are initialized 

to 0.25 at the beginning of the training and their values are adaptively changed during 

training due to backpropagation. 

Fig. 27 shows the impact of each enhancement made. The increasing accuracy and MCC 

scores demonstrate the obvious benefit of extracting adaptively weighted multi-scale 

attentional features for the final prediction. 
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Fig. 27 Ablation study results for Face-NeSt. 

Table XXII Ablation study scores for Face-NeSt model. 

 Ablation Study Cases Case ACC P R F1 AUC MCC 

D
F

 [
1

1
1

] 

Without Multi-Scale Features A 0.9357 0.9024 0.9848 0.9418 0.9906 0.8744 

With Multi-Scale Features B 0.9412 0.9108 0.9795 0.9439 0.9885 0.8850 

With Multi-Scale Attentional Features C 0.9585 0.9516 0.9597 0.9556 0.9906 0.9163 

With Non-Adaptively Weighted Multi-

Scale Attentional Features 
D 0.9662 0.9523 0.9793 0.9656 0.9926 0.9327 

With Adaptively Weighted Multi-Scale 

Attentional Features 
E 0.9805 0.9830 0.9769 0.9800 0.9945 0.9610 

F
2

F
 [

1
1

1
] 

Without Multi-Scale Features A 0.9394 0.9763 0.8884 0.9303 0.9869 0.8801 

With Multi-Scale Features B 0.9481 0.9493 0.9514 0.9503 0.9876 0.8960 

With Multi-Scale Attentional Features C 0.9555 0.9468 0.9675 0.9570 0.9877 0.9113 

With Non-Adaptively Weighted Multi-

Scale Attentional Features 
D 0.9592 0.9625 0.9536 0.9581 0.9882 0.9185 

With Adaptively Weighted Multi-Scale 

Attentional Features 
E 0.9760 0.9844 0.9681 0.9762 0.9905 0.9510 

Table XXII presents detailed scores of the conducted ablation study. Case D containing 

adaptive weighting of multi-scale attentional features outperforms all the other cases.  
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3.3.5 Conclusion 

Face-NeSt, a revolutionary face tampering detection model, is proposed in this work. The 

Face-NeSt model's key innovation is its capacity to adaptively weight multi-scale attentional 

characteristics in proportion to their value to the final prediction. Face-NeSt contains a novel 

‘adaptively weighted multi-scale attentional’ module that performs this dynamic weighting of 

multi-scale features. An attention mechanism helps to capture important spatial and channel 

regions of multi-scale features both locally and globally. Face-NeSt performs highly on three 

public benchmark datasets, FF++, CelebDF, and DFDC. Face-NeSt achieves excellent AUC 

of 0.9947 on DFDC, 0.9823 on CelebDF, 0.9945 on DeepFake (FF++), 0.9905 on Face2Face 

(FF++), 0.9978 on FaceShifter (FF++), 0.9948 on FaceSwap (FF++) and 0.9548 on 

NeuralTextures (FF++) beating all recent state-of-the-art face tampering detection methods. 

3.4 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• Proposed two novel deep-learning architectures, MRT-Net and Face-NeSt, for face 

manipulation detection in images. 

• MRT-Net contains an intelligent auto-adaptive mechanism that automatically chooses 

the best proportion of manipulation residuals and textural features to detect facial 

manipulation. It is also aided by a channel attention mechanism. 

• Face-NeSt is an adaptive multi-scale feature extractor model that chooses different 

scales of features in proportion to their relevance to the final prediction. It contains a 

novel ‘adaptively weighted multi-scale attentional’ (AW-MSA) module. 

• Experimental results on three public benchmark face manipulation datasets, namely, 

FaceForensics++, CelebDF and DFDC, prove that both MRT-Net and Face-NeSt easily 

outperform existing state-of-the-art methods. 

The following research works form the basis of this chapter: 

❖ A. Yadav and D. K. Vishwakarma, "MRT-Net: Auto-adaptive weighting of 

manipulation residuals and texture clues for face manipulation detection," Expert 

Systems with Applications, vol. 232, 2023. 

❖ A. Yadav and D. K. Vishwakarma, "AW-MSA: Adaptively weighted multi-scale 

attentional features for DeepFake detection," Engineering Applications of Artificial 

Intelligence, vol. 127 Part B, 2024. 
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Chapter 4: Splice Manipulation Detection and 

Localization in Images 

4.1 Scope of this Chapter 

This chapter is dedicated to the problem of detecting splice manipulation in images. To this 

end, two contributions have been proposed. In the first research work, a novel image splice 

detection dataset, BiometricLab-DTU-Splice Dataset is proposed. The proposed dataset 

contains two variants of spliced samples generated from Python code and Adobe Photoshop 

software,  respectively. Binary masks are also provided in the proposed dataset. Additionally, 

a novel lightweight, dual-branch, information-preserving, spatial-compression modal splice 

detection framework is proposed to detect spliced jpeg images while restricting the 

computational complexity. The second research work is dedicated to the localization of splice 

manipulation in images.  Specifically, a novel, visually attentive splice localization model with 

a multi-domain feature extractor and multi-receptive field upsampler is proposed. A “visually 

attentive multi-domain feature extractor” (VA-MDFE) extracts attentional features from the 

RGB, edge and depth domain of input images. Next, a “visually attentive downsampler” (VA-

DS) is responsible for fusing the multi-domain features and downsampling them. Lastly, a 

“visually attentive multi-receptive field upsampler” (VA-MRFU) upsamples features using 

multiple receptive fields during the convolution operation. Experimental results clearly 

indicate the superiority of the proposed splice localization model against the existing state-of-

the-art methods. 

4.2 Towards Effective Image Forensics via A Novel Computationally 

Efficient Framework and A New Image Splice Dataset 

4.2.1 Abstract 

Splice detection models are the need of the hour since splice manipulations can be used to 

mislead, spread rumours and create disharmony in society. However, there is a severe lack of 

image-splicing datasets, which restricts the capabilities of deep learning models to extract 

discriminative features without overfitting. This research work presents two-fold contributions 

toward splice detection. Firstly, a novel splice detection dataset with two variants is proposed. 

The two variants include spliced samples generated from code and through manual editing. 
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Spliced images in both variants have corresponding binary masks to aid localization 

approaches. Secondly, a novel Spatio-Compression Lightweight Splice Detection Framework 

is proposed for accurate splice detection with minimum computational cost. The proposed dual-

branch framework extracts discriminative spatial features from a lightweight spatial branch. It 

uses original resolution compression data to extract double compression artifacts from the 

second branch, thereby making it ‘information preserving.’ Several CNNs are tested in 

combination with the proposed framework on a composite dataset of images from the proposed 

dataset and the CASIA v2.0 dataset. The best model accuracy of 0.9382 is achieved, beating 

all state-of-the-art methods and demonstrating its superiority. 

4.2.2 Proposed Splice Detection Dataset 

One of the critical challenges in splice detection is the lack of large-scale splice datasets. 

Table XXIII provides a list of existing splice detection datasets. Most of the existing splice 

datasets are limited in terms of the number of samples, and not all include binary masks for 

localization implementations. Training deep models on small datasets inevitably presents the 

problem of overfitting.  

Table XXIII Comparison of proposed splice detection dataset with existing splice datasets.  

Ref. Year Dataset 
Tampering 

Type 

Original 

Samples 

Spliced 

Samples 
Resolution Format 

Splice 

Masks 

[179] 2004 Columbia Gray Splicing 933 912 128 x 128 BMP  

[180] 2006 Columbia Color Splicing 183 180 
757 x 568, 

1152 x 768 
TIFF Yes 

[181] 2009 CASIA v1.0 Splicing 800 921 384 x 256 JPG No 

[181] 2009 CASIA v2.0 Splicing 7491 5123 
240 x 160, 900 

x 600 

TIFF, 

BMP, 

JPG 

No 

[182] 2013 DSO-I Splicing 100 100 2048 x 1536 PNG - 

[182] 2013 DSI-I Splicing 25 25 Variable - - 

[183] 2014 
Image Forensic Dataset 

Challenge 
Splicing 144 144 2018 x 1536 PNG - 

[184] 2015 
SYSU-OBJFORG 

dataset 

Copy Move, 

Splicing 
100 100 

1280 x 720 @ 

25fps 

H.264 / 

AVC 
- 

[185] 2015 GRIP Splicing 80 80 1024*768 JPG Yes 

- - 

Biometric-Lab-DTU 

Splice Dataset – 

automatic (proposed) 

Splicing 8156 8156 

3008 x 2000, 

4288 x 2848, 

4928 x 3264 

JPG Yes 

- - 

Biometric-Lab-DTU 

Splice Dataset – manual 

(proposed) 

Splicing 3106 3106 

3008 x 2000, 

4288 x 2848, 

4928 x 3264 

JPG Yes 

To this end, a novel splice detection dataset having two variants is proposed – BiometricLab-

DTU-Splice Dataset . The first variant (automatic) is autogenerated from python code. The 
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second variant contains spliced images prepared in Adobe Photoshop Software. Fig. 28 

demonstrates the proposed dataset's original, spliced, and binary mask images. 

