Enhanced sEMG Signals Process with Two-stream
CNN on Gesture Classification

A Thesis Submitted
In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY
in
SIGNAL PROCESSING AND DIGITAL
DESIGN
by

Sudhir Kumar
(Roll No. 2K22/SPD/09)

Under the Supervision of
Dr. Rajesh Birok
Delhi Technological University

J<E~
s\DeLTECH

f;
=
"; &
=

“HOLOGIGH

Department of Electronics and Communication Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

May, 2024

3% DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

By 5\. o,
e~
*\ DELTECH) *

s

CANDIDATE’S DECLARATION

I Sudhir Kumar, Roll No — 2K22/SPD/09 student of M.Tech (Signal Processing and Digital
Design) hereby certify that the work which is being presented in the thesis entitled “ Enhanced
sEMG Signals Process with Two-stream CNN on Gesture Classification” in partial fulfillment
of the requirements for the award of the Degree of Master of Technology, submitted in the
Department of Electronics and Communication Engineering, Delhi Technological University
is an authentic record of my work carried out during the period from 2022 to 2024 under the

supervision of. Dr.Rajesh Birok.

The matter presented in the thesis has not been submitted by me for the award of any other

degree of this or any other Institute.

Candidate's Signature

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE SUPERVISOR

I certified that SUDHIR KUMAR (2K22/SPD/09) has carried out their search work
presented in this thesis “Enhanced sEMG Signals Process with Two-stream CNN on
Gesture Classification” entitled for the award of Master of Technology from the
Department of Electronics and Communication Engineering, Delhi Technological
University, Delhi, under my supervision. The thesis embodies results of original work,
and studies are carried out by the student himself and the contents of the thesis do not
form the basis for the award of any other degree to the candidate or anybody else from this

or any other University/Institution.

Dr. Rajesh Birok
Associate Professor

Place: Department of Electronics & Communication Engineering
Date: Delhi Technological University

ABSTRACT

sEMG signals show huge potential in implementing control systems of mechatronics devices,
and small muscle movements can generate enough sEMG signals to achieve desired control
operations. Traditional methods on the sEMG signals process do not robustly decipher
important information to distinguish subtle differences in gesture classification. This paper
applied a novel deep learning method, a two-stream CNN architecture called Mario CNN, to
process NinaPro DB1 data on gesture classification and achieved higher accuracy than a single
stream CNN.

ACKNOWLEDGEMENT

I would like to express my deep sense of gratitude to my highly respected and esteemed guide
Dr. Rajesh Birok for suggesting the topic of my Major project and for giving me complete
freedom and flexibility to work on this topic. He has been very encouraging and motivating
and the intensity of encouragement has always increased with time. Without her constant
support and guidance, I would not have been able to complete this work. We extend my sincere
thanks to all my friends who have patiently helped me directly or indirectly in accomplishing
this work successfully.

Sudhir Kumar
(2K22/SPD/09)

M.Tech (Signal Processing & Digital Design)

TABLE OF CONTENTS

PARTICULARS PAGE NO.

CANDIDATE DECLARATION
CERTIFICATE BY THE SUPERVISOR
ABSTRACT

ACKNOWLEDGMENT

LIST OF TABLE OF CONTESTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATION

CHAPTER 1: INTRODUCTION

CHAPTER 2: LITERATURE SURVEY

CHAPTER 3: METHODS AND TECHNIQUES
3.1 CONVOLUTIONAL NEURAL NETWORK (CNN)
3.1.1 ADVANTAGES
3.1.2 DISADVANTAGE

CHAPTER 4: PROPOSED METHODOLOGY
4.1 TWO-STREAM CONVOLUTIONAL NEURAL NETWORK
4.2 ADVANTAGE

4.3 DISADVANTAGE

CHAPTER S: EXPERIMENTAL RESULTS
5.1 DATASET
5.2 RESULTS

CHAPTER 6: CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT
6.1 CONCLUSION
6.2 SOCIAL IMPACT AND FUTURE SCOPE

ii
iii
v
%
Vi
viii

Viiix

© 0 e N o U»n w»n w =

e e e e T S
A W W= = O

vi

vii

REFERENCES 17
APPENDICES 19
LIST OF PUBLICATION AND THEIR PROOFS 59

viii

LIST OF FIGURES

Figure 1.1:-sEMG Signals Example for three gestures.................c.oooeiiiiinnn 1
Figure 1.2:- Mario and Luigi run in a parallel manner......................c..oo 2
Figure 3.1:-5-Layer CNN Architecture Partially based on the tunning5
Figure 3.2:-Multi-Stream Convolutional Neural Network(CNN)..............c.c.oeee. 6
Figure 4.1:-Two-Steam CNN ...t e, 9
Figure 5.1:-Preprocessed dataset dimension...............coevevuiuiiiiniiiiiniiinennn 12
Figure 5.2:-Train/Test accuracy as a function of the number of streams................ 13

Figure 6.1:-Changed sensor positions for hardware improvement........................ 15

LIST OF TABLES

Table 1.1:- The details of DB1-S1 data.............coooiiiii 12
Table 2.1: Performance Comparison between single-stream CNN and Mario CNN

fOr 200 EPOChS. . .o 13
Table 3.1: Loss and Accuracy Plots for Different Number of Streams........................ 14

CNN:

SsEMG:

DNN:

RNN:

TD:

FD:

SGD:

SVM:

LSTM:

LIST OF ABBREVIATIONS

Convolutional Neural Network.
Surface Electromyographic.
Deep Neural Network.
Recurrent Neural Network
Time Domain

Frequency Domain

Stochastic Gradient Descent
Support Vector Machine

Long Short-Term Memory

CHAPTER 1

INTRODUCTION

One way to detect the electrical activity produced by muscle impulses is with surface
electromyography (SEMG).Figure 1 shows. The amplitude patch electrodes can only detect a
potential difference of around +5 mV from the skin, even though the generated potential
difference typically falls within the range of -90 mV to 30 mV. SEMG has several applications
in the execution of mechatronics device control systems, and particularly the execution of fine
motor control to accomplish the required control activities using sufficient signal generation.
The research indicates that SEMG is frequently combined with interference waves of both high
and very low frequencies (near DC), The effective SEMG signal frequency range is 10-500
Hz[1]. Hence, the signal picked up from High-pass filtering and other signal conditioning
procedures are necessary for the patch electrode,(the process of straightening), low-pass
filtering, and high-pass amplification. Although surface electromyography (sEMG) signals
exhibit significant potential, their applications are now in a relatively nascent stage of
development. The present challenges encompass the presence of monotonous signal sources,
the existence of equivocal classification, and the interference caused by noise in non-ideal
settings. The accuracy of measurements can be significantly influenced by several factors, such
as electrode changes, limb posture, and muscle exhaustion It is important to mention that in
this study, the existence of inconsistent labels can generate similar signals, however with
different intensities. It is necessary to recognize that traditional machine learning classification
approaches may not efficiently extract essential information. classification, and sleep stage
classification. This paper studied the neural networks from related papers and applied a two-
stream CNN to process SEMG signals on gesture recognition.

CHI1
CH2
CH3
CH4
CHS
CH6
CH7 S rrarip -

CHS

Figure 1.1: sEMG signals example for three gestures (one for each column)[2]

While sEMG signals show huge potential, the applications are relatively immature. Current
problems include monotonous signal sources, ambiguous classification, and noise under non-
ideal conditions. The measurements can be easily affected by many factors like electrode shifts,
limb position, muscle fatigue. Meanwhile, inconsistent labels may have similar signals but with
different amplitudes, and traditional machine learning classification methods do not robustly
decipher important information. Therefore, researchers and scientists in recent years
(especially since 2014) began to apply deep learning methods to process sSEMG signals on
applications, including hand gesture recognition, speech and emotion 1 classification, and sleep
stage classification. This paper studied the networks from related papers and applied a novel
"Mario Brothers" neural network (Mario CNN) to process SEMG signals on gesture recognition

This paper studied the networks from related papers and applied a novel "Mario Brothers"
neural network (Mario CNN) to process SEMG signals on gesture recognition. The name is
inspired by Mario and Luigi, who run towards the same goal in a parallel manner, as shown
in Figure 2.

Figure 1.2: Mario and Ligi run in a parallel manner

CHAPTER 2

LITERATURE SURVEY

Five main deep learning architectures are commonly used in the identification of surface
electromyography (SEMG) signals. The designs encompass deep feedforward neural networks
(DNN),recurrent neural networks (RNN), convolutional neural networks (CNN), autoencoders
(AEs), and deep belief networks (DBN) [3]. Here is a concise overview of the papers we have
read that are pertinent to the current issue. Using Convolutional Neural Networks for Deep
Learning in the Analysis of Electromyography Data: A Useful Tool for Classifying Movement
in Prosthetic Hand Applications The user did not provide any text for rewriting. The NinaPro
dataset was analysed using a modified convolutional neural network (CNN)[4] that was based
on the LeNet architecture proposed by LeCun et al. in 1995. The experimental findings
exhibited a precision of 66.59+6.40 percent on dataset 1.The input data was obtained using
time intervals of 150 milliseconds. The architectural designThe design was split into four
blocks, and each block had a different part: the traditional convolutional layer, the rectified
linear unit [5](a non-linear activation function), the average pooling layer, and the softmax loss.
The model is trained using stochastic methods. Gradient Descent (SGD) and other strategies,
such as modifying the learning rate, utilising normalization, and incorporating data
augmentation, are utilised to improve the accuracy[6]. The results suggest that using
convolutional neural networks leads to higher classification accuracy compared to standard
classification methods.The study named A Deep Neural Network Approach for Classifying
41 Hand and Wrist Movements Using Surface Electromyogram” aims to categorize different
hand and wrist movements by utilizing a surface electromyogram [7]. This paper implemented
DNN on NinaPro-DB5/DB7 and achieved accuracy of 93.87+1.49 %. The stride between each
window was set to be smaller than the window size so as to gain better performance. The noise
threshold T was set to 0.01V for DBS5. The architecture of Deep Neural Network Classifier was
3 hidden layers followed by ReLU and then softmax, which included Adam optimizer, with a
learning rate of 0.005 and decay of 0.00001. The authors adopted batch normalization and 20
% dropout and used a trick called Evaluation metrics in the end. Due to half rest classes in the
datasets, the accuracy needed to 2 be balanced. For multi-class classification, taking the
average of recall values can be generalized as the macro recall.