 

Fig. 28 Samples from the proposed BiometricLab-DTU Splice dataset 

4.2.2.1 BiometricLab-DTU-Splice Dataset (Automatic) 

The ‘automatic’ variant of the BiometricLab-DTU Splice dataset is autogenerated through 

Python code. 8156 high-resolution uncompressed images from the RAISE dataset [186] are 

used as source images. Several existing splice detection approaches have prepared datasets by 
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compressing images with quality factors of step size 5 [70], [67]. The jpeg images of the 

proposed dataset are produced with a random integer quality factor which ensures a richer 

distribution of compression information compared to the above-described case.  

Dataset Generation of Automatic Spliced Images: A pre-trained RCNN model trained on 

the MS-COCO dataset extracts objects from the original images of the RAISE dataset. This is 

achieved from the instance_segmentation() function of the PixelLib python library. This 

function extracts different objects detected as the result of segmentation. Next, the binary 

masks are generated for each object by converting the object images to grayscale and 

thresholding into binary images. The extracted objects are tampered with several random 

manipulations, including rotation, scaling, flipping, contrast changes, brightness variations and 

sharpness modifications before pasting onto another original image. The degree of scaling, 

rotation and other manipulations is random as shown in Fig. 29. Finally, the extracted objects 

are pasted onto original images using the paste() function of the Python’s PILLOW library. 

Lastly, the spliced images are saved as jpeg images with random compression quality factor as 

shown in the “second compression” column of Fig. 29. The image reading and color-scale 

modifications are done using the open-cv library, while the rotation, scaling, flipping, contrast 

and sharpness enhancements are achieved with the PILLOW library. The binary masks 

produced from code can aid in future splice localization methods. 

 

Fig. 29 Parameters used during creation of spliced samples. 

8156 high-resolution uncompressed images from the RAISE dataset were used to produce 

8156 original and 8156 spliced images, which form the BiometricLab-DTU Splice dataset 

(automatic). Fig. 28 shows some samples from the proposed automatic dataset variant. 

4.2.2.2 BiometricLab-DTU-Splice Dataset (Manual) 

The second variant of the proposed dataset has been prepared manually. A total of 3106 

images were spliced manually along with the same number of the original counterparts to 

formulate a balanced dataset of 6212 images. Spliced samples from the manual variant of the 

proposed dataset are more realistic visually than the automatic version due to the random 
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manipulations on pasted objects of computer-generated spliced images in the automatic variant 

dataset. Table XXIII compares the proposed BiometricLab-DTU Splice dataset against existing 

splice datasets. Most existing datasets fall short in terms of the total number of samples 

available, have smaller resolution images, and usually don’t have splice masks to aid splice 

localization approaches when compared against the proposed dataset variants. 

Dataset Generation of Manually Spliced Images: The source and target images are opened 

in the Adobe Photoshop software. An object is selected from the source image using the ‘Quick 

Selection Tool’. The selected object is pasted onto the target image as a new layer. Resizing, 

rotation, flipping, contrast and brightness modifications are made randomly to the object layer. 

The pasted object is selected again and the ‘Layer Mask Tool’ in Photoshop generates the 

binary mask layer. Next, a ‘Photoshop Action’ is created that automates the process of saving 

the spliced image and its corresponding binary mask into separate folders. Specifically, the 

spliced image is saved as a jpeg image, while the binary mask is generated from the mask layer 

formed by the layer mask tool. For each image, opening the source and target images, selecting 

the object to be pasted and pasting operations are done manually. Then, the Photoshop action 

helps to save the spliced images and corresponding binary masks automatically. 

4.2.3 Proposed Splice Detection Framework 

The design of the proposed splice detection framework is motivated by several factors. 

Firstly, while spatial features are the most common type of deep features extracted, they do not 

provide the most discriminative information about spliced samples. Splice detection in 

different modalities, including frequency domain, noise domain, etc., has proven effective. 

Secondly, the small number and size of publicly available splice datasets (Table XXIII) provide 

a clear incentive to avoid heavy deep learning architectures having millions of trainable 

parameters. A deep model that is too complex for a given dataset will overfit and memorize 

the training samples. Thirdly, since deep learning architectures require fixed-size inputs, 

images are mainly resized to smaller resolutions, and hence there is ‘information loss’ due to 

the reduction of high-dimensional images. Hence, a splice detection framework is proposed 

with the following novel characteristics: 

• Dual-branch for Multi-Modal Feature Learning – Different modalities besides the 

spatial domain have proven effective for splice detection. This proposed framework 

combines the spatial domain with a ‘compression branch’ that learns discriminative 

compression artifacts indicating image splicing. 
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• Information Preserving – The compression branch of the proposed framework extracts 

compression artifacts from original resolution image data. Hence, no information is lost 

due to resizing. 

• Lightweight – The design of the proposed splice detection framework restricts the number 

of trainable parameters in the context of deep learning. None of the proposed framework 

variants have more than 100,000 trainable parameters, whereas standard deep networks can 

easily have up to millions of trainable parameters. Fewer trainable parameter leads to 

significantly lower computational cost for the proposed splice detection framework. 

• Futuristic – A novel framework is proposed instead of building a fixed architecture for 

splice detection. The proposed framework supports a variety of existing deep architectures 

and is also capable of utilizing novel ideas from future research. This plug-and-play 

characteristic ensures that the proposed framework stays relevant for years. 
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Fig. 30 a) DenseNet-CNN variant of the proposed Splice Detection Framework containing a pre-trained DenseNet161 for the spatial branch 

and a Convolution Neural Network (CNN) for the compression branch. b) The frequency branch of the proposed splice detection framework 

has two variants based on convolution and involution operators. 

4.2.3.1 Spatial Branch 

As the name suggests, the spatial branch extracts spatial features from input image samples. 

Several convolutional neural network architectures have proven highly effective for image 

classification problems. The spatial branch is designed to use transfer learning via deep 

networks pre-trained on the ImageNet dataset to inherit the proposed framework's lightweight 

and' futuristic characteristics. Designing the spatial branch in this manner has the following 

advantages. Firstly, several architectures ( [177], [187], [155], [178]) that have proven to 

possess high image classification capabilities can be leveraged to extract discriminative spatial 

features for splice detection. Secondly, transfer learning ensures that the spatial branch remains 

‘lightweight,’ i.e., only the last layer is trainable. Deep architectures of any size can be used 

for the spatial branch as long as it is pre-trained on ImageNet, and all layers are frozen except 

the last layer.  

Table XXIV Several Deep Architectures are used for the spatial and compression branch of the proposed 

framework. 

Ref Model 
Short 

Form 
Branch Input Size Key Idea 

[177] VGG16 VGG Spatial 256 x 256 x 3 Small convolutional kernels 

[187] GoogleNet - Spatial 256 x 256 x 3 
Inception module, parallel 

convolution 

[155] ResNet18 ResNet Spatial 256 x 256 x 3 Skip Connections 

[178] DenseNet161 DenseNet Spatial 256 x 256 x 3 Feature Reuse 

[188] 
Vision 

Transformer 
ViT Spatial 384 x 384 x 3 Self-Attention on Images 

- 
Convolutional 

Neural Network 
CNN Compression 16 x 128 x 1 

Channel-Specific and 

Spatial-Agnostic 

[189] 
Involution Neural 

Network 
INN Compression 16 x 128 x 1 

Spatial-Specific and 

Channel-Agnostic 

The spatial branch's last layer in the proposed framework is trainable and modified to 

produce features of 16 dimensions. Fig. 30 shows a variant of the proposed splice detection 

framework that uses an ImageNet pre-trained ‘Vision Transformer’ [188] in the spatial branch. 

Table XXIV shows several pre-trained deep architectures used for the spatial branch of the 

proposed spliced detection framework. All models receive color images as input. It is restated 

that such a design enjoys strong classification capabilities in the spatial domain while staying 

lightweight regardless of the size of the deep architecture used. 

4.2.3.2 Compression Branch 

The Discrete Cosine Transform (DCT) is a mathematical method that converts spatial 

domain data, such as images, into frequency domain data. In JPEG compression, the main 
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concept of utilizing DCT is based on the fact that most of the image's energy is focused on a 

few low-frequency coefficients. In contrast, high-frequency coefficients capture finer details 

and have less impact on the overall visual quality. JPEG compression achieves compression by 

quantizing and deleting higher frequency components while maintaining visual quality deemed 

acceptable to the human eye. The Discrete Cosine Transform (DCT) is a crucial element of 

JPEG compression. It facilitates the reduction of picture data by converting it into the frequency 

domain and eliminating less significant high-frequency details. 

Several existing works highlight the presence of distinct compression artifacts in spliced jpg 

images [190], [70]. Specifically, an original jpg image (without splicing) is compressed once. 

However, a spliced image containing an object pasted from another image undergoes a second 

jpg compression. This dual compression leaves distinct artifacts in DCT coefficient histograms. 

The DCT coefficients include 1 DC and 63 AC coefficients. Different works have considered 

different AC coefficients in zig-zag order with different histogram ranges. [190] highlights the 

artifacts by using 9 DCT coefficients (zig-zag order) and a histogram range of [−5,5] to 

constitute features of size 99 ×  1. Similarly, [70] considers 9 DCT coefficients with a 

histogram range of [−50,50] to formulate a feature size of 909. 

Visual analysis is conducted on several original-spliced image pairs, and histograms are 

plotted to evaluate the ideal range of features. Fig. 31 shows the histograms from an original 

(green) and corresponding spliced (red) image. Plotting the zeroth, fourth, eighth, and fifteenth 

AC coefficient (zig-zag order) demonstrates the presence of distinct maximum values and a 

varying number of non-zero histogram bins in the range of [−63,64] between the original and 

spliced image. Hence, 16 AC zig-zag coefficients (0 to 15) are selected, and the histogram 

range is set to [−63,64]. The input size for the compression branch is set to 16 ×  128 ×  1.  

The histogram data input is extracted from original resolution images; hence, the 

compression branch is ‘information preserving,’ i.e., there is no loss of information from input 

resizing. Regardless of the input image dimensions, the compression branch receives 

compression information from original resolution images having a size 16 ×  128 ×  1. 

Compression features extracted from original resolution images are standardized to have a 

mean value of 0 and a standard deviation value of 1 (zero-centered input) to aid in faster model 

convergence. The input size of 16 ×  128 ×  1 helps keep the proposed framework 

‘lightweight,’ i.e., the architecture processing input of this size need not be massive.  
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Fig. 31 Double compression artifacts in DCT coefficient histograms of spliced jpg images.  

Two different architectures are employed as the compression branch in several variants of 

the proposed framework. Besides trying a simple CNN, an involution neural network (INN) 

containing the novel involution kernel [189] (introduced in CVPR 2021) is also used as the 

compression branch. The novel involution-based neural network can achieve competent 

classification results at a lesser computational cost than CNN compression branch models.  

The convolution involves applying a kernel (filter) to an input picture by sliding it across 

the image and calculating the weighted sum of pixel values inside the kernel's receptive field 

at each place. Involution is the reverse process of convolution. Involution calculates the 

weighted sum of kernel values based on the pixel values of the input image rather than 

computing a weighted sum of pixel values. Involution is convolving a kernel with an input 

picture by sliding it across the image and calculating a weighted total, with the kernel values 
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being fixed and the input image values being adjusted. Involution has been suggested as a 

substitute for convolution in some deep learning structures, asserting enhanced efficiency and 

performance in specific tasks. Fig. 32 demonstrates the feature extraction methodology of the 

two kernels. 

 

Fig. 32 Comparison of Convolution and Involution kernels.  

Both the CNN and INN variants contain four convolution/involution layers. Each layer is 

accompanied by batch normalization. Max Pooling is used to reduce the dimensionality of 

feature maps. ReLU activation function is used. INN models specialize in reducing the number 

of trainable parameters while achieving competent results. Despite the fewer parameters in the 

INN compression branch, it can achieve competent classification results. The compression 

branch is also designed to produce the final features of size 16. 

4.2.3.3 Final Framework 

The final model fuses the 16 features each spatial and compression branch produces. It 

utilizes two fully connected layers to scale down the fused features to the final two features 
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representing binary classification scores. ReLU activation and batch normalization are applied 

to the first fully connected layer output.  

4.2.4 Experimental Setup 

 

4.2.4.1 Datasets 

This experiment is conducted using two image splicing datasets. The first dataset is the 

newly proposed BiometricLab-DTU-Splice Dataset already discussed in Section 4.2.2. The 

second dataset is the CASIA v2.0 dataset. 

The CASIA v2.0 is a challenging image tampering dataset containing 7491 original and 

5123 tampered images [181]. However, over half of the tampered images are uncompressed 

(TIFF or BMP format). Since the proposed splice detection framework utilizes compression 

artifacts of image samples, the uncompressed format images were compressed with a random 

quality factor. This modified variant of the CASIA v2.0 dataset is used for experimentation.  

Since all three datasets are novel (two proposed and one modified publicly available 

dataset), a comparison of the proposed framework with existing splice detection approaches is 

conducted by training all architectures (proposed and existing models) on these new datasets 

instead of merely comparing with metric figures mentioned in published works. 5123 original 

images are chosen from the original CASIA v2.0 dataset for experimentation to maintain class 

balance. 

Table XXV Details of Proposed Datasets 

Dataset Type 
Original 

Samples 

Spliced 

Samples 

Total 

Samples 

Splice 

Mask 

BiometricLab-DTU-Splice dataset 

(automatic) 
Proposed 8156 8156 16312 Yes 

BiometricLab-DTU-Splice dataset (manual) Proposed 3106 3106 6212 Yes 

CASIA v2.0 (modified) Publicly Available  5123 5123 10246 - 

Table XXV demonstrates the number of samples in each dataset used in this experiment. 

4.2.4.2 Hardware Resources and Evaluation Metrics 

All experiments have been implemented using the Pytorch Library. All experiments are run 

on a system with 128 GB RAM and a 24 GB NVIDIA TITAN RTX graphic card. The metrics 

used to evaluate the proposed splice detection framework are Accuracy (ACC), Precision (P), 

Recall (R), F1-score (F1), Area Under Curve (AUC), and Mathews Correlation Coefficient 

(MCC). 
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Correctly identified spliced samples are counted as true-positive (𝕋ℙ), original images 

correctly classified as original are counted as true-negative (𝕋ℕ), original images misclassified 

as spliced are counted as false-positive (𝔽ℙ) and spliced images misclassified as original are 

counted as false-negative (𝔽ℕ). The various metrics are defined using Eq. (20)-(24).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝕋ℙ+𝕋ℕ

𝕋ℙ+𝕋ℕ+𝔽ℙ+𝔽ℕ
        (20) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝕋ℙ

𝕋ℙ+𝔽ℙ
         (21) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝕋ℙ

𝕋ℙ+𝔽ℕ
         (22) 

𝔽1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (23) 

𝑀𝐶𝐶 =
𝕋ℙ∗𝕋ℕ−𝔽ℙ∗𝔽ℕ

√(𝕋ℙ+𝔽ℙ)(𝕋ℙ+𝔽ℕ)(𝕋ℕ+𝔽ℙ)(𝕋ℕ+𝔽ℕ)
      (24) 

4.2.4.3 Pre-processing and Data Augmentation 

Images are resized to 256 ×  256 for all spatial models except Vision Transformer, which 

expects an input size of 384 ×  384. Images are standardized to have a mean value of 0 and a 

standard deviation of 1 (channel-wise) and hence are ‘zero-centered.’ Three data 

augmentations are used for experimentation: random horizontal flip, random vertical flip, and 

random rotation from 0 to 180 degrees. 

The datasets mentioned in the previous section are combined, as shown in Table XXVI, to 

produce a larger pool of diverse input data. The AMC variant combines the proposed and 

modified CASIA datasets to produce one large dataset of 32770 images. The AM variant 

combines both variants of the proposed dataset to make a more extensive set of 22524 images.  

Table XXVI Dataset Variants that are used for the experimentation. 

Dataset Variant Code Total Samples 

Train & 

Validation 

Samples 

Test 

Samples 

BiometricLab-DTU-Splice dataset (automatic + manual) AM 22524 
90% 10% 

All three datasets combined AMC 32770 

All variants of the proposed splice detection framework and existing splice detection 

architectures are trained and evaluated on these variants to ensure comprehensive training and 

evaluation in this experiment. 
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4.2.4.4 Model Variants 

The models specified in Table XXIV are combined and evaluated to verify the validity of 

the proposed splice detection framework. The combined architectures are named after their 

constituent branch models.  

The ResNet-CNN variant uses a pre-trained resnet18 in the spatial branch and a simple CNN 

for the frequency branch. The GoogleNet-CNN variant has a GoogleNet architecture as its 

spatial branch and CNN as its frequency branch. Similarly, VGG-CNN, DenseNet-CNN, and 

ViT-CNN include VGG, DenseNet161, and Vision Transformer models in their spatial and 

CNN-based frequency branches.  

The involution operator is also used in the frequency branch with fewer trainable parameters 

than the simple CNN-based frequency branch. Hence each of the above-mentioned spatial 

branch models is combined with an involution-based frequency branch (INN) to produce five 

more variants denoted by ResNet-INN, GoogleNet-INN, VGG-INN, DenseNet-INN, and ViT-

INN.  

Hence, ten model variants of the proposed splice detection framework are trained and 

evaluated in this experiment. The spatial branch of each variant is loaded with ImageNet 

weights and frozen except for the last layer. 

4.2.4.5 Hyperparameter Settings 

All experiments are run for 30 epochs. The batch size is 256 for all models except Vit-CNN 

and the train-test splits are set to 90% and 10%, respectively. Five-fold cross-validation is 

implemented to ensure comprehensive training. Several optimizers are tried, and the Adam 

optimizer consistently produces the best results. The learning rate (LR) is decayed linearly. 

Table XXVII shows the hyperparameter settings for each model variant to obtain the best 

results. 

The CNN frequency branch-based architectures achieved their best results with an initial 

learning rate of 0.001 and decayed by 50% after every one or two epochs. The INN frequency 

branch-based architectures showed their best results when the learning rate was initialized to a 

higher value and decayed by a smaller factor. Specifically, the initial learning rate for INN-

based models was 0.01 and decayed by 10% only (except for DenseNet-INN) after every one 

or two epochs. 
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Table XXVII Hyperparameter setting for various variants of the proposed Splice Detection Framework. 