The current investigation utilized a parallel, multiple-scale convolutional neural network
(CNN) on the NinaProDB2 dataset, leading to enhanced accuracy in comparison to a solitary
CNN. We took surface electromyography (SEMG)[8] data from 12 electrodes and turned it into
sEMG images that are 12x200 pixels, with a sampling rate of 2000 Hz and a time interval of
100 ms. The study discovered a specific set of properties that accurately define surface
electromyography (sEMQG) signals, thus minimizing the complexity of the input for the
classifier. The Convolutional Neural Network (CNN)[9] is characterised by its unique
architecture, which consists of two separate blocks. Block 1 employed a setup comprising five
convolution layers and two maximum pooling layers. On the other hand, Block 2 showed

differences in the first three convolutional layers, where a bigger filter kernel size was used.
Pooling layers were not incorporated into Block 2. The two blocks displayed parallel behaviour
and were determined to be mutually independent during the feature extraction procedure. The
classifier receives the merged outputs from the two blocks.The results suggest that using a
larger kernel filter can result in a slight enhancement in classification accuracy

“A multi-stream convolutional neural network for sSEMG-based gesture recognition in muscle-
computer interface” [10] This paper constructed a multi-stream convolutional neural network
to train the NinaPro dataset and achieved an accuracy of 85.0%. The authors used the divide-
and-conquer classification approach on feature-space, which considered sSEMG signals in each
channel independently and trained them using the same CNN architecture. In the divide stage:
the convolutional neural network was constructed by two convolutional layers (3*3 kernel size)
and two locally-connected layers (64 non-overlapping 2D filters) along with batch
normalization, Relu, and dropout. The network was trained with SGD and tested with cross-
validation. In the conquer stage: all feature maps learned from each CNN were fused into a
unified feature map and sent into fusion networks. Relu followed by batch normalization were
applied after each fully connected layer. The results show that considering sEMG signals
recorded by each channel independently is better than considering sSEMG signals recorded by
all channels as a whole.

CHAPTER 3

METHODS AND TECHNIQUES

3.1 Convolutional Neural Network (CNN)

[11]The models described in the aforementioned studies are applied to distinct datasets, each
with its own experimental objectives and methodologies. Therefore, it is not advisable to
directly compare their performances. Therefore, we first created a simple 5-layer CNN largely
based on the ideas and architecture described in the published research by Atzori, M et al as a
reference. The hyperparameters and layers of the code provided by malele4th on GitHub[12]
were adjusted, resulting in the architecture seen in Figure 2. The architectural design has a total
of seven blocks, with blocks 1 to 5 specifically designed as convolutional layers that use a non-
linear activation function and average pooling. Convolutional layers employ a fixed number of
filters to extract distinctive characteristics from the initial pictures, thereby generating feature
maps. Pooling layers enhance “local translational invariance” by aggregating the
characteristics extracted from regions inside the feature map. In the sixth and seventh blocks
of the model architecture, there are two fully connected layers incorporated, accompanied by
the inclusion of Batch Normalisation and Dropout techniques. Batch Normalisation is a
technique that enhances the stability of the learning process by standardising the distribution
of input data, hence mitigating the issue of overfitting. The act of dropout in machine learning
models serves to mitigate overfitting and enhance the generalisation capabilities of the model.
The softmax classifier ultimately employs the cross-entropy loss function to compute the
probability utilised for classification

N — N\ N N N WA . AW

2 R M |4 m |lu ?

P ot | 1 pory 1 |0 Py 10 POy O ot 7 ez 1
38| a3 s 56| 36 |5 1

Figure 3.1: 5-layer CNN Architecture partially based on the tuning and layers from Atzori, M. et al

Based on the idea presented in the paper [13], as shown in Figure 3, we decided to experiment
with architectures with more streams, called multi-stream Mario CNN, and investigate how the
number of streams affects the performances. To make the dimensions work, the
hyperparameters for the pooling layers are slightly tuned while keeping the other layers the
same as they are in the 2-stream CNN architecture.

MaxPoolinglD ConviD MaxPoo\inghD }]
— I ' ' |
| 64 ! ||
npt 181+4+3] M el —
_ ! ho |
! | | output:
| .
“locollll) | 8 : s
I || 0 '“l =
w8 : 3
54 1 | B s
H % sl |
T || 16
| i
200641 frer
64 :‘ o @
o oo 0
_______________"_“_“;'I | =
Convolutional layers (A0S

Fully connected layers

Figure 3.2: Multi-stream Convolutional Neural Network (CNN)

3.1.1.Advantage of CNN

1. Automatic Feature Extraction:- CNNs can automatically learn and extract relevant
features from raw sEMG signals, eliminating the need for extensive manual feature
engineering. This is particularly useful for complex and high-dimensional data like
SEMG signals.

2. Spatial Hierarchies:- CNNs are adept at capturing spatial hierarchies in the data through
their convolutional layers. For sSEMG signals, this means they can effectively identify
and leverage local dependencies and patterns in the muscle activation signals.

3. Robustness to Noise: The architecture of CNNs, with pooling layers and convolutional
filters, provides a degree of robustness to noise and variability in SEMG signals. This
is crucial given the potential for noise from electrode placement and muscle fatigue in
SEMG recordings.

4. Scalability and Adaptability:- CNNs are scalable and can be adapted to various signal
lengths and dimensionalities. They can also be fine-tuned to specific tasks such as
gesture recognition or muscle activation pattern classification, making them versatile
for different SEMG signal analysis applications.

5.

End-to-End Learning:- CNNs support end-to-end learning, where the model can be
trained directly on raw or minimally preprocessed SEMG signals. This simplifies the
pipeline and potentially improves performance by leveraging raw signal information.

3.1.2.Disadvantage of CNN

1.

High Computational Cost:-CNNs are computationally intensive, requiring significant
processing power and memory, especially for large datasets like Ninapro DB1. Training
deep networks can be time-consuming and resource-demanding, often necessitating
high-end GPUs.

Data Preprocessing Requirements:-sSEMG signals require extensive preprocessing,
such as noise reduction and signal normalization, to ensure that the CNN can learn
meaningful features. Poor preprocessing can lead to suboptimal performance.
3.Sensitivity to Hyperparameters:-The performance of CNNs is highly sensitive to the
choice of hyperparameters (e.g., learning rate, number of layers, filter sizes). Finding
the optimal hyperparameters typically requires extensive experimentation and fine-
tuning.

Overfitting Risk:-Due to the complexity and high capacity of CNNs, there is a
significant risk of overfitting, especially with limited data or when the training set is
not sufficiently representative of the test conditions. This makes the model less
generalizable to new, unseen data.

Interpretability:-CNNs operate as "black boxes," making it difficult to interpret the
learned features and understand the decision-making process. This lack of transparency
can be problematic in biomedical applications where understanding the basis of a
decision is crucial.

Feature Engineering Dependence:-While CNNs can automatically extract features from
raw data, the quality of these features highly depends on the architecture design.
Inadequate architecture might fail to capture important signal characteristics, leading to
poor performance.

Dependency on Large Training Data:-CNNs generally perform better with large
amounts of labeled data. For the Ninapro DB1 dataset, the size and quality of the labeled
data directly influence the CNN’s performance. Insufficient data can lead to poor model
training and low accuracy.

Challenge with Temporal Dependencies:-sSEMG signals have temporal dependencies
that can be challenging for standard CNNs to capture effectively. Although there are
techniques to address this, such as using temporal convolution layers or combining
CNNs with recurrent layers (RNNs, LSTMs), they add complexity to the model.

Domain Expertise Requirement:-Designing an effective CNN model for sSEMG analysis
requires domain expertise in both deep learning and biomedical signal processing. Lack
of expertise in either domain can lead to suboptimal model performance.Signal
Variability:-sEMG signals can vary greatly between subjects and even within the same
subject over time due to factors like electrode placement and muscle fatigue. This
variability makes it challenging to develop a robust CNN model that generalizes well
across different conditions.

CHAPTER 4

PROPOSED METHODOLOGY

4.1 Two-Stream Convolutional Neural Network(CNN)

Subsequently, a revolutionary two-stream architecture, referred to as Mario CNN, was
developed, drawing inspiration from the concept proposed by Ding, Z. et al [14]. The network
proposed by Ding, Z. et al incorporates two parallel streams, wherein the input is divided,
distributed across the parallel streams, combined after 5 convolutional blocks, and thereafter
processed jointly through fully connected layers at the final stage. The hyperparameters from
the single-stream CNN in Figure 2 were utilised to fine-tune the two-stream CNN. Following
several iterations of hyperparameter and layer tweaking, the best architecture for the two-
stream CNN is presented in Figure 3. Compared with our first neural network, the two-stream
CNN architecture has two stages. During the decomposition stage: we first randomly and
evenly split our data into two sets and train them using the same convolutional blocks. The
implemented architectures specified in this project are applied to the NinaPro-DB1-S1 dataset
[15]. In the context of the NinaPro-DB1-S1 dataset, a total of 27 experimenters were selected
as participants. Each experimenter was tasked with doing 10 repetitions of a set of 52 gestures.
The set of 52 gestures encompassed three distinct categories of gestures, namely basic finger
movements (E1), hand and wrist movements (E2), and functional grasping actions (E3).
[16]The surface electromyography (SEMG) data was acquired at a sampling frequency of 100
Hz, utilising a configuration of ten electrodes positioned on the upper forearms. [17]The hand
gestures were captured using a total of 22 sensors from the CyberGlove II device. Upon
thorough examination of the DB1-S1 data folder, it is evident that there exist two significant
datasets within each hands movement folder, namely 'SEMG’ and ’stimulus’. The training
picture used in our study is denoted as sSEMG’. DB1- S1 data is a totally row time-series data
set, so it’s important to preprocess it before training. First, we need to drop the data of the rest
stage (label 0). The preprocessed dataset is found from malele4th on GitHub

Y N N [

2 2 Avg 64 A it} b4 ‘

Ml | (Mes o Poo || flers P:m_hnmmﬁnem\ TN
In3 3xd| PBxd [|5x5| Axd ||5x1 1x1 \
\ \ A \ A

Pt P et P2

N Ny RSN ‘:I,.-

32 2 Avg 64 Mg B4 B4 |/

Mers o,y (WS o PoOl_J | ers . Pool) (s o Tlers/ —
Ix3 3x3| DBxd [|5x8| @xd ||511 1x1
| y J \ |

Figure 4.1:-Two-steam CNN(Convolutional Neural Network)

4.1.1.Advantage of Two-Stream CNN

1.

Feature Extraction-A Two-Stream CNN can simultaneously process spatial and
temporal information from sEMG signals, which is crucial for capturing the complex
patterns of muscle activity.

Spatial Stream: Captures the spatial relationships and patterns in the muscle activation,
which is important for understanding the location and intensity of muscle signals.
Temporal Stream: Focuses on the time-series aspects, extracting temporal dynamics
and variations in the muscle activity over time.

Improved Classification Accuracy-By combining information from both spatial and
temporal streams, the Two-Stream CNN can achieve higher classification accuracy
compared to single-stream models. This is because it can capture a more comprehensive
set of features from the sSEMG signals.

Robustness to Noise-sEMG signals are often noisy due to factors like electrode
placement, skin condition, and external interference. The Two-Stream CNN's dual
focus helps in better distinguishing between relevant signal patterns and noise, thereby
improving robustness.