Models Epochs  Batch Size Initial LR 
LR Decay 

Factor 

Step Size of LR 

Decay (epochs) 
Optimizer 

VGG-CNN 30 256 0.001 0.5 1 Adam 

VGG-INN 30 256 0.01 0.9 1 Adam 

ResNet-CNN 30 256 0.001 0.5 2 Adam 

ResNet-INN 30 256 0.01 0.9 1 Adam 

GoogleNet-CNN 30 256 0.001 0.5 2 Adam 

GoogleNet-INN 30 256 0.01 0.9 1 Adam 

DenseNet-CNN 30 256 0.001 0.5 2 Adam 

DenseNet-INN 30 256 0.01 0.5 2 Adam 

ViT-CNN 30 576 0.001 0.5 1 Adam 

ViT-INN 30 256 0.01 0.9 1 Adam 

4.2.5 Experimental Results & Analysis  

This section presents the results of all model variants of the proposed splice detection 

framework.  

4.2.5.1 Performance of Proposed Splice Detection Framework 

ACC, P, R, F1, AUC, and MCC scores obtained by model variants of the proposed 

framework are mentioned in Table XXVIII.  

Table XXVIII Performance of the proposed Splice Detection Framework. 

Proposed Model 

Variants 
Dataset  

Input Size 

(Spatial 

Branch) 

Trainable 

Parameter 

Count 

ACC P R F1 AUC MCC 

VGG-CNN AMC 256 x 256 x 3 99,538 0.9305 0.9471 0.9116 0.9290 0.9749 0.8617 

VGG-INN AMC 256 x 256 x 3 76,854 0.9018 0.9125 0.8847 0.8984 0.9640 0.8038 

ResNet-CNN AMC 256 x 256 x 3 42,194 0.9379 0.9510 0.9208 0.9357 0.9749 0.8761 

ResNet-INN AMC 256 x 256 x 3 19,510 0.8571 0.9814 0.7328 0.8391 0.9472 0.7402 

GoogleNet-CNN AMC 256 x 256 x 3 50,386 0.9342 0.9458 0.9208 0.9331 0.9781 0.8687 

GoogleNet-INN AMC 256 x 256 x 3 27,702 0.9006 0.9384 0.8574 0.8961 0.9647 0.8042 

DenseNet-CNN AMC 256 x 256 x 3 69,330 0.9382 0.9578 0.9185 0.9378 0.9802 0.8772 

DenseNet-INN AMC 256 x 256 x 3 46,646 0.8779 0.9105 0.8278 0.8672 0.9431 0.7577 

ViT-CNN AMC 384 x 384 x 3 46,290 0.9376 0.9571 0.9144 0.9353 0.9790 0.8759 

ViT-INN AMC 384 x 384 x 3 23,606 0.8733 0.9209 0.8174 0.8661 0.9463 0.7516 

The training loss and validation loss plots converge smoothly towards 0 and validation 

accuracy towards increases close to 1. The confusion matrix obtained after training each model 

variant confirms the strong classification capabilities of the proposed framework model 

variants.  

4.2.5.2 Result Analysis 

This section discusses the results obtained by model variants in the previous section. Table 

XXVIII presents the number of trainable parameters in each model.  

The largest model is VGG-CNN with 99538 trainable parameters, while the lightest model 

is the ResNet-INN variant with only 19510 trainable parameters. This proves the lightweight 
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nature of the proposed framework since deep learning models of moderate size easily contain 

a few million trainable parameters. In contrast, all variants of the proposed splice detection 

framework are incredibly lightweight. 

The CNN frequency branch-based models consistently score more than 0.93 ACC, more 

than 0.92 F1-score, more than 0.97 AUC, and more than 0.86 MCC scores. The INN frequency 

branch-based models score more than 0.87 ACC (except for ResNet-INN), more than 0.86 F1-

score F1 (except for ResNet-INN), more than 0.94 AUC, and more than 0.74 MCC. It is clear 

from the above scores that the reduced number of trainable parameters in the INN models 

resulted in a slight performance drop. 

The DenseNet-CNN model achieved the best scores with 0.9382 ACC, 0.9378 F1, 0.9802 

AUC, and 0.8772 MCC. ResNet-INN scored the highest precision score of 0.9814. ResNet-

CNN and GoogleNet-CNN share the highest recall score of 0.9208. 

Fig. 33 shows the ROC curves for each model variant of the proposed splice detection 

framework. 

 
Fig. 33 ROC curves for different variants of the proposed framework. 

4.2.5.3 Ablation Study 

An ablation study of the proposed framework is conducted to confirm the validity of the 

contributions made by the spatial and compression branches. The spatial branch and frequency 

branch are trained and evaluated individually. Resnet18 is the spatial branch, loaded with 

ImageNet weights, and contains frozen layers except the last.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e 
P

o
si

ti
v
e 

R
at

e

False Positive Rate

VGG-CNN (0.9749)

VGG-INN (0.9640)

ResNet-CNN (0.9749)

ResNet-INN (0.9472)

GoogleNet-CNN (0.9781)

GoogleNet-INN (0.9647)

DenseNet-CNN (0.9802)

DenseNet-INN (0.9431)

ViT-CNN (0.9790)

ViT-INN (0.9463)



Chapter 4: Splice Manipulation Detection and Localization  

84 

 

Table XXIX Ablation study performance for the individual branches of the proposed Splice Detection Framework 

Models ACC P R F1 AUC MCC 

Spatial Branch Only (ResNet) 0.6957 0.7106 0.6495 0.6787 0.7602 0.3922 

Frequency Branch Only (CNN) 0.7966 0.8376 0.7251 0.7773 0.8718 0.5971 

Frequency Branch Only (INN) 0.6146 0.5786 0.8033 0.6727 0.7296 0.2523 

Table XXIX presents the results obtained from the ablation study, where each branch is 

trained on the same dataset as the proposed model. The best accuracy of 0.7966 is achieved by 

the CNN-based frequency branch, which is still very low compared to the performance of the 

proposed model variants. Similarly, the best F1, AUC, and MCC scores of 0.7773, 0.8718, and 

0.5971, respectively, are very low. The scores in Table XXIX indicate that the individual 

branches do not have high classification capability compared to the proposed model variants. 

4.2.6 Comparison with Existing Splice Detection Methods 

A comparison of the performance of the proposed splice detection framework with existing 

state-of-the-art approaches is presented here. The comparison is based on classification metric 

scores and the size of models under comparison in terms of the number of trainable parameters. 

4.2.6.1 Comparison based on Classification Metrics 

This section presents the comparison of the proposed splice detection framework with the 

existing state-of-the-art methods for splice detection.  

Table XXX presents a comparison of the proposed splice detection framework against 

existing state-of-the-art methods on the CASIA v2 dataset. The proposed framework 

outperforms all the mentioned approaches. 

Table XXX Comparison of Existing Splice Detection Approaches against the proposed splice detection 

framework on the CASIA dataset. 

Model ACC P R F1 AUC MCC 

Zhang et al. [191] - - - 0.7653 - - 

Sun et al. [192] - - - 0.6805 - - 

Yan et al. [193] - 0.8090 0.7460 0.7350 - - 

Bi et al. [62] - 0.6780 0.5860 0.5860 - - 

Wu et al. [194] - 0.6310 0.6730 0.6510 - - 

Chen et al. [195] - - - 0.7388 - - 

Liu et al. [196] - - - 0.5232 - - 

Salloum et al. [197] - - - 0.6675 - - 

Wu et al. [198] - - - 0.5770 - 0.5590 

Chen et al. [199] - - - 0.6097 - - 

Zhang et al. [200] - - - 0.6286 - - 

Xu et al. [201] - - - 0.4601 0.8191 - 

Chen et al. [202] - 0.6616 0.7548 0.7051 - - 

Zhou et al. [203] - 0.5044 0.6575 0.5709 - - 

Wei et al. [204] - 0.5202 0.6642 0.5834 - - 

(Proposed) DenseNet-CNN 0.8125 0.7823 0.7646 0.7733 0.9126 0.6136 

(Proposed) ResNet-CNN 0.8851 0.8123 0.9415 0.8664 0.9596 0.7744 
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Table XXXI presents a comparison of the proposed framework on the combined dataset. 

Here again, the proposed framework performs better than other similar approaches. Four 

existing splice detection approaches have been implemented and evaluated in this section to 

demonstrate a fair comparison and illustrate the superiority of the proposed splice detection 

framework. The architectures implemented and the training process followed are the same as 

the research manuscripts mentioned. 

Table XXXI Comparison of Existing Splice Detection Approaches against the ResNet-CNN variant of the 

proposed splice detection framework. 

Ref. Model 
Trainable 

Parameters 
Dataset ACC P R F1 

[205] (Existing) Dense CNN 48,818 AMC 0.5850 0.5923 0.5498 0.5703 

[206] (Existing) DCT + Quantization Table 11,104,706 AMC 0.9273 0.9919 0.8951 0.9409 

[70] (Existing) Multi-Domain CNN 8,693,322 AMC 0.4693 0.4742 0.6413 0.5452 

- (Proposed) DenseNet-CNN 69,330 AMC 0.9382 0.9578 0.9185 0.9378 

- (Proposed) ResNet-CNN 42,194 AMC 0.9379 0.9510 0.9208 0.9357 

[78] (Existing) Weighted Feature Fusion 4,111,490 AM 0.5682 0.5837 0.4758 0.5245 

- (Proposed) ResNet-CNN 42,194 AM 0.9197 0.9508 0.9259 0.9382 

The architecture in [205] contains four dense blocks with four, two, and two dense layers, 

respectively. Transition layers include 1 ×  1 convolutions and Max pooling. Input images are 

converted to grayscale and resized to 256 ×  256. Normalization is also done to the range of 

[0,1]. The model is trained for 50 epochs with an initial learning rate of 0.001, which is decayed 

by 10% every 1/3rd of an epoch. The optimizer used is SGD, and the batch size is 32.  

The best architecture of [206], combining a quantization table to the last pooling and two 

fully connected layers, is implemented for comparison. The histogram range of Y channel DCT 

coefficients is [-60,60]. Train and test images are split by 90% and 10%, respectively. The 

model is trained for 50 epochs with a learning rate is 0.001 and an Adam optimizer. All 

convolution operations are accompanied by batch normalization.  

The multi-domain CNN proposed in [70] is implemented and repurposed towards binary 

classification for image splice detection. The histogram range for DCT coefficients is [-50,50]. 

Train, validation, and test sets have sizes of 90%, 5%, and 5%, respectively. Both spatial and 

frequency branch use dropout and their respective inputs are applied with normalization to the 

range [0,1]. The model is trained for 50 epochs with the AdaDelta optimizer, with an initial 

learning rate of 0.01 is reduced by 10% every epoch.  

The weighted feature combination architecture in [78], having four weight combination 

modules to combine YCbCr, Edge, and PRNU features, is implemented. The weight 
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parameters ∝𝑎, ∝𝑏 and ∝𝑐 for each of the four weight modules are added to the computational 

graph and list of trainable parameters for automatic tuning during backpropagation. Cross-

validation training is implemented with SGD optimizer, and the initial learning rate is 0.001, 

which decays by 10% every 10 epochs. Initial values for ∝𝑎, ∝𝑏 and ∝𝑐 are set to 0.3, 0.3 and 

0.4, respectively.  

PRNU features can be calculated from flat-field images of the source camera, or they can 

be estimated from a large number of natural images captured by a given camera device [207]. 

It is unclear how the authors computed PRNU features for CASIA dataset images since the 

dataset paper does not include source device information [181]. Hence, to alleviate this 

problem, the implemented weighted feature combination architecture is evaluated on the AM 

dataset variant, which includes the proposed Biometric-DTU-Splice dataset (automatic + 

manual). All images of the proposed Biometric-DTU-Splice dataset are derived from the 

RAISE dataset's uncompressed images whose camera device information is available. 50 

images from each camera model (𝑁 = 50) are used to compute the PRNU factor Κ̂ using Eq. 

25 for each camera device, as done in [207].  

Κ̂ =
∑ (𝒲𝑘ℐ𝑘)
𝑁
𝑘=1

∑ (ℐ𝑘)
2𝑁

𝑘=1

                   (25) 

Here ℐ𝑘 is one of the multiple images from the source camera and 𝒲𝑘 = ℐ𝑘 − ℐ𝑘̂ represents 

image noise residual. The implemented architecture is compared against the ResNet-CNN 

variant of the proposed framework, which is trained for a second time on the AM dataset variant 

for a fair comparison (Table XXXI).  

The results from Table XXXI indicate the superiority of the proposed ‘lightweight dual-

branch information preserving spatio-compression modal splice detection framework.’ Only 

[206] of the existing splice detection methods can match the proposed framework's accuracy, 

precision, recall, and f1-scores. But it is an extremely heavy architecture with more than 11 

million trainable parameters. 

4.2.6.2 Comparison based on Size (Number of Trainable Parameters) 

One of the design principles of the proposed splice detection framework is to make it 

‘lightweight.’ This idea is ideally suited when the usual splice detection datasets are small and 

deep architectures are prone to overfitting. The proposed model reduces the number of trainable 

parameters by using transfer learning in the spatial branch and processing DCT features of size 
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16 ×  128 ×  1 in the compression branch through extremely lightweight neural networks. 

The number of trainable parameters in each variant of the proposed splice detection framework 

is presented in Table XXVIII and that of existing splice methods in Table XXXI. Fig. 34 

presents a size comparison of all the proposed splice detection framework variants (pink) and 

some existing splice detection methods (blue). The size difference (no. of trainable parameters) 

between the proposed and existing methods is so significant that a ‘log-scale’ is used to plot 

the size difference. Fig. 34 indicates the ‘lightweight’ nature of the proposed splice detection 

framework variants. 

 

Fig. 34 Size comparison of the proposed Splice Detection Model Variants (pink) against Existing State-of-the-

Arts (blue).  

4.2.7 Conclusion 

This research work makes two-fold contributions towards splice detection in jpg images. 

Firstly, a novel splice detection dataset, the ‘BiometricLab-DTU Splice dataset,’ is proposed. 

The proposed splice dataset has two variants: the first is autogenerated from code, and the 

second contains handmade spliced samples. The proposed splice detection dataset significantly 

adds to the existing small-scale splice datasets. Secondly, a novel ‘Lightweight Dual-branch 

Information Preserving Spatio-Compression Modal Splice Detection Framework’ is proposed 
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that incorporates design principles consistent with today’s splice detection research scenario 

(small-scale splice datasets). Several variants of the proposed framework are trained on images 

from the proposed splice dataset and a modified CASIA v2.0 dataset. Experimental results 

prove the superiority of the proposed splice detection framework compared to existing methods 

without requiring millions of trainable parameters in the neural network. A similar design 

principle can be used for future work to build a splice localization framework.  
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4.3 A Visually Attentive Splice Localization Network with Multi-Domain 

Feature Extractor and Multi-Receptive Field Upsampler 

4.3.1 Abstract 

Image splice manipulation presents a severe challenge in today's society. With easy access to 

image manipulation tools, it is easier than ever to modify images that can mislead individuals, 

organizations or society. In this work, a novel, "Visually Attentive Splice Localization Network 

with Multi-Domain Feature Extractor and Multi-Receptive Field Upsampler", has been 

proposed. It contains a unique "visually attentive multi-domain feature extractor" (VA-MDFE) 

that extracts attentional features from the RGB, edge and depth domains. Next, a "visually 

attentive downsampler" (VA-DS) is responsible for fusing and downsampling the multi-

domain features. Finally, a novel "visually attentive multi-receptive field upsampler" (VA-

MRFU) module employs multiple receptive field-based convolutions to upsample attentional 

features by focussing on different information scales. Experimental results conducted on the 

public benchmark dataset CASIA v2.0 prove the potency of the proposed model. It comfortably 

beats the existing state-of-the-arts by achieving an IoU score of 0.851, pixel F1 score of 0.9195 

and pixel AUC score of 0.8989. 

4.3.2 Proposed Architecture 

The details of the proposed architecture are presented in this section. 

4.3.2.1 Visually Attentive Multi-Domain Feature Extractor (VA-MDFE) 

This section describes the visually attentive multi-domain feature extractor of the proposed 

model. Specifically, a baseline model aided with visual attention extracts features from the 

input image's RGB, edge and depth domain.  

The design proposed in [178] serves as the foundational architecture in this research work. 

The system promotes the reuse of features by allowing a layer to access feature maps from all 

preceding levels, hence enhancing the overall flow of information throughout the network., as 

shown in Eq. 26: 

  𝔶𝐿 = ∅𝐿([𝔶0, 𝔶1, 𝔶2, 𝔶3……𝔶𝐿−1])                  (26) 

The baseline contains four dense blocks and three transition blocks. The last two dense 

blocks and transition blocks are discarded for computational efficiency. 
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Fig. 35 The structure of the proposed splice localization model.  

 Each of the two remaining dense blocks of this baseline is appended with a visual attention 

layer [102] that employs a three-branch design using a 'rotational' module to detect distinct 

elements in three different orientations. This approach ensures efficient computation with a 

minimal parameter count of just 300.Two branches handle the input of shape 𝒳 ∈ ℝ𝐻×𝑊×𝐶 

and employ a distinct Z-pool mechanism to extract important channel characteristics along the 

height 𝐻 and 𝑊 dimensions. Meanwhile, the a traditional spatial attention is computed in the 

third branch. Three instances of VA-MDFE is used to create a three-branch architecture for 

multi-domain feature extraction as shown in Fig. 35. The three input domains are RGB, edge 

and depth. 

4.3.2.2 Visually Attentive Downsampler (VA-DS) 

The proposed model contains a novel "visually attentive downsampler" (VA-DS). VA-DS 

is responsible for aggregating features from each domain. VA-DS has two stages namely 

'merge' and 'downsample'. The following equation describes the operations of VA-DS: 

𝑓𝑑𝑜𝑤𝑛 = 𝒫(𝒮𝓆(𝒱𝒜(ℳ(𝑓𝑖)))                  (27) 

Here 𝑓𝑖 refers to the input features from each of the three domains. ℳ(. ) stands for the merge 

operation and it is achieved by concatenating features along the channel dimension. 𝒱𝒜(. ) 

refers to the visual attention layer applied after merging to highlight important regions within 

the features fused from multiple domains. 𝒮𝓆(. ) means 'squeeze' operation, which reduces the 
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number of channels via 1 × 1 convolution. 𝒫(. ) is the pool operation to reduce the spatial 

resolution of features. 