Parallel Processing-The architecture of a Two-Stream CNN allows for parallel
processing of spatial and temporal data, which can lead to more efficient and faster
computation. This is particularly beneficial for real-time applications such as prosthetic
control or rehabilitation exercises.

Versatility in Application-The dual-stream approach makes the model versatile for
various applications, including gesture recognition, muscle fatigue analysis, an
rehabilitation monitoring. It can adapt to different types of SEMG data and tasks more
effectively than single-stream models. Better GeneralizationBy leveraging both spatial
and temporal features, Two-Stream CNNs tend to generalize better across different
subjects and conditions. This reduces the need for extensive re-training and fine-tuning
when applied to new datasets or individuals.

10

4.1.2 Disadvantage of Two -stream CNN

1.

Data Requirements:-Need for Large Datasets: To effectively train a Two-Stream CNN,
a large amount of labeled data is often necessary. The NinaPro DB1 dataset may not
provide enough variety or quantity of data to fully exploit the potential of a Two-
Stream CNN, leading to issues like overfitting.

Complex Data Preprocessing:-Preparing the sSEMG data for both spatial and temporal
streams can be complex and time-consuming. This might include synchronized
recording, aligning temporal sequences, and ensuring the quality of spatial data from
the electrode array.

Overfitting Risk:-Overfitting on Small Datasets: Given the high number of parameters
in Two-Stream CNN, there is a higher risk of overfitting, especially when the dataset
is small or lacks diversity. This can be a significant issue with the NinaPro DB1 dataset
if it doesn’t provide sufficient variability.

Model Generalization: While Two-Stream CNNs can generalize well with sufficient
data, limited datasets like NinaPro DB1 might lead to poor generalization to new or
unseen data.

Complexity in Model Design and Tuning:-Architectural Design: Designing an
effective Two-Stream CNN involves careful consideration of how to integrate the
spatial and temporal streams. This complexity can make it challenging to identify the
optimal architecture without extensive experimentation.

Hyperparameter Tuning:- The need to tune more hyperparameters (e.g., learning rate,
layer sizes, filter sizes) for both streams can complicate the model development
process, requiring more expertise and time.

Resource Constraints:-Hardware Limitations: Deploying Two-Stream CNNs might be
challenging on devices with limited computational resources, such as wearable devices
used for real-time SEMG analysis. This limits the practical applicability in scenarios
where computational power is constrained.

Energy Consumption:- Higher computational demands also translate to greater energy
consumption, which can be a critical factor for battery-operated or portable devices.
Practical Challenges with NinaPro DB1

Data Quality and Consistency: The NinaPro DB1 dataset, while comprehensive, might
still have inconsistencies in data quality due to different recording sessions, variations
in electrode placement, and subject-specific differences. These inconsistencies can
impact the performance of a Two-Stream CNN.

Preprocessing Requirements:- Extensive preprocessing might be needed to format the
NinaPro DB1 data suitably for the Two-Stream architecture, including signal
normalization, artifact removal, and alignment of temporal sequences.

11

CHAPTER 5

EXPERIMENTAL RESULTS

This section is a discussion of the dataset used in experiments and the corresponding quantative
and qualitative results.

5.1 Dataset
[18]In this project, the designed architectures mentioned are implemented on NinaPro-DB1-

S1 dataset. NinaPro is a public database for research on hand gesture recognition, and the
preprocessed datasets provided, DB1-DB9, have different acquisition protocols and settings.
For DB1, 27 experimenters were sampled, and each experimenter repeated 10 trials of 52
gestures. The 52 gestures included three different gesture groups: Basic finger
movements(E1), hand and wrist movements(E2), functional grasping movements(E3). The
sEMG data was collected at a sampling rate of 100 Hz with 10 located electrodes placed on
upper forearms. The hand poses were recorded by 22 sensors of CyberGlove II.

Taking a careful look at our DB1-S1 data folder, there are two important datasets in each
hands movement folder: 'emg' and 'stimulus'. We take 'emg' as our training image, for
'emg' in El, it has a shape of (101014, 10), where each of the 10 channels generates
101014 data during the processing of collecting thehand gesture data. And we take 'stimulus'
as our training label, for 'stimulus' in E1, it has a shape of (101014,1), which contains 18
labels representing a rest stage and 12 basic finger movements. Each movement is around 5
seconds (500 data points).The details of our DB1-S1 data are shown in the following Table.

[19]DB1-S1 data is a totally row time-series data set, so it’s important to preprocess it before
training. First, we need to drop the data of the rest stage (label 0). Considering the error at
the beginning and end of each movement, we select 70% of the data in the middle of each
set of movements as training data. And take a 120ms (12 data points) windows to convert
emg data into a 12*10 size of image. At the same time, we use a 52-dimension one-hot
matrix to represent our labels. The preprocessed dataset is found from malele4th on GitHub
,with the data shape shown below in Figure 3. Table 1 The details of DB1-S1 data

12

emg. Shape (101014, 10) (142976,10) (227493, 10)
stimulus .shape (101014, 1) (142976, 1) (227493, 1)
labels and rest stage: 0: 39063 12 | rest stage: 0: 55113 17 | rest stage: 0: 108449
corresponding data movements: movements: 23 movements:
numbers
1.5149 1.5165 1.5162
2.5174 2.5176 2.5188
3.5158 3.5178 3.5133
4.5173 4.5169 4.5174
5.5173 5.5166 5.5153
6.5170 6.5167 6.5132
7.5171 7.5170 7.5177
8.5172 8.5177 8.5182
9.5135 9.5167 9.5190
10. 5137 10.5158 10. 5182
11.5166 11.5166 11.5182
12.5173 12.5170 12.5189
13.5174 13.5186
14.5170 14.5191
15.5173 15.5161
16. 5155 16. 5165
17.5162 17.5184
18.5120
19.5189
20. 5202
21.5185
22.5161
23.5166
.] N .
1%n/12 Iy 0 !
LI i i
Sl .ol Lo .
| | S - | | S - I i R P
| e oo !
S —— ! feeemmeeeemnnneaans L T
: / / ,
[4
num";g:‘:}?;;g g - movemenidy .. movemento2

Figure 5.1: Preprocessed dataset dimensions

13

5.2 Results

Because the related works we referenced are not tested under the same conditions and
on the same dataset, their accuracies are not eligible for direct comparisons. Therefore, we
duplicated the ideas from the referenced architectures and compared them on the same
dataset with the rest conditions consistent. We ran 200 Epochs for each model and have
concluded the results in the tables shown below.

Table 2: Performance Comparison between single-stream CNN and Mario CNN for 200 Epochs

CNN Mario CNN (two-stream)
Batch Size 256 256
Input Shape (12, 10, 1) (12, 10, 1)
Train Accuracy 0.805 0.877
Test Accuracy 0.817 0.884

—— rain acc as — train acc

35 =il lpss o — train l2ss

= valacc 3c = valdiL

20

— il 10 = valloss
2t 25
Loss & Acc p
250 820
Plot 220 3
‘15 ©15
U - A
10 L T Ly
= g
us s tf*
0o 08 1] ! !] ! I I .
0% & 750 15 150 175
epoch

Train/test accuracy as a function of the number of streams is plotted as shown in Figure 7.

093

tect acc
- train acc
093 -

D.92

D91

D90 4

Accuracy

0,89

D88

DavT 1

a6

2 4 B 8 10
NMumber of Streams

Figure 5.2: Train/test accuracy as a function of the number of streams

14

By increasing the number of streams from 1 to 10, given we only have 10 channels, we have
observed the test accuracy increased but overfitting occurs. The loss and accuracy plots are
shown below in Table 3.

Table 3: Loss and Accuracy Plots for Different Number of Streams

1-stream 2-stream 3-stream 4-stream 5-stream
Ml — mhar WL — minac — s I — mia Al — tinc
- — minloss - — winles - — minks n — mailoss @€ — tminloss
— it . — wla A — alac — il — wlar
= — ks B — s — llos = — albs 1 — el

6-stream 7-stream 8-stream 9-stream 10-stream
| = miia — mina = minite | — mili | — gt
A = il n = miles = minks) — mainloss k] — il
— — — — il — e
jil — lbs i — illoss H — s Pl = il il — lliss
il 0 Ll
f‘ K) il
R e
ik M
i " u 1. i TR ! Wmﬂ ik
0 i i (f’” L [3 W

} — o (et ! - T T o ; - B B oKL
1B DR MR W W M 0B R OB W OW OB W BEEEEEEEER 153] et
= o =

15

CHAPTER 6

CONCLUSION,FUTURE SCOPE AND SOCIAL IMPACT

6.1 CONCLUSION

Based on the obtained data, it is evident that the implementation of a two-stream architecture,
referred to as Mario CNN, resulted in notable enhancements in performance. Using identical
hyperparameters and layers, we implemented both a single-stream convolutional neural
network (CNN) and a Mario CNN on a preprocessed dataset[20]. The CNN model
implemented by Mario CNN has superior accuracies on both the training and test sets,
achieving approximately 88contrast, the single-stream CNN model achieves accuracies of
approximately 810ne potential explanation is that the 10 channels exhibit varying
concentrations of features. When training this data using a one-stream neural network, the
resulting information obtained may be limited to a “average” representation, potentially leading
to the loss of crucial information. Alternatively, employing a dual-stream approach and
subsequently merging the streams into a unified classifier may yield enhanced information
extraction from surface electromyography (sEMG) data. It has been observed that only
expanding the quantity of streams is not a purposeful approach, however there may be an
improvement in accuracies through within each stream. Consequently, the size of pooling
layers is constrained, hence causing them to encompass a surplus of inconsequential
information. This, in turn, contributes to the occurrence of overfitting. The selection of suitable
layer size, parameters, and the number of streams presents a significant difficulty, as it is
heavily contingent upon the nature of the problem and the volume of data involved. Once the
multi-stream architecture is carefully optimised, it has been demonstrated to be highly
effective.

However, it should be noted that software enhancement exhibits effectiveness up to a specific
threshold, beyond which it reaches a state of saturation. At this juncture, further advancements
can be attained by hardware enhancements. Several studies have highlighted the effectiveness
of employing highly precise sensors, such as dry-type sensors attached to the wrist [21], in
enhancing the accuracy of recognition. This approach has demonstrated the ability to achieve
a high recognition rate of 95 relative ease.

Figure 6.1: Changed Sensor Positions for Hardware Improvement

We can also improve our work by changing our input data. (eg: try to construct a new data
feature map to improve the accuracy of SEMG classifier!!!). The existing DL studies on
sEMG using data extracted fromeither time domain(TD) or frequency domain(FD). However
both of these methods can only obtain partialinformation from sSEMG. In order to solve this

16

inappropriate data processing problem, this essay proposesa fusion framework: choose a
combination of TD and FD features and use it as the input data of cnn. The accuracy of the
proposed method is 8.58% higher than SVM.