4.3.2.3 Visually Attentive Multi-Receptive Field Upsampler (VA-MRFU) 

The proposed model contains a novel "visually attentive multi-receptive field upsampler" 

(VA-MRFU). VA-MRFU is responsible for upsampling the multi-domain features extracted 

from VA-MDFE. The following equation can describe this module: 

 𝑓𝑢𝑝,𝑖 = 𝒱𝒜(𝒜𝒮𝒫𝒫(ℛℯ(ℬ𝒩(𝒯𝒞(𝑓𝑚𝑢𝑙𝑡𝑖)))                 (28) 

Here 𝑓𝑢𝑝,𝑖 are the upsampled features from one VA-MRFU module. 𝑓𝑚𝑢𝑙𝑡𝑖 represents the multi-

domain features extracted from VA-MDFE. 𝒯𝒞(. ) stands for transpose convolution with 

kernel size and stride taken as 2. ℬ𝒩(. ) and ℛℯ(. ) represent batch normalization and ReLU 

activation, respectively.  

The multi-receptive field mechanism has been implemented via the atrous spatial pyramid 

pooling module represented here as 𝒜𝒮𝒫𝒫(. ). Specifically, it is a three-branch architecture 

that performs convolution over the input with varying receptive fields. This is achieved by 

varying the 'dilation' parameter of the convolution operation to change the receptive fields 

without increasing the computational cost. Dilation rates of 2, 3 and 4 are used in this 

experiment in each VA-MRFU module.  

Finally, 𝒱𝒜(. ) represents the attention layer similar to the ones used in the above modules. 

4.3.3 Experimental Setup 

This part outlines the specific experimental parameters employed in this study to assess the 

efficacy of the proposed approach. 

4.3.3.1 Dataset 

The CASIA v2.0 is a challenging image tampering dataset containing 7491 original and 

5123 tampered images [181]. The manipulated images are created through various techniques 

like copy-move, splicing, and removal. The manipulated images aim to simulate real-world 

tampering scenarios, providing researchers with comprehensive data to develop and evaluate 

algorithms for detecting and analyzing image forgeries. 
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4.3.3.2 Preprocessing, Hyperparameters, Hardware & Loss Function 

All images are resized to the resolution of 256 × 256. Each pixel value is normalized to the 

range of [0,1].  

All experiments are run for 20 epochs. Adam optimizer is used for weight updation. The 

learning rate is initialized to 0.0001 and is decayed linearly by 10% after every epoch.  

Two 24GB NVIDIA RTX A5000 GPUs are run in parallel for this experiment.  

The 'focal loss' from [208] has been used to train the proposed model. This loss is ideally 

suited for the background-foreground class imbalance problem in object detection scenarios. 

4.3.3.3 Evaluation Metrics 

The following metrics have been to measure the localization capabilities of the proposed 

model.  

The Intersection over Union (IoU) quantifies the degree of overlap between the predicted 

and ground truth masks by calculating the ratio of the intersection area to the union area of 

these areas. Higher iou scores suggest superior alignment and accuracy in localization tasks, 

where a value of 1 signifies complete overlap. 

Pixel-level accuracy measures the correctness of localised image modifications by 

determining the proportion of properly identified pixels out of the total number of pixels in a 

picture. Greater pixel-level accuracy ratings suggest more alignment and precision in localised 

alterations. 

Pixel-level F1 score is a quantitative measure employed to assess the precision and memory 

of localised picture alterations at the individual pixel level. The F1 score quantifies the trade-

off between correctly identified manipulated pixels (true positives) and the accuracy of the 

localised manipulation compared to the ground truth annotations. Higher F1 scores indicate 

better overall accuracy in capturing manipulated regions.  

Pixel-level AUC, also known as Area Under the Curve, is a quantitative metric utilised to 

evaluate the effectiveness of detecting localised image modification at different thresholds. It 

assesses the balance between the rate of correctly identified manipulated areas and the rate of 

incorrectly identified manipulated regions at the individual pixel level. A greater pixel-level 

AUC signifies superior differentiation between manipulated and non-manipulated areas, 

demonstrating the efficacy of the detection system. 
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4.3.4 Experimental Results & Analysis 

This section presents the experimental results obtained for the proposed model on the 

benchmark datasets. 

4.3.4.1 Performance on Benchmark Dataset CASIA v2.0 

Fig. 36 presents the performance on the CASIA v2.0 dataset in terms of the IoU, pixel 

accuracy, pixel F1 and pixel AUC scores. The proposed model achieves excellent scores, 

highlighting its strong localization capability. 

 

Fig. 36 Performance of the proposed model on CASIA v2.0 dataset. 

4.3.4.2 Comparison Against the State-of-the-Arts 

Table XXXII compares the proposed model against the existing state-of-art methods. The 

proposed model easily outperforms other methods, demonstrating its superiority. 

Table XXXII Comparison of the Proposed Model against existing state-of-the-art methods. 

Methods IoU Pixel F1 Pixel AUC 

Zhang et al. [191] 0.7139 0.7653 - 

Sun et al. [192] 0.5157 0.6805 - 

Huang et al. [209] - 0.6100 0.749 

Nazir et al. [210] - 0.8469 - 

Yin et al. [211] - 0.5840 0.8950 

RRU-Net [62] 0.4752 0.5333 - 

ManTra-Net [194] 0.1261 0.2009 - 

Chen et al. [199] 0.4386 0.6097 - 

Proposed Model 0.8510 0.9195 0.8989 

4.3.4.3 Qualitative Analysis 

This section presents a visual comparison of the forgery masks predicted by the proposed 

model.  
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Fig. 37 A comparison of the actual and predicted masks from the proposed model. 

Fig. 37 shows that the proposed splice localization model can locate the region of 

manipulation with precision. 

4.3.4.4 Ablation Study 

This section presents an ablation study of the proposed model. Specifically, each of the 

individual domains are evaluated separately. This means that the proposed model is compared 

against single domain feature extractors with RGB, edge and depth images as input. 

Table XXXIII Comparison of single-domain vs the proposed multi-domain model. 

Methods IoU Pixel Accuracy Pixel F1 Pixel AUC 

RGB Only 0.5494 0.7245 0.6201 0.637 

Edge Only 0.5164 0.614 0.652 0.5497 

Depth Only 0.4633 0.6681 0.6332 0.5804 

Proposed Model 0.851 0.851 0.9195 0.8989 

Table XXXIII presents the performance of single-domain approaches against the proposed 

model. Specifically, each domain from the RGB, edge and depth is used as an individual feature 

extractor in the single domain models. 
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Fig. 38 A visual comparison of single domain (RGB, edge and depth) against the proposed multi-domain feature 

extractor. 

Fig. 38 visually compares the ablation study conducted where single domain architectures 

are compared against the proposed model. The proposed model (pink) outperforms the 

individual domains of RGB (blue), edge (orange) and depth (green) across all metrics, namely 

IoU, pixel accuracy, pixel F1 and pixel AUC. This clearly states the benefit of having a multi-

domain feature extractor. 

4.3.5 Conclusion 

In this research work, a novel image splice localization network is proposed. The proposed 

model contains a novel "visually attentive multi-domain feature extractor" that extracts 

attentional features from the RGB, edge and depth domain. A novel "visually attentive multi-

receptive field upsampler" is responsible for the upsampling of features using multiple 

receptive field-based convolution operation. Experimental results on the CASIA v2.0 public 

benchmark dataset prove the potency of the proposed model as it easily beats the existing 

research approaches of splice localization. 

4.4 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• Proposed a novel image splice detection dataset, BiometricLab-DTU Splice dataset 

having spliced samples generated from Python code and Adobe Photoshop software. 
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• Proposed a novel, light-weight dual-branch splice detection framework having a spatial 

and compression branch. The spatial branch extracts features from the RGB domain, 

while the compression branch highlights the irregularities in DCT coefficients caused 

by the splice operation in jpg images. 

• Proposed a novel Visually Attentive Splice Localization Network with Multi-Domain 

Feature Extractor and Multi-Receptive Field Upsampler. It contains a novel “visuall 

attentive multi-domain feature extractor” (VA-MDFE), “visually attentive 

downsampler” (VA-DS) and “visually attentive multi-receptive field upsampler” (VA-

MRFU). VA-MDFE extracts attentional features from the RGB, edge and depth domain 

of the input image. VA-DS is responsible for fusing multi-domain features and 

downsampling them. VA-MRFU upsamples the features using convolution operation 

with multiple receptive fields. 

The following research works form the basis of this chapter: 

❖ A. Yadav and D. K. Vishwakarma, "Toward effective image forensics via a novel 

computationally efficient framework and a new image splice dataset," Signal, Image 

and Video Processing, 2024. 

❖ A. Yadav and D. K. Vishwakarma, "A Visually Attentive Splice Localization Network 

with Multi-Domain Feature Extractor and Multi-Receptive Field Upsampler." Under 

Review in IEEE Signal Processing Letters, (https://arxiv.org/abs/2401.06995, 

2024). 

 

https://arxiv.org/abs/2401.06995
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Chapter 5: Role of Visual Attention in Manipulation 

Detection 

5.1 Scope of this Chapter 

This chapter studies the tradeoff between performance and computational complexity for 

different visual attention mechanisms in a face manipulation detection model. Specifically, five 

recently proposed visual attention models are integrated with a baseline deep learning model, 

and their relative performance and computational costs are evaluated. Experimental results 

clearly indicate that an increase in the computational cost of the visual attention mechanism 

does not necessarily predict a similar increase in the performance in detecting facial 

manipulation.  