Furthermore, the manipulation of electrode placements has the potential to enhance the
precision of recognition. The findings indicate that the placement of electrodes in close
proximity to the wrist has a higher likelihood of effectively distinguishing between different
movements. In a recent study conducted on individuals without physical disabilities, it was
observed that the positioning of the arm had a notable impact on the efficacy of pattern
classification-based myoelectric control algorithms [10]. The findings of the present study have
substantiated the relevance of this effect in algorithms that rely on the preprocessing and
proportional control of NinaPro. In conclusion, we have effectively constructed a novel two-
stream Mario Convolutional Neural Network (CNN) and have demonstrated its superior
performance compared to a single-stream CNN when evaluated on the NinaPro-DB1- S1
dataset. During this period, some reflections emerged in our thoughts. The function of kernel
size in information extraction is significant. However, the relationship between
hyperparameters and accuracy in this black-box technique remains unknown. Furthermore,
considering that the signals emanating from various channels contain distinct information,
adjusting the streams individually according to the properties of each signal, rather than
maintaining uniformity across all streams, could potentially offer greater flexibility and
practicality. Ultimately, it is crucial to note that drawing a conclusion that one model is superior
to another just based on accuracies obtained from a single dataset is a subjective and rigid
approach. In the context of an application project, the processing of surface electromyography
(sEMG) signals is influenced by various aspects, including biological circumstances,
environmental scenarios, data sources, and other relevant considerations. In order to enhance
the scope of this project, it is advisable to regard the Mario CNN as a tool and employ it on a
wider range of datasets. Additionally, it is beneficial to investigate the processing of SEMG
signals as a more comprehensive statistical problem we successfully built a novel two-stream
Mario CNN and it is proven to perform better than a single-stream CNN on the dataset
NinaPro-DB1-S1. In the meantime, a few reflections came to ourminds. Firstly, while the
kernel size plays a pivotal role in information extraction, the casual relationship between
hyperparameters and accuracy in this black-box procedure is still a mystery. Second, given that
the signals from different channels reflect different information, tuning the streams
independently based on signal characteristics rather than having all the streams the same may
grant more flexibility and practicalities. Finally, and most importantly, concluding a model is
“better” than another merely based on accuracies on one dataset is ambiguous and dogmatical.
As an application project, SEMG signal processing is affected by many other factors, like
biological conditions, scenarios, data sources, etc. To further expand this project, it is more
valuable to consider this Mario CNN as a tool and apply it on more diverse datasets and study
sEMG signal processing as a broader problem from a statistical perspective.

6.2 FUTURE SCOPE AND SOCIAL IMPACT

The future scope of SEMG signal analysis includes advancements in neuroprosthetics, refined
rehabilitation protocols, enhanced human-computer interfaces, improved diagnostics in
neuromuscular disorders, and the development of sophisticated biofeedback systems for sports
and ergonomics, leveraging Al and machine learning for greater precision and personalized
healthcare solutions.

17

REFERENCES

[1] H. Tankisi, D. Burke, L. Cui, M. de Carvalho, S. Kuwabara, S. D. Nandedkar, S. Rutkove, E.
Stalberg, “M. J. van Putten, and A. Fuglsang-Frederiksen, “Standards of instrumentation of
emg,” Clinical neurophysiology, vol. 131, no. 1, pp. 243-258, 2020.

[2] R. Shigji, S.-i. Ito, M. Ito, and M. Fukumi, “Personal authentication and hand motion
recognition based on wrist emg analysis by a convolutional neural network,” in 2018 IEEE
International Conference on Internet of Things and Intelligence System (IOTAIS), pp. 184—188,
IEEE, 2018.

[3] D. Buongiorno, G. D. Cascarano, |. De Feudis, A. Brunetti, L. Carnimeo, G. Dimauro, and V.
Bevilacqua, “Deep learning for processing electromyographic signals: A taxonomy-based
survey,” Neurocomputing, vol. 452, pp. 549-565, 2021.

[4] B. Xiong, W. Chen, Y. Niu, Z. Gan, G. Mao, and Y. Xu, “A global and local feature fused cnn
architecture for the semg-based hand gesture recognition,” Computers in Biology and
Medicine, vol. 166, p. 107497, 2023.

[5] F. Leone, C. Gentile, A. L. Ciancio, E. Gruppioni, A. Davalli, R. Sacchetti, E. Guglielmelli, and
L. Zollo, “Simultaneous semg classification of hand/wrist gestures and forces,” Frontiers in
neurorobotics, vol. 13, p. 42, 2019.

[6] N. Abdullaev and K. S. Pashaeva, “Use of machine learning models for classification of
myographic diseases,” Biomedical Engineering, vol. 56, no. 5, pp. 353-357, 2023.

[7] M. Atzori, M. Cognolato, and H. Muller, “Deep learn- ~ ing with convolutional neural
networks applied to electromyography data: A resource for the classification of movements
for prosthetic hands,” Frontiers in neurorobotics, vol. 10, p. 9, 2016.

[8] P. Sri-lesaranusorn, A. Chaiyaroj, C. Buekban, S. Dumnin, R. Pongthornseri, C.
Thanawattano, and D. Surangsrirat, “Classification of 41 hand and wrist movements via
surface electromyogram using deep neural network,” Frontiers in bioengineering and
biotechnology, vol. 9, p. 548357, 2021.

[9] Y. Narayan, L. Mathew, and S. Chatterji, “Semg signal classification with novel feature
extraction using different machine learning approaches,” Journal of Intelligent & Fuzzy
Systems, vol. 35, no. 5, pp. 5099-5109, 2018.

[10] A. Vijayvargiya, Khimraj, R. Kumar, and N. Dey, “Voting-based 1d cnn model for human
lower limb activity recognition using semg signal,” Physical and Engineering Sciences in
Medicine, vol. 44, no. 4, pp. 1297—- 1309, 2021.

[11] D. Farina and A. Holobar, “Human? machine interfacing by decoding the surface
electromyogram [life sciences],” IEEE signal processing magazine, vol. 32, no. 1, pp. 115-120,
2014.

[12] Y. Liu, X. Peng, Y. Tan, T. T. Oyemakinde, M. Wang, G. Li, and X. Li, “A novel unsupervised
dynamic feature domain adaptation strategy for cross-individual myoelectric gesture
recognition,” Journal of Neural Engineering, vol. 20, no. 6, p. 066044, 2024.

[13] Z. Ding, C. Yang, Z. Tian, C.Yi, Y. Fu, and F. Jiang, “semg-based gesture recognition with
convolution neural networks,” Sustainability, vol. 10, no. 6, p. 1865, 2018.

[14] X. Wang, L. Tang, Q. Zheng, X. Yang, and Z. Lu, “Irdcnet: An inception network with a
residual module and dilated convolution for sign language recognition based on surface
electromyography,” Sensors, vol. 23, no. 13, p. 5775, 2023.

[15] Y. Luo, T. Luo, Q. Xia, H. Yan, L. Xie, Y. Yan, and E. Yin, “A fusion framework to enhance
semg-based gesture recognition using td and fd features,” in Neural Information Processing:

18

28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8—12, 2021,
Proceedings, Part VI 28, pp. 168—175, Springer, 2021.

[16] M. Atzori and H. Muller, “The ninapro database: a " resource for semg naturally controlled
robotic hand prosthetics,” in 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pp. 7151-7154, IEEE, 2015.

[17] N. Jiang, S. Muceli, B. Graimann, and D. Farina, “Effect of arm position on the prediction
of kinematics from emg in amputees,” Medical & biological engineering & computing, vol. 51,
pp. 143-151, 2013.

[18] J. Qi, G. Jiang, G. Li, Y. Sun, and B. Tao, “Intelligent human-computer interaction based on
surface emg gesture recognition,” leee Access, vol. 7, pp. 61378—61387, 2019.

[19] W. Ding, G. Li, Y. Sun, G. Jiang, J. Kong, and H. Liu, “Ds evidential theory on semg signal
recognition,” International Journal of Computing Science and Mathematics, vol. 8, no. 2, pp.
138-145, 2017.

[20] Y. Zhou, Y. Fang, K. Gui, K. Li, D. Zhang, and H. Liu, “semg bias-driven functional electrical
stimulation system for upper-limb stroke rehabilitation,” IEEE Sensors Journal, vol. 18, no. 16,
pp. 6812-6821, 2018.

[21] Y. Sun, C. Li, G. Li, G. Jiang, D. Jiang, H. Liu, Z. Zheng, and W. Shu, “Gesture recognition
based on kinect and semg signal fusion,” Mobile Networks and Applications, vol. 23, pp. 797—-
805, 2018

19

APPENDICES

CNN

import scipy.io

import hbpy

import numpy as np

import tensorflow as tf

from sklearn.model selection import train test split

import keras

import keras.backend as K

from keras.layers import Input, Dense, ZeroPadding2D, Dropout,
Activation, Flatten, Conv2D, Convl1lD, MaxPooling2D, AveragePooling2D,
concatenate, BatchNormalization

from keras.models import Model

import matplotlib.pyplot as plt

$matplotlib inline
Prepare Preprocessed Dataset

file = hb5py.File('/content/DBl S1 image (3).h5','r")
imageData = file['imageData'][:]

imageLabel file['imageLabel'][:]

file.close()

file = hb5py.File('/content/DBl S1 image (3).h5','r")
imageData = file['imageData'][:]

file['imagelLabel'] [:]

imagelLabel

file.close()
(15047, 12, 10)
(15047,)

def convert to one hot(Y, C):
Y = np.eye(C) [Y.reshape(-1)].T
return Y

prepare data

n = imageData.shape[0]

idx = np.random.permutation (n)

data = imageDatal[idx]

label = imagelLabel [idx]

data = np.expand dims(data, axis=3)
label = convert to one hot(label, 52).T

X train, X test, Y train, Y test = train test split(data, label,

test size = 0.2, random state = 42)
print ("X train shape: " + str (X train.shape))
print ("Y train shape: " + str (Y train.shape))

print ("X test shape: " + str(X test.shape))

20

print ("Y test shape: " + str(Y test.shape))
X train shape: (12037, 12, 10, 1)
Y train shape: (12037, 52)

X test shape: (3010, 12, 10, 1)
Y test shape: (3010, 52)

class LossHistory(keras.callbacks.Callback):
def on train begin(self, logs={}):

self.losses = {'epoch':[]}

self.accuracy = {'epoch':[]}
self.val loss = {'epoch':[]}
self.val acc = {'epoch':[]}

def on epoch end(self, batch, logs={}):
self.losses['epoch'].append(logs.get('loss"))
self.accuracy|['epoch'].append(logs.get ('accuracy'))
self.val loss['epoch'].append(logs.get('val loss'))
self.val acc['epoch'].append(logs.get('val accuracy'))

def loss plot(self, loss type):

iters = range(len(self.losses[loss typel))

plt.figure ()

plt.plot(iters, self.accuracy[loss typel, 'r', label='train
acc')

plt.plot (iters, self.losses[loss_typel]l, 'g', label='train
loss')

plt.plot (iters, self.val acc[loss type], 'b', label='val acc')

plt.plot(iters, self.val loss[loss type], 'k', label='val
loss'")

plt.grid(True)
plt.xlabel (loss_type)
plt.ylabel ('acc-loss')
plt.legend (loc="upper right")
plt.show ()
def CNN(input shape, classes):
X input = Input (input_ shape)

X = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="'same', name='convl') (X input)
X Activation('relu', name='relul') (X)

X = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="same', name='conv2') (X)

X = Activation('relu', name='relu2') (X)

X = AveragePooling2D((3,3), strides=(2,2), name='pooll') (X)

print ("Y train shape: " + str (Y train.shape))
print ("X test shape: " + str(X test.shape))
print ("Y test shape: " + str(Y test.shape))

X train shape: (12037, 12, 10, 1)

Y train shape: (12037, 52)
X test shape: (3010, 12, 10, 1)
Y test shape: (3010, 52)

class LossHistory(keras.callbacks.Callback):

def on train begin(self, logs={}):

def

self.losses = {'epoch':[]}

self.accuracy = {'epoch':[]}
self.val loss = {'epoch':[]}
self.val acc = {'epoch':[]}

on_epoch end(self, batch, logs={}):

self.losses['epoch'].append(logs.get('loss'"))

self.accuracy|['epoch'].append(logs.get ('accuracy'))

self.val loss['epoch'].append(logs.get('val loss'))

self.val acc['epoch'].append(logs.get('val accuracy'))

def loss plot(self, loss_type):
iters = range(len(self.losses[loss typel]))
plt.figure ()
plt.plot (iters, self.accuracy[loss typel, 'r', label='train
acc')
plt.plot (iters, self.losses[loss type], 'g', label='train
loss')
plt.plot (iters, self.val acc[loss type], 'b', label='val acc')
plt.plot(iters, self.val loss[loss type], 'k', label='val
loss')
plt.grid(True)
plt.xlabel (loss_type)
plt.ylabel ('acc-loss')
plt.legend (loc="upper right")
plt.show()
def CNN(input shape, classes):
X input = Input (input_ shape)
X = Conv2D(filters=32, kernel size=(3,3),

strides=(1,1),padding="'same', name='convl') (X input)

X = Activation('relu', name='relul') (X)

X = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="'same', name='conv2') (X)

X = Activation('relu', name='relu2') (X)

X = AveragePooling2D((3,3), strides=(2,2), name='pooll') (X)

X = Conv2D(filters=64, kernel size=(5,5),
strides=(1,1),padding="'same', name='conv3') (X)

X = Activation('relu', name='relu3') (X)

X = AveragePooling2D((3,3), strides=(2,2), name='pool2') (X)

21

X = Conv2D(filters=64, kernel size=(5,1),
strides=(1,1),padding="same', name='conv4d') (X)
X = Activation('relu', name='relud') (X)

X = Conv2D(filters=64, kernel size=(1,1),
strides=(1,1),padding="'same', name='conv5') (X)

X = ZeroPadding2D((0,1)) (X)

X = Flatten(name='flatten') (X)

X = Dropout (0.5) (X)

X = BatchNormalization (momentum=0.9) (X)

X = Dense (128, activation='relu',name='fcl') (X)

X = Dropout (0.5) (X)

X = Dense(classes, activation='softmax', name='fc2') (X)

model = Model (inputs=X input, outputs=X, name='CNN')
return model
model = CNN(input shape = (12, 10, 1), classes = 52)

model.summary ()
Model: "CNN"

Layer (type) Output Shape Param #
input 1 (InputLayer? [(None, 12, 10, 1)] 0
convl (Conv2D) (None, 12, 10, 32) 320
relul (Activation) (None, 12, 10, 32) 0
conv?2 (Conv2D) (None, 12, 10, 32) 9248
relu?2 (Activation) (None, 12, 10, 32) 0
pooll (AveragePooling2D) (None, 5, 4, 32) 0
conv3 (Conv2D) (None, 5, 4, 64) 51264
relu3 (Activation) (None, 5, 4, 64) 0
pool2 (AveragePooling2D) (None, 2, 1, 64) 0
conv4 (Conv2D) (None, 2, 1, 64) 20544

Trainable params: 142292 (555.83 KB)
Non-trainable params: 768 (3.00 KB)

model.compile (optimizer="adam', loss='categorical crossentropy',
metrics=['accuracy'])
history = LossHistory ()

model.fit (data, label, validation split=0.2, epochs=eps,

batch size=256, verbose=1l, callbacks=[history])

preds train = model.evaluate (X train, Y train)

print ("Train Loss = " + str(preds train([0]))

print ("Train Accuracy = " + str(preds train[l]))

preds test = model.evaluate (X test, Y test)

print ("Test Loss = " + str(preds_test[0]))

print ("Test Accuracy = " + str(preds_test[1]))

Epoch 1/200

48/48 [=

accuracy: 0.0437 - val loss:

Epoch 2/200

48/48 [=

accuracy: 0.0901 - val loss:

Epoch 3/200

48/48 [=

accuracy: 0.1550 - val loss:

Epoch 4/200

48/48 [=

accuracy: 0.2052 - val loss:

Epoch 5/200

48/48 [============= e
accuracy: 0.2571 - val loss:

Epoch 6/200

————————] - 1s léms/step - loss:
.4255 - val accuracy: 0.3462

48/48 [=

accuracy: 0.2910 - val loss:

Epoch 7/200

48/48 [=

accuracy: 0.3305 - val loss:

Epoch 8/200

48/48 [=

accuracy: 0.3705 - val loss:

Epoch 9/200

48/48 [=

accuracy: 0.3699 - val loss:

Epoch 10/200

48/48 [=——————————— e

] - 0s 9ms/step - loss:

.8946 - val accuracy: 0.4794

________] - O0s 9ms/step - loss:

accuracy: 0.4032 - val loss:

Epoch 11/200

.8166 - val accuracy: 0.4970

48/48 [=

accuracy: 0.4313 - val loss:

Epoch 12/200

48/48 [=

accuracy: 0.4454 - val loss:

Epoch 13/200

] - 0s 9ms/step - loss:

.7080 - val accuracy: 0.5173

48/48 [=

accuracy: 0.4628 - val loss:

Epoch 14/200

] - 0s 9ms/step - loss:

.7042 - val accuracy: 0.5246

48/48 [=

accuracy: 0.4602 - val loss:

Epoch 15/200

] - 1s 1llms/step - loss:
.1626 - val accuracy: 0.1714

] - 1s 19ms/step - loss:
.8182 - val accuracy: 0.2561

] - 1s 20ms/step - loss:
.5480 - val accuracy: 0.3213

] - O0s 10ms/step - loss:
.2239 - val accuracy: 0.3944

] - O0s 10ms/step - loss:
.1168 - val accuracy: 0.4093

] - 0Os 10ms/step - loss:
.2452 - val accuracy: 0.3837

] - Os 10ms/step - loss:
.8048 - val accuracy: 0.5037

] - 1s 1llms/step - loss:
.6868 - val accuracy: 0.5143

23

] - 15s 21lms/step - loss: 3.8610 -
.7660 - val accuracy: 0.0625

3.5509

3.1587 -

2.8967 -

2.6741 -

2.5189 -

2.3794 -

2.2431

2.2335 -

2.1127 -

1.9966 -

1.9593 -

1.8677 -

1.8930 -

48/48 |

accuracy: 0.4760 val loss: 1.6319 - val accuracy: 0.5339
Epoch 16/200

48/48 [=] - 1s 1llms/step - loss:
accuracy: 0.4877 val loss: 1.5691 - val accuracy: 0.5548
Epoch 17/200

48/48 [=] - 1s 12ms/step - loss:
accuracy: 0.5058 val loss: 1.4951 - val accuracy: 0.5738
Epoch 18/200

48/48 [=] - 1s 12ms/step - loss:
accuracy: 0.4945 val loss: 1.5239 - val accuracy: 0.5698
Epoch 19/200

48/48 [=] - 1s 12ms/step - loss:
accuracy: 0.5028 val loss: 1.4787 - val accuracy: 0.5824
Epoch 20/200

48/48 [=] - 1s 13ms/step - loss:
accuracy: 0.5273 val loss .4249 - val accuracy: 0.5963
Epoch 21/200

48/48 [=] - 1s 1lms/step - loss:
accuracy: 0.5246 - val loss: 1.4477 - val accuracy: 0.5917
Epoch 22/200

48/48 [=] - 0s 9ms/step - loss:
accuracy: 0.5404 val loss: 1.4319 - val accuracy: 0.5884
Epoch 23/200

48/48 [=] - 0Os 10ms/step - loss:
accuracy: 0.5325 val loss: 1.3863 - val accuracy: 0.6040
Epoch 24/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.5455 val loss: 1.4070 - val accuracy: 0.5997
Epoch 25/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.5447 val loss: 1.3834 - val accuracy: 0.6047
Epoch 26/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.5506 val loss: 1.3370 - val accuracy: 0.6130
Epoch 27/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.5589 val loss: 1.3012 - val accuracy: 0.6312
Epoch 28/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.5648 val loss: 1.2781 - val accuracy: 0.6243
Epoch 29/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.5757 val loss .2755 - val accuracy: 0.6352
Epoch 30/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.5649 val loss: 1.2899 - val accuracy: 0.6262
Epoch 31/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.5741 val loss: 1.5137 - val accuracy: 0.5721
Epoch 32/200

48/48 [==============================] - Os 9ms/step - loss:
accuracy: 0.5547 val loss .3145 - val accuracy: 0.6173
Epoch 33/200

48/48 [==============================] - Os 9ms/step - loss:
accuracy: 0.5806 val loss: 1.2988 - val accuracy: 0.6282

Epoch 34/200

] - 1s 12ms/step - loss:

1.8340

1.7815

1.7207

1.7350

1.7106

1.6163

1.6259

1.5641 -

1.5943

1.5423 -

1.5617

1.5235

1.4843

1.4534

1.4237

1.4587

1.4334

1.4811 -

1.3880 -

24

25

48/48 |

] - Os 10ms/step - loss: 1.4136 -

accuracy: 0.5746 - val loss: 1.2696 - val accuracy: 0.6282

Epoch 35/200

48/48 [=] - Os 9ms/step - loss: 1.4046 -
accuracy: 0.5825 val loss: 1.3322 - val accuracy: 0.6146

Epoch 36/200

48/48 [=] - Os 10ms/step - loss: 1.4506 -
accuracy: 0.5683 val loss: 1.3728 - val accuracy: 0.5987

Epoch 37/200

48/48 [=] - Os 9ms/step - loss: 1.3614 -
accuracy: 0.5935 val loss: 1.2824 - val accuracy: 0.6306

Epoch 38/200

48/48 [=] - Os 9ms/step - loss: 1.3467 -
accuracy: 0.5926 val loss: 1.2411 - val accuracy: 0.6319

Epoch 39/200

48/48 [=] - O0s 9ms/step - loss: 1.3867 -
accuracy: 0.5926 val loss .2626 - val accuracy: 0.6352

Epoch 40/200

48/48 [=] - Os 10ms/step - loss: 1.3714 -
accuracy: 0.5879 val loss: 1.1923 - val accuracy: 0.6468

Epoch 41/200

48/48 [=] - Os 9ms/step - loss: 1.3485 -
accuracy: 0.5952 val loss: 1.2297 - val accuracy: 0.6415

Epoch 42/200

48/48 [=] - 1s 1llms/step - loss: 1.3290 -
accuracy: 0.6030 val loss: 1.1646 - val accuracy: 0.6621

Epoch 43/200

48/48 [=] - 1s 15ms/step - loss: 1.2796 -
accuracy: 0.6119 val loss: 1.1753 - val accuracy: 0.6585

Epoch 44/200

48/48 [=] - 1s 13ms/step - loss: 1.2908 -
accuracy: 0.6083 val loss: 2028 - val accuracy: 0.6508

Epoch 45/200

48/48 [==============================] - 1s 13ms/step - loss: 1.3060 -
accuracy: 0.6114 val loss: 1879 - val accuracy: 0.6508

Epoch 46/200

48/48 [=] - 1s 13ms/step - loss: 1.3231 -
accuracy: 0.6010 val loss: 1951 - val accuracy: 0.6482

Epoch 47/200

48/48 [=] - 1s 13ms/step - loss: 1.2497 -
accuracy: 0.6223 val loss: 1.1597 - wval accuracy: 0.6651

Epoch 48/200

48/48 [=] - 1s 12ms/step - loss: 1.2235 -
accuracy: 0.6300 val loss .1563 - val accuracy: 0.6631

Epoch 49/200

48/48 [=] - Os 10ms/step - loss: 1.1976 -
accuracy: 0.6348 val loss: 1.1981 - val accuracy: 0.6615

Epoch 50/200

48/48 [=] - O0s 9ms/step - loss: 1.2992 -
accuracy: 0.6112 val loss: 2062 - val accuracy: 0.6432

Epoch 51/200

48/48 [==============================] - Os 9ms/step - loss: 1.2788 -
accuracy: 0.6109 val loss 1375 - val accuracy: 0.6678

Epoch 52/200

48/48 [==============================] - Os 10ms/step - loss: 1.2295 -
accuracy: 0.6293 val loss: 1993 - val accuracy: 0.6455

Epoch 53/200

48/48 |

accuracy: 0.6317 val loss: 1.1719 - val accuracy: 0.6508
Epoch 54/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.6136 val loss: 1.1437 - val accuracy: 0.6565
Epoch 55/200

48/48 [=] - 0s 9ms/step - loss:
accuracy: 0.6160 val loss: 1.1248 - val accuracy: 0.6701
Epoch 56/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.6295 val loss: 1.1103 - val accuracy: 0.6698
Epoch 57/200

48/48 [=] - 0s 9ms/step - loss:
accuracy: 0.6319 val loss: 1.1745 - val accuracy: 0.6558
Epoch 58/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.6365 val loss .1078 - val accuracy: 0.6658
Epoch 59/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6358 val loss: 1.2078 - val accuracy: 0.6502
Epoch 60/200

48/48 [=] - 0s 9ms/step - loss:
accuracy: 0.6108 val loss: 1.1348 - val accuracy: 0.6721
Epoch 61/200

48/48 [=] - 0s 9ms/step - loss:
accuracy: 0.6473 val loss: 1.0861 - val accuracy: 0.6791
Epoch 62/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6591 val loss: 1.1433 - val accuracy: 0.6691
Epoch 63/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6297 val loss: 1218 - val accuracy: 0.6718
Epoch 64/200

48/48 [==============================] - Os 9ms/step - loss:
accuracy: 0.6433 val loss: 1551 - val accuracy: 0.6648
Epoch 65/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6114 val loss: 1578 - val accuracy: 0.6688
Epoch 66/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6165 val loss: 1.1156 - val accuracy: 0.6764
Epoch 67/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.6288 val loss .0919 - val accuracy: 0.6807
Epoch 68/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6518 val loss: 1.0794 - val accuracy: 0.6854
Epoch 69/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.6600 val loss: 1641 - val accuracy: 0.6601
Epoch 70/200

48/48 [==============================] - 1s 13ms/step - loss:
accuracy: 0.6338 val loss 1141 - val accuracy: 0.6847
Epoch 71/200

48/48 [==============================] - 1s 13ms/step - loss:
accuracy: 0.6425 val loss: 0726 - val accuracy: 0.6850

Epoch 72/200

] - O0s 10ms/step - loss:

1.2130

1.2751

1.2748 -

1.2103

1.2053 -

1.2055

1.1894 -

1.299%6 -

1.1598 -

1.1164 -

1.2295 -

1.1823 -

1.3179 -

1.2947 -

1.2487

1.1326 -

1.1212

1.2254

1.1811

26

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

- val accuracy: 0.

- val accuracy: 0.

- val accuracy: 0.

- val accuracy: 0.

- val accuracy: 0.

- val accuracy: 0.

- val accuracy: 0.

- val accuracy: O.

- val accuracy: 0.

48/48 [=

accuracy: 0.6533 val loss: 1.0675
Epoch 73/200

48/48 [=

accuracy: 0.6662 val loss: 1.0638
Epoch 74/200

48/48 [=

accuracy: 0.6527 val loss: 1.0927
Epoch 75/200

48/48 [=

accuracy: 0.6648 val loss: 1.0906
Epoch 76/200

48/48 [=

accuracy: 0.6540 val loss: 1.0727
Epoch 77/200

48/48 [=

accuracy: 0.6576 val loss L1777
Epoch 78/200

48/48 [=

accuracy: 0.6269 val loss: 1.1126
Epoch 79/200

48/48 [=

accuracy: 0.6546 val loss: 1.1306
Epoch 80/200

48/48 [=

accuracy: 0.6400 val loss: 1.0804
Epoch 81/200

48/48 [=

accuracy: 0.6746 val loss: 1.1629
Epoch 82/200

48/48 [=

accuracy: 0.6433 val loss: 0518
Epoch 83/200

48/48 [============================== 1
accuracy: 0.6784 val loss: 0527
Epoch 84/200

48/48 [=

accuracy: 0.6727 val loss: 0582
Epoch 85/200

48/48 [=

accuracy: 0.6660 val loss: 1.0435
Epoch 86/200

48/48 [=

accuracy: 0.6914 val loss .0420
Epoch 87/200

48/48 [=

accuracy: 0.6854 val loss: 1.0427
Epoch 88/200

48/48 [=

accuracy: 0.6807 val loss: 1.0258
Epoch 89/200

48/48 [============================== 1
accuracy: 0.6930 val loss 0143
Epoch 90/200

48/48 [============================== 1
accuracy: 0.6941 val loss: 0519

Epoch 91/200

- val accuracy: 0.

- loss:

6880

- loss:

6821

- loss:

6771

- loss:

6837

- loss:

6884

] - O0s 9ms/step - loss:
- val accuracy: 0.

6525

] - O0s 9ms/step - loss:
- val accuracy: 0.

6741

] - 0s 9ms/step - loss:
- val accuracy: 0.

6718

] - 0s 9ms/step - loss:
- val accuracy: 0.

6794

] - O0s 9ms/step - loss:

6601

] - Os 8ms/step - loss:

6847

- Os 9ms/step - loss:

6937

] - Os 8ms/step - loss:

6860

] - O0s 9ms/step - loss:

6900

] - 0s 9ms/step - loss:

6847

] - O0s 9ms/step - loss:

6890

] - O0s 9ms/step - loss:

7007

- O0s 9ms/step - loss:

7007

- O0s 9ms/step - loss:

6930

1.1258

1.0934

1.1579

1.0861

1.1434

1.1108

1.2591

1.1318

1.2041

1.0730

1.1724

1.0449

1.0699

1.0764

1.0216

1.0391

1.0287

1.0130

1.0000

27

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

- 1s 1lms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: O.

- val accuracy: 0.

48/48 [=

accuracy: 0.6812 val loss: 1.1253
Epoch 92/200

48/48 [=

accuracy: 0.6657 val loss: 1.0938
Epoch 93/200

48/48 [=

accuracy: 0.6771 val loss: 1.0149
Epoch 94/200

48/48 [=

accuracy: 0.6857 val loss: 1.0630
Epoch 95/200

48/48 [=

accuracy: 0.6890 val loss: 1.0113
Epoch 96/200

48/48 [=

accuracy: 0.7028 val loss .0325
Epoch 97/200

48/48 [=

accuracy: 0.6690 val loss: 1.0261
Epoch 98/200

48/48 [=

accuracy: 0.6853 val loss: 1.0696
Epoch 99/200

48/48 [=

accuracy: 0.6846 val loss: 1.1412
Epoch 100/200

48/48 [=

accuracy: 0.6515 val loss: 1.0418
Epoch 101/200

48/48 [=

accuracy: 0.6748 val loss: 0341
Epoch 102/200

48/48 [============================== 1
accuracy: 0.6755 val loss: 0500
Epoch 103/200

48/48 [=

accuracy: 0.6920 val loss: 0774
Epoch 104/200

48/48 [=

accuracy: 0.6729 val loss: 1.0065
Epoch 105/200

48/48 [=

accuracy: 0.6945 val loss .0102
Epoch 106/200

48/48 [=

accuracy: 0.7057 val loss: 1.0227
Epoch 107/200

48/48 [=

accuracy: 0.6952 val loss: 1.0248
Epoch 108/200

48/48 [============================== 1
accuracy: 0.6704 val loss 0527
Epoch 109/200

48/48 [============================== 1
accuracy: 0.6969 val loss: 0334

Epoch 110/200

- val accuracy: 0.

] - 0s 9ms/step - loss:
- val accuracy: 0.

6704

] - 0s 9ms/step - loss:
- val accuracy: 0.

6774

] - 0s 9ms/step - loss:
- val accuracy: 0.

6977

] - O0s 9ms/step - loss:
- val accuracy: 0.

6860

] - 0s 9ms/step - loss:
- val accuracy: 0.

6963

] - O0s 9ms/step - loss:
- val accuracy: 0.

6940

] - Os 8ms/step - loss:
- val accuracy: 0.

6937

] - 0s 9ms/step - loss:
- val accuracy: 0.

6777

] - 0s 9ms/step - loss:
- val accuracy: 0.