5.2 Investigating the Impact of Visual Attention Models in Face Forgery 

Detection 

5.2.1 Abstract 

With the recent rise of realistic face manipulation methods, building robust face tampering 

detection methods has become more important than ever before. Visual attention has played an 

important role in highlighting discriminative regions within input, which is important for 

making accurate predictions. This research work presents a comparative study of several 

recently proposed visual attention models for the problem of face forgery detection. 

Specifically, five visual attention models, namely, coordinate, selective kernel, triplet, CoT, 

and shuffle attention, have been tested by integrating with a baseline deep learning model. The 

modified visually attentive architectures are trained and tested on the popular public benchmark 

dataset FaceForensics++. The experimental results achieved by different attention approaches 

are compared. Additionally, the computational costs involved in each type of attention have 

also been discussed specifying the accuracy and computation tradeoff. Experimental results 

prove that Triplet Attention performs best by achieving accuracy scores of 0.9543 and 0.7190 

on the DF and NT categories of the FF++ dataset. Triplet attention is also extremely lightweight 

with only 1200 trainable parameters compared to the other attention modules under study. 

5.2.2 Methodology 
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This section describes several attention modules and the baseline model used to evaluate 

them.  

5.2.2.1 Shuffle Attention 

Shuffle attention [104] proposes an efficient way to fuse attention mechanisms across the 

spatial and channel dimensions of features without increasing the computational cost. 

Specifically, a given input 𝒳 ∈ ℝ𝐻×𝑊×𝐶, is sub-divided into 𝒢 sub-groups along the channel 

dimension having a shape 𝒳𝑘 ∈ ℝ
𝐻×𝑊×𝐶 𝒢⁄ . Each 𝒳𝑘 is further sub-divided into 2-branches 

having shape 𝐻 ×𝑊 × 𝐶 2𝒢⁄ . The two branches compute spatial and channel attention 

respectively and the reduced computation is enforced by the subdivision of input along the 

channel dimension as shown in Fig. 39. 

 

Fig. 39 Structure of Shuffle Attention 

5.2.2.2 Selective Kernel (SK) Attention 

Selective Kernel Attention [101] is a three-stage method that uses multiple-sized 

convolutional kernels for processing inputs with adaptive receptive fields. Specifically, it uses 

3 × 3 and 5 × 5 kernels to extract multi-scale features in the ‘split’ stage. For input 𝒳 ∈

ℝ𝐻
′×𝑊′×𝐶′ the method uses two convolutional kernels to produce (𝒰̃ ∈ ℝ𝐻×𝑊×𝐶) and 

(𝒰̂ ∈ ℝ𝐻×𝑊×𝐶) feature maps. The ‘fuse’ stage fuses discriminative information from each 

receptive field branch using the summation operation and followed by global average pooling 

𝒢𝒫(. ) along the channel dimension as given by Eq. 29: 

𝒰 = 𝒢𝒫(𝒰̃ + 𝒰̂)                    (29) 
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Finally, the ‘select’ operation employs the soft attention mechanism across feature channels 

to highlight important channels. 

5.2.2.3 CoT Attention 

CoT attention [103] or Contextual Transformer attention improves the transformer-based 

self-attention mechanism by searching for important modeling dependencies among 

neighboring keys. Specifically, the proposed attention model combines self-attention learning 

with contextual feature mining by finding relevant relationships among neighboring keys for 

each query-key pair. 

For input 𝒳 ∈ ℝ𝐻×𝑊×𝐶 and keys (𝒦 = 𝒳), query (𝒬 = 𝒳) and value (𝒱 = 𝒳𝒲𝑣), the 

CoT block uses 𝓀 × 𝓀 grouped convolution to learn contextual keys (𝒦1 ∈ ℝ𝐻×𝑊×𝐶) 

representing the relationship of neighboring keys. Finally, the attention matrix is derived by Eq 

30.: 

𝒜 = [𝒦1, 𝒬]𝒲𝜃𝒲𝛿                    (30) 

The final attentional feature maps are given by (𝒦2) by Eq. 31: 

𝒦2 = 𝒱 ⊛𝒜                     (31) 

5.2.2.4 Triplet Attention 

Triplet attention [102] is a three-branch structure that uses the ‘rotation’ operation to capture 

discriminative regions within input in three directions while keeping minimal computation 

overheads. The triplet attention contains three branches. Two branches are responsible for 

processing the input of shape 𝒳 ∈ ℝ𝐻×𝑊×𝐶 and using a novel Z-pool layer to mine important 

channel features along the 𝐻 and 𝑊 dimension while the third branch works like a traditional 

spatial attention module.  

The highlight of the triplet attention module is that it is extremely lightweight and its 

computation does not increase with increased input dimensions. 

5.2.2.5 Coordinate Attention 

Coordinate Attention [100] is a novel channel attention mechanism that captures long-range 

feature dependencies along one spatial dimension and also preserves exact positional encodings 

along another spatial dimension. Unlike common channel attention mechanisms that use 2D 

global pooling, coordinate attention uses two 1D kernels. For an input 𝒳 ∈ ℝ𝐻×𝑊×𝐶 , two 1D 
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pooling kernels of shape ℝ𝐻×1 and ℝ1×𝑊 are used to encode discriminative features along the 

height and width in each channel thereby yielding direction-aware feature maps. 

5.2.2.6 Baseline Architecture 

To perform an effective comparison of the abovementioned attention mechanisms the 

baseline architecture from [155] has been used. Attention layers are attached after each 

bottleneck layer of this architecture. 

5.2.3 Experimental Setup 

This section explains the experimental steps taken to establish the validity of the proposed 

model. 

5.2.3.1 Datasets 

FaceForensics++: The FaceForensics++ (FF++) [111] contains multiple face tampering 

examples such as Deepfakes (DF) [112], FaceSwap (FS) [113], Face2Face (F2F) [114], 

FaceShifter [115] and Neural Textures (NT) [116]. Each manipulation category contains 1000 

videos created from 1000 original samples. Videos are provided in three qualities: raw, high 

(c23) and low (c40) compression. The c23 samples are used in this experiment. In this research 

work, experiments are conducted on the DF and NT categories of FF++ dataset.  

5.2.3.2 Classification Metrics 

The classification metrics used in this experiment are given in the table below. 

Table XXXIV Classification metrics used in this experiment 

Metric Formula Range 

Accuracy (ACC) 
𝕋ℙ + 𝕋ℕ

𝕋ℙ + 𝕋ℕ + 𝔽ℙ + 𝔽ℕ
 [0,1] 

Precision (P)  
𝕋ℙ

𝕋ℙ + 𝔽ℙ
 [0,1] 

Recall (R) 
𝕋ℙ

𝕋ℙ + 𝔽ℕ
 [0,1] 

F1 score (F1) 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 [0,1] 

Area Under Curve 

(AUC)  
- [0,1] 

Mathews Correlation 

Coefficient (MCC) 

𝕋ℙ ∗ 𝕋ℕ − 𝔽ℙ ∗ 𝔽ℕ

√(𝕋ℙ + 𝔽ℙ)(𝕋ℙ + 𝔽ℕ)(𝕋ℕ + 𝔽ℙ)(𝕋ℕ + 𝔽ℕ)
 [-1,1] 

 

These metrics are accuracy, precision, recall, F1 score, AUC score and MCC score. 
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5.2.3.3 Hardware Specifications 

All experiments are executed on two 24 GB NVIDIA A5000 GPUs in parallel. The system 

memory is 128GB. 

5.2.3.4 Preprocessing 

This section describes the preprocessing steps followed in this experiment. 

Face Extraction: Popular deepfake detection algorithms have mostly used the dlib library 

[24, 28, 120] or MTCNN [121, 110, 122] for face detection and extraction. RetinaFace [34] is 

used in this experiment to extract facial images from video frames given its low failure rate 

compared to MTCNN [119]. 

Resizing, Normalization and Data Augmentation: Facial images that are cropped from video 

frames are resized to 128 × 128. Pixel values are normalized to the range [0,1]. Facial images 

are flipped randomly in both vertical and horizontal directions with a flipping probability of 

0.5. 

5.2.3.5 Hyperparameters and Training Conditions 

All experiments are run for 30 epochs. The batch size is set to 4. The Adam optimizer is 

used to update the model weights. The initial learning rate is set to 0.01. A linear learning rate 

decay is employed that reduces the learning rate by 10% after every 2 epochs.  

5.2.3.6 Model Weight Initialization 

Deep models when initialized with pre-trained ImageNet weights have performed better on 

classification tasks as compared to random weight initialization. Hence, the model weights in 

this experiment are initialized with ImageNet pre-trained weights provided on the Pytorch 

framework website. 

5.2.3.7 System & Software Requirements 

The proposed model requires at least 16GB memory of NVIDIA graphic card. The 

secondary storage required for storage of the FF++ dataset is 10GB. All coding experiments 

are conducted in the Python language. PyTorch framework is used to design and train the neural 

network. Jupyter Notebook IDE has been used to write the code. 

5.2.4 Experimental Results & Analysis 
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This section presents the results obtained by each type of visual attention mechansims under 

study in this experiment. 

5.2.4.1 Performance Analysis of Visual Attention Models 

Table XXXV shows the performance of each attention mechanism on the DF (FF++) 

dataset. The triplet attention mechanism performs best with 0.9543 accuracy and 0.9874 AUC 

score. The shuffle attention achieves the highest Recall score and Coordinate attention is best 

in terms of the F1 score. 

Table XXXV Results of each attention module on the DF (FF++) dataset.  

Attention Modules ACC P R F1 AUC MCC 

Coordinate 0.9408 0.9167 0.9589 0.9373 0.9842 0.8822 

Selective Kernel 0.8901 0.9263 0.8532 0.8882 0.9649 0.7831 

Triplet 0.9543 0.9415 0.9566 0.9490 0.9874 0.9077 

CoT 0.9214 0.9224 0.9015 0.9118 0.9717 0.8411 

Shuffle 0.8480 0.7656 0.9798 0.8596 0.9560 0.7248 

Table XXXVI presents the performance of the various attention mechanisms on the NT 

(FF++) dataset.  Here again, Triplet attention has the best scores against other attention 

mechanisms. Coordinate attention gets the highest precision score of 0.7511 while triplet 

attention scores highest on all other metrics. 

Table XXXVI Results of each attention module on the NT (FF++) dataset.  

Attention Modules ACC P R F1 AUC MCC 

Coordinate 0.7104 0.7511 0.6763 0.7112 0.7917 0.4248 

Selective Kernel 0.6479 0.6815 0.6269 0.6531 0.7008 0.2980 

Triplet 0.7190 0.6486 0.9347 0.7658 0.8592 0.4897 

CoT 0.6409 0.5952 0.8579 0.7028 0.7548 0.3165 

Shuffle 0.6556 0.6149 0.7747 0.6856 0.7093 0.3262 

The NT dataset is more challenging and hence the scores achieved are lower than those 

achieved on the DF dataset. 

Fig. 40 and Fig. 41 present the comparison of accuracy scores of various attention 

mechanisms on the DF and NT datasets of FF++ respectively. In both cases, Triplet Attention 

outperforms all other attention mechanisms while coordinate attention comes second in terms 

of performance.  

Fig. 42 and Fig. 43 demonstrate the AUC-ROC curve for attention mechanisms on the DF 

and NT datasets of FF++ respectively.  
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Fig. 40 Accuracy comparison of attention modules on the DF (FF++) dataset. 

 

Fig. 41 Accuracy comparison of attention modules on the NT (FF++) dataset 

 

Fig. 42 AUC curves for various attention modules on the DF (FF++) dataset. 
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Fig. 43 AUC curves for various attention modules on the NT (FF++) dataset 

The Triplet attention achieves the highest AUC score of 0.9874 on the DF dataset and 0.8592 

on the NT dataset, clearly stating that the model is highly confident in its predictions. 

5.2.4.2 Complexity Analysis of Visual Attention Models 

This section presents a discussion of the computational overheads involved in implementing 

each attention mechanism. As discussed earlier, each attention mechanism has been integrated 

by using four attention layers, one for each skip connection block of the baseline model. 

Fig. 44 presents a comparison of the number of parameters for each type of attention 

mechanism. The baseline model without any attention layers has 23.5 million parameters (blue 

bar). Triplet, Coordinate and Shuffle attention layers (green bars) are extremely lightweight 

having only 530280, 1200 and 1440 parameters respectively. Selective Kernel (SK) and CoT 

attention (green bars) are computationally heavy having 61.3 million and 48.7 million 

parameters respectively. 
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Fig. 44 Size comparison of attention mechanisms in terms of th number of parameters. 

Fig. 45 shows the percentage distribution of parameters for each type of attention 

mechanism. The Coordinate, Triplet and Shuffle attention are lightweight occupying only 

2.2056%, 0.0051% and 0.0061% of total model parameters respectively. The Selective 

Kernel attention and CoT attention are heavier attention modules having 72.2784% and 

67.4835% of the total model parameters. 

5.2.5 Conclusion 

This experiment compares the recently proposed visual attention models for face forgery 

detection. Specifically, a baseline CNN has been enhanced with several recently proposed 

attention modules and their impact has been studied. The study has been conducted regarding 

the performance on the FaceForensics++ dataset. The computational complexity of different 

attention mechanisms has also been analyzed and compared visually. It is clear from the 

conducted experiment that different attention modules employ different computational 

overheads to existing CNN parameters to highlight important spatial regions of input. 
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Fig. 45 The parameter distribution of each attention mechanisms, a) coordinate attention b) selective kernel 

attention c) triplet attention d) CoT attention e) shuffle attention. 
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detection. It achieves a high accuracy of 0.9543 on the DF dataset while only adding 1200 

additional trainable parameters to the ResNet architecture. Other attention models, such as CoT 

and Selective Kernel Attention, are computationally expensive as they add many parameters 

but do not significantly boost performance compared to the Triplet Attention mechanism. 

5.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• Studied the role of visual attention models in face forgery detection. 

• A baseline CNN is combined with five recently proposed attention mechanisms, 

namely, coordinate, selective kernel, triplet, CoT, and shuffle attention.  

• The relative performance of these five attention models is compared. The performance 

vs computational cost tradeoff for each of these attention mechanisms is presented. 

The following research works form the basis of this chapter: 

❖ A. Yadav and D. K. Vishwakarma, "Investigating the Impact of Visual Attention 

Models in Face Forgery Detection", in International Conference on Applied 

Intelligence and Sustainable Computing (ICAISC), Dharwad, Karnataka, 2023.  
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Chapter 6: Conclusion & Future Scope 

6.1 Conclusion 

This chapter concludes the research work done in this thesis. Overall, four novel deep 

learning-based architectures are proposed for manipulation detection in multimedia content. 

The first two models are dedicated to the problem of face manipulation detection. The other 

two architectures detect and localize image splice manipulation. A novel image splice dataset 

is also proposed. The details are as follows: 

• A novel face manipulation detection model, MRT-Net, is proposed to combine the 

manipulation residual and textural features extracted from its dual-branch design to 

predict face forgery. It contains an auto-adaptive weighting mechanism that allows it to 

dynamically choose the best proportion of the two features for the final prediction. 

Experimental results on the FF++, DFDC, and CelebDF datasets clearly establish the 

superiority of the proposed model. 

• Another novel deepfake detection network, called Face-NeSt, is proposed. Face-NeSt 

leverages multi-scale features extracted from different depths of a standard baseline 

convolutional neural network. It contains a novel adaptively weighted multi-scale 

attentional module that inputs four scales of features at different scales, applies visual 

attention, and aggregates them together according to their degree of relevance in the 

final prediction. Experimental results on the FF++, DFDC and CelebDF datasets show 

that Face-NeSt outperforms the existing deepfake detection models. 

• A novel image splice detection dataset has been proposed. It contains spliced samples 

generated from Python code as well as the Adobe Photoshop software. A novel dual-

branch splice detection framework is proposed to detect splicing in images. It contains 

a spatial branch that leverages transfer learning to detect spatial clues of manipulation 

without adding any significant computational costs. It contains a compression branch 

that tracks inconsistencies in the DCT coefficients of JPG images caused by the splice 

manipulation operation. Experimental results establish the benefits of the proposed 

framework and the proposed dataset. 

• A novel splice localization network is proposed to find regions of forgery within 

images. A "visually attentive multi-domain feature extractor" (VA-MDFE) extracts 

attentional features from the RGB, edge and depth domains. Next, a "visually attentive 
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downsampler" (VA-DS) is responsible for fusing and downsampling the multi-domain 

features. Finally, a novel "visually attentive multi-receptive field upsampler" (VA-

MRFU) module employs multiple receptive field-based convolutions to upsample 

attentional features by focussing on different information scales. Experimental results 

conducted on the public benchmark dataset CASIA v2.0 prove the potency of the 

proposed model. 

• The role of visual attention models is studied in detecting face forgery. Five recently 

proposed visual attention models are integrated with a baseline convolutional neural 

network. The performance boost is attained due to the study of each attention 

mechanism. The computational cost added due to the integration of each type of 

attention layer is also presented. Finally, a tradeoff between the performance boost and 

computational cost overhead is presented for each type of visual attention in this study. 

6.2 Future Scope 

In recent years, extensive research has been conducted to detect manipulation in multimedia 

content. While the performance has consistently improved in detecting or localizing these 

manipulations, several promising research directions need to be addressed. 

• Explainable AI: Deep learning has mostly been used as a black-box tool where the 

model predicts or localizes the manipulation. However, interpreting why the model 

predicts the given output remains a mystery. Some tools help to understand the relative 

significance of the learned weights. These include plotting the class activation maps 

(CAMs). More research work needs to be done in this direction to improve the 

explainability of deep models. 

• Robustness to Adversarial Attacks: While the performance of deep-learning models 

has consistently increased in detecting manipulation, recent studies indicate that these 

models are highly prone to adversarial attacks. Introducing noise in the input pixel 

values can easily vary the predictions of a trained model. Improving the robustness of 

deep-learning models against adversarial attacks is a crucial future work direction. 

• Deployment: While the theoretical research has gained leaps and bounds in detecting 

manipulation, deploying these deep-learning models remains a challenge, given their 

high computational costs. More research work needs to be dedicated towards 

deployment issues for the end-user in the form of an application or web-based 
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framework. The increasing capacity of recent hardware facilitates the use of such heavy 

computational models on mobile devices. 

• Multi-modal Approaches: Multi-modal approaches have performed better than 

single-modality models due to the complementary feature of learning from multiple 

modalities. However, this comes at the additional computational cost of having multi-

branch architectures with more parameters than a single-branch model. More research 

needs to be done to consistently use the benefits of the multi-modal approaches without 

significantly adding to the associated computational cost. 
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