6777

- loss:

6914

- loss:

6924

- loss:

6880

- loss:

6877

- loss:

6980

- loss:

7003

- loss:

7000

- loss:

7000

- O0s 9ms/step - loss:

6930

- Os 8ms/step - loss:

6950

1.0233 -

1.1071 -

1.0463 -

1.0175 -

1.0094 -

0.9596 -

1.1080 -

1.0144 -

1.0301 -

1.1553

1.0541

1.0731

0.9886

1.0545

0.9951

0.9577

0.9710

1.0973 -

0.9788 -

28

48/48 |

- Os 8ms/step - loss:

accuracy: 0.6968
Epoch 111/200

- val accuracy:

48/48 |

- Os 8ms/step - loss:

accuracy: 0.6971
Epoch 112/200

- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.6850
Epoch 113/200

- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.6970
Epoch 114/200

- val _accuracy:

48/48 |

- Os 8ms/step - loss:

accuracy: 0.6983
Epoch 115/200

- val accuracy:

48/48 |

accuracy: 0.6986
Epoch 116/200

- 0s 8ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7137
Epoch 117/200

- 0s 9ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7150
Epoch 118/200

- 0Os 8ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.6669
Epoch 119/200

- Os 10ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.6885
Epoch 120/200

- 0s 9ms/step - loss:
- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.6947
Epoch 121/200

- val accuracy:

accuracy: 0.6651
Epoch 122/200

- Os 9ms/step - loss:
- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.7033
Epoch 123/200

- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.7189
Epoch 124/200

- val accuracy:

48/48 |

accuracy: 0.7017
Epoch 125/200

- Os 8ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7228
Epoch 126/200

- 0Os 8ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.6970
Epoch 127/200

- 0s 9ms/step - loss:
- val accuracy:

accuracy: 0.7086
Epoch 128/200

- Os 8ms/step - loss:
- val accuracy:

val loss: 0.9942
val loss: 1.0099
val loss: 1.0323
val loss: 1.0158
val loss: 1.0094
val loss .0216
val loss: 1.0071
val loss: 1.1629
val loss: 1.0450
val loss: 1.0300
val loss: 1.0688
48/48 [==============================
val loss: 0533
val loss: 9863
val loss: 1.0245
val loss .9953
val loss: 1.0551
val loss: 0004
48/48 [=============s=================
val loss 9809
48/48 [==============================
val loss: 9878

accuracy: 0.7010
Epoch 129/200

- O0s 9ms/step - loss:
- val accuracy:

.9896

.9990

.0236

.9674

.9867

.9700

.9293

.9252

1.1000

1.0171

.9855

.1032

.9531

.8925

.9675

.8920

.9788

.9488

.9472

] - 1s 1lms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 1llms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

48/48 [=

accuracy: 0.7250 val loss: 0.9951
Epoch 130/200

48/48 [=

accuracy: 0.7197 val loss: 1.0295
Epoch 131/200

48/48 [=

accuracy: 0.7017 val loss: 0.9951
Epoch 132/200

48/48 [=

accuracy: 0.7166 val loss: 1.0183
Epoch 133/200

48/48 [=

accuracy: 0.7065 val loss: 1.0517
Epoch 134/200

48/48 [=

accuracy: 0.6944 val loss .0410
Epoch 135/200

48/48 [=

accuracy: 0.7178 val loss: 0.9997
Epoch 136/200

48/48 [=

accuracy: 0.7336 val loss: 1.0600
Epoch 137/200

48/48 [=

accuracy: 0.7108 val loss: 0.9978
Epoch 138/200

48/48 [=

accuracy: 0.7325 val loss: 1.0198
Epoch 139/200

48/48 [=

accuracy: 0.7020 val loss: 0475
Epoch 140/200

48/48 [============================== 1
accuracy: 0.7011 val loss: 0443
Epoch 141/200

48/48 [=

accuracy: 0.7131 val loss: 1.0290
Epoch 142/200

48/48 [=

accuracy: 0.7312 val loss: 1.0331
Epoch 143/200

48/48 [=

accuracy: 0.6758 val loss .9867
Epoch 144/200

48/48 [=

accuracy: 0.7321 val loss: 1.0250
Epoch 145/200

48/48 [=

accuracy: 0.7361 val loss: 1.0234
Epoch 146/200

48/48 [============================== 1
accuracy: 0.7170 val loss 0342
Epoch 147/200

48/48 [============================== 1
accuracy: 0.7121 val loss: 0529

Epoch 148/200

- val accuracy: 0.

] - Os 8ms/step - loss:
- val accuracy: 0.

] - Os 8ms/step - loss:
- val accuracy: 0.

] - O0s 9ms/step - loss:
- val accuracy: 0.

- 0s 9ms/step - loss: 0.
- val accuracy: 0.

] - Os 8ms/step - loss: 0.
- val accuracy: 0.

] - Os 8ms/step - loss: 0.
- val accuracy: 0.

] - 0s 9ms/step - loss: 1.
- val accuracy: 0.

] - Os 9ms/step - loss: 0.
- val accuracy: 0.

] - O0s 9ms/step - loss: 0.
- val accuracy: O.

- 0s 9ms/step - loss: O.
- val accuracy: 0.

- 0s 9ms/step - loss: O.

30

0.8796 -

7086
0.8827 -

7066
- loss: 0.9567 -

7100
- loss: 0.9210 -

7007
- loss: 0.9392 -

6897
- loss: 1.0084 -

6997
- loss: 0.8984 -

7033
- loss: 0.8582 -

6940
- loss: 0.9393 -

7110
- loss: 0.8585 -

6983
0.9562 -

6983
9684 -

6970
9212 -

7090
8552 -

7027
0760 -

7106
8578 -

7050
8454 -

7126
9084 -

7023
9312 -

7027

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.7140
Epoch 149/200

- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.7417
Epoch 150/200

- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.7106
Epoch 151/200

- val accuracy:

48/48 |

- 0Os 8ms/step - loss:

accuracy: 0.7094
Epoch 152/200

- val _accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.6956
Epoch 153/200

- val accuracy:

48/48 |

accuracy: 0.7247
Epoch 154/200

- 0s 9ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.6951
Epoch 155/200

- 0s 9ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7309
Epoch 174/200

- 0s 9ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7498
Epoch 175/200

- 0Os 9ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7347
Epoch 176/200

- 0s 9ms/step - loss:
- val accuracy:

48/48 |

- 0Os 10ms/step - loss:

accuracy: 0.7325
Epoch 177/200

- val accuracy:

accuracy: 0.7413
Epoch 178/200

- Os 9ms/step - loss:
- val accuracy:

48/48 |

- 0s 9ms/step - loss:

accuracy: 0.7487
Epoch 179/200

- val accuracy:

48/48 |

- 0s 8ms/step - loss:

accuracy: 0.7426
Epoch 180/200

- val accuracy:

48/48 |

accuracy: 0.7332
Epoch 181/200

- 0Os 9ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7383
Epoch 182/200

- 0s 9ms/step - loss:
- val accuracy:

48/48 [
accuracy: 0.7351
Epoch 183/200

- 0Os 8ms/step - loss:
- val accuracy:

accuracy: 0.7590
Epoch 184/200

- O0s 9ms/step - loss:
- val accuracy:

val loss: 1.0121
val loss: .0137
val loss: .0126
val loss: 1.0407
val loss: 1.0213
val loss .0149
val loss: 1.0040
val loss: 1.0081
val loss: .0577
val loss: 1.0087
val loss: 0037
48/48 [==============================
val loss: 0137
val loss: 0374
val loss: 1.0204
val loss .0169
val loss: .0242
val loss: 0133
48/48 [==============================
val loss 0442
48/48 [==============================
val loss: .0275

accuracy: 0.7469
Epoch 185/200

- O0s 9ms/step - loss:
- val accuracy:

.9308

.8191

.9367

.9216

.9813

.8729

.0009

.8636

.7826

.8484

0.8560

.8276

.7957

.8094

.8316

.8265

.8243

L7326

.7998

] - 0s 8ms/step - loss:

- val accuracy: 0.7146

] - Os 8ms/step - loss:

- val accuracy: 0.7017

] - Os 9ms/step - loss:

- val accuracy: 0.7106

] - Os 8ms/step - loss:

- val accuracy: 0.6977

] - O0s 9ms/step - loss:

- val accuracy: 0.7153

] - O0s 9ms/step - loss:
- val accuracy: 0.7116

] - O0s 9ms/step - loss:
- val accuracy: 0.7110

- val accuracy: 0.6997

- val accuracy: 0.7010

- val accuracy: 0.7066

- val accuracy: 0.7130

- val accuracy: 0.7163

- val accuracy: 0.7096

- val accuracy: 0.7176

- val accuracy: 0.7110

] - O0s 9ms/step - loss:

- val accuracy: 0.7120

] - 1s 1llms/step - loss:

] - 1s 12ms/step - loss:

] - 1s 1llms/step - loss:

] - 1s 1llms/step - loss:

- 1s 12ms/step - loss:

] - 1s 1llms/step - loss:

] - 1s 12ms/step - loss:

] - 0s 10ms/step - loss:

32

0.7857 -

0.7696 -

0.9203 -

0.8357 -

0.9327 -

0.7819 -

0.7739 -

0.7520 -

0.9964 -

0.9200 -

0.8230 -

0.7675 -

0.7695 -

0.9095 -

0.8353 -

0.7965 -

48/48 | =

accuracy: 0.7528 val loss: 1.0049
Epoch 186/200

48/48 | =

accuracy: 0.7592 val loss: 1.0795
Epoch 187/200

48/48 [=

accuracy: 0.7211 val loss: 1.0382
Epoch 188/200

48/48 [=

accuracy: 0.7389 val loss: 1.0871
Epoch 189/200

48/48 [=

accuracy: 0.7182 val loss: 1.0145
Epoch 190/200

48/48 [=

accuracy: 0.7528 val loss .0260
Epoch 191/200

48/48 [=

accuracy: 0.7528 val loss: 1.0143
Epoch 192/200

48/48 [=

accuracy: 0.7568 val loss: 1.0899
Epoch 193/200

48/48 [=

accuracy: 0.7019 val loss: 1.0538
Epoch 194/200

48/48 [=

accuracy: 0.7140 val loss: 1.0216
Epoch 195/200

48/48 [=

accuracy: 0.7396 - val loss: 0111
Epoch 196/200

48/48 [============================== 1
accuracy: 0.7552 val loss: 1.0206
Epoch 197/200

48/48 [=

accuracy: 0.7569 val loss: 0705
Epoch 198/200

48/48 [=

accuracy: 0.7181 val loss: 1.0019
Epoch 199/200

48/48 [=

accuracy: 0.7377 val loss .0001
Epoch 200/200

48/48 [=

accuracy: 0.7452 val loss .0280
377/377 [============================== 1
accuracy: 0.8049

Train Loss =
Train Accuracy =

0.6130610108375549
0.8048517107963562

95/95 [===================—==========]

accuracy: 0.8073
Test Loss =

Test Accuracy =

0.6281698942184448
0.8073089718818665

- Os 5ms/step - loss:

- 1s 3ms/step - loss:

0.6131 -

0.6282 -

4.0 :
— train acc
— train loss
3.5 4
— val acc
— val loss
3.0+
2.5
%]
(T3]
8 5.0
[=]
L=
[1+]
1.5
1.0 +
0.5 1
0.0 4
T T T T T T T T T
0 25 50 5 100 125 150 175 200
epoch

TWO-STREAM CNN

def Mario CNN (input shape, classes):
X input = Input (input_ shape)

Mario Brothers Split
X1, X2 = tf.split (X input, 2, 2)

Architecture 1

X1 = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="same', name='Al convl') (X1)
X1 = Activation('relu', name='Al relul') (X1)

X1 = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="'same', name='Al conv2') (X1)

X1 = Activation('relu', name='Al relu2') (X1)

X1 MaxPooling2D((1,2), strides=(2,2), name='Al pooll') (X1)

X1 = Conv2D(filters=64, kernel size=(5,5),
strides=(1,1),padding="same', name='Al conv3') (X1)

X1 = Activation('relu', name='Al relu3') (X1)

X1 = MaxPooling2D((1,2), strides=(2,2), name='Al pool2') (X1)

X1 = Conv2D(filters=64, kernel size=(5,1),
strides=(1,1),padding="'same', name='Al conv4') (X1)
X1 = Activation('relu', name='Al relud') (X1)

X1 = Conv2D(filters=64, kernel size=(1,1),
strides=(1,1),padding="'same', name='Al conv5') (X1)

Architecture 2

X2 = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="same', name='A2 convl') (X2)

X2 = Activation('relu', name='A2 relul') (X2)

X2 = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="'same', name='A2 conv2') (X2)

X2

X2

Activation('relu', name='A2 relu2') (X2)
MaxPooling2D((1,2), strides=(2,2), name='A2 pooll') (X2)

X2 = Conv2D(filters=64, kernel size=(5,5),
strides=(1,1),padding="'same', name='A2 conv3') (X2)

X2 = Activation('relu', name='A2 relu3') (X2)

X2 MaxPooling2D((1,2), strides=(2,2), name='A2 pool2') (X2)

X2 = Conv2D(filters=64, kernel size=(5,1),
strides=(1,1),padding="same', name='A2 conv4d') (X2)
X2 = Activation('relu', name='A2 relud') (X2)

X2 = Conv2D(filters=64, kernel size=(1,1),
strides=(1,1),padding="same', name='A2 conv5') (X2)

Mario Brothers Reunion

X = tf.keras.layers.Concatenate (axis=2) ([X1, X2])

X = ZeroPadding2D ((0,1)) (X)

X = Flatten (name='flatten') (X)

X = Dropout (0.5) (X)

X = BatchNormalization (momentum=0.9) (X)

X = Dense (128, activation='relu',name='fcl") (X)

X = Dropout (0.5) (X)

X = Dense(classes, activation='softmax', name='softmax') (X)

model = Model (inputs=X input, outputs=X, name='MarioCNN'")

return model
model = Mario CNN(input shape = (12, 10, 1), classes = 52)
model . summary ()

Model: "MarioCNN"

Layer (type) Output Shape Param #
Connected to
input 2 (InputLayer) [(None, 12, 10, 1)] 0 []
tf.split (TFOpLambda) [(None, 12, 5, 1), 0
["input 2[0][0]"']
(None, 12, 5, 1)]

Al convl (Conv2D) (None, 12, 5, 32) 320
["tf.split[0][0]"]

A2 convl (Conv2D) (None, 12, 5, 32) 320
["tf.split[0][1]"]

Al relul (Activation) (None, 12, 5, 32) 0
['Al convl1[0][0]"]

A2 relul (Activation) (None, 12, 5, 32) 0
['A2 conv1[0][0]"]

Al conv2 (Conv2D) (None, 12, 5, 32) 9248
['Al relul[0][0]"]

A2 conv2 (Conv2D) (None, 12, 5, 32) 9248
['A2 relul[0][0]"']

Al relu2 (Activation) (None, 12, 5, 32) 0
['Al conv2[0][0]"]

A2 relu2 (Activation) (None, 12, 5, 32) 0
['A2 conv2[0][0]"']

Al pooll (MaxPooling2D) (None, 6, 2, 32) 0
['Al relu2[0][0]"']

A2 pooll (MaxPooling2D) (None, 6, 2, 32) 0
["A2 relu2([0][0]"]

Al conv3 (Conv2D) (None, 6, 2, 64) 51264
['Al pooll[0][0]"']

A2 conv3 (Conv2D) (None, 6, 2, 064) 51264
['A2 pooll[0][0]"]

Al relu3 (Activation) (None, 6, 2, 64) 0

['Al _conv3[0][0]']

(None, 6, 2, 64)

Al pool2 (MaxPooling2D)

['Al relu3[0][0]"]

(None,

A2 relu3 (Activation)
['A2 conv3[0][0]"']

1, 64) 0

A2 pool2 (MaxPooling2D) (None,
['A2 relu3[0][0]"']

Al conv4 (Conv2D) (None,
['Al pool2[0][0]"]

A2 conv4 (Conv2D) (None,
['A2 pool2[0][0]"]

Al relu4 (Activation) (None,
['Al conv4[0][0]"']

A2 relu4 (Activation) (None,
['A2 conv4[0][0]"']

Al conv5 (Conv2D) (None,
["Al relud[0][0]"]

A2 conv5 (Conv2D) (None,
['A2 relud[0][0]"]

concatenate (Concatenate) (None,
['Al conv5[0][0]",

'A2 conv5[0][0]"]

zero padding2d 1 (ZeroPadd (None,
['concatenate[0] [0] "]
ing2D)

flatten (Flatten) (None,
['zero padding2d 1[0][0]"]

dropout 2 (Dropout) (None,
["flatten[0] [0] "]

batch normalization 1 (Bat (None,
['dropout 2[0][0]"]
chNormalization)

fcl (Dense) (None,
['batch normalization 1[0][0]"

dropout 3 (Dropout) (None,
["fcl[0][0]"]
softmax (Dense) (None,

['dropout 3[0][0]"]

768)

768)

768)

128)

128)

52)

64)

64)

64)

64)

64)

64)

64)

64)

64)

20544

20544

4160

4160

3072

98432

36

Total params: 279284 (1.07 MB)
Trainable params: 277748 (1.06 MB)

Non-trainable params: 1536 (6.00 KB)

___model.compile (optimizer='adam', loss='categorical crossentropy'

metrics=['accuracy'])

history = LossHistory ()

model.fit (data, label, validation split=0.2, epochs=eps,

batch size=256, verbose=1l, callbacks=[history])

preds train = model.evaluate (X train, Y train)

print ("Train Loss

" + str(preds_train([0]))

print ("Train Accuracy = " + str(preds train[l]))

preds test = model.evaluate (X test, Y test)

print ("Test Loss = " + str(preds_test[0]))

print ("Test Accuracy = " + str(preds_test[1]))

Epoch 1/200

48/48 [

accuracy: 0.0808 val loss: 3.4378 - val accuracy: 0.2216
Epoch 2/200

48/48 [=] - 1s 10ms/step - loss:
accuracy: 0.1877 val loss: 2.6032 - val accuracy: 0.3262
Epoch 3/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.2801 val loss .2404 - val accuracy: 0.4110
Epoch 4/200

48/48 [=] - 0Os 10ms/step - loss:
accuracy: 0.3346 val loss .0589 - val accuracy: 0.4395
Epoch 5/200

48/48 [============= =================] - O0s 9ms/step - loss:
accuracy: 0.3808 val loss .9073 - val accuracy: 0.4897
Epoch 6/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.4045 val loss .7509 - val accuracy: 0.5259
Epoch 7/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.4307 val loss .7139 - val accuracy: 0.5239
Epoch 8/200

48/48 [=] - 0Os 10ms/step - loss:
accuracy: 0.4288 val loss: 1.6165 - val accuracy: 0.5502
Epoch 9/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.4628 val loss: 1.5206 - val accuracy: 0.5807
Epoch 10/200

48/48 [============= =================] - O0s 10ms/step - loss:
accuracy: 0.4815 val loss .5057 - val accuracy: 0.5674
Epoch 11/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.4923 val loss .4245 - val accuracy: 0.5927
Epoch 12/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.5121 val loss .4270 - val accuracy: 0.5914
Epoch 13/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.5225 val loss: 1.3635 - val accuracy: 0.6156
Epoch 14/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.5363 val loss: 1.2972 - val accuracy: 0.6319

Epoch 15/200

] - 9s 22ms/step - loss:

3.6887

3.1135

2.7115

2.4768

2.2660 -

2.1403

2.0146

2.0149

1.8644

1.7984

1.7457

1.6677

1.6169

1.561¢6

37

48/48 |

accuracy: 0.5515 val loss: 1.2735 - val accuracy: 0.6432
Epoch 16/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.5476 val loss: 1.3188 - val accuracy: 0.6189
Epoch 17/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.5410 val loss: 1.2519 - val accuracy: 0.6389
Epoch 18/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.5644 val loss: 1.2353 - val accuracy: 0.6449
Epoch 19/200

48/48 [=] - 1s 13ms/step - loss:
accuracy: 0.5719 val loss: 1.1955 - wval accuracy: 0.6488
Epoch 20/200

48/48 [=] - 1s 12ms/step - loss:
accuracy: 0.5713 val loss .1868 - val accuracy: 0.6542
Epoch 21/200

48/48 [=] - 1s 13ms/step - loss:
accuracy: 0.5819 val loss: 1.1795 - wval accuracy: 0.6535
Epoch 22/200

48/48 [=] - 1s 15ms/step - loss:
accuracy: 0.5928 val loss: 1.1664 - val accuracy: 0.6565
Epoch 23/200

48/48 [=] - 1s 13ms/step - loss:
accuracy: 0.5898 val loss: 1.1443 - val accuracy: 0.6601
Epoch 24/200

48/48 [=] - 1s 13ms/step - loss:
accuracy: 0.5988 val loss: 1.1421 - val accuracy: 0.6791
Epoch 25/200

48/48 [=] - 1s 13ms/step - loss:
accuracy: 0.5845 val loss: 1.1326 - val accuracy: 0.6601
Epoch 26/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.6047 val loss: 1.1460 - val accuracy: 0.6621
Epoch 27/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.5898 val loss: 1.1029 - val accuracy: 0.6711
Epoch 28/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.6183 val loss: 1.0928 - val accuracy: 0.6648
Epoch 29/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.6148 val loss .0971 - val accuracy: 0.6777
Epoch 30/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.6240 val loss: 1.0616 - val accuracy: 0.6847
Epoch 31/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.6216 val loss: 1.0580 - val accuracy: 0.6844
Epoch 32/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.6309 val loss .0782 - val accuracy: 0.6807
Epoch 33/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.6325 val loss: 1.0477 - val accuracy: 0.6917

Epoch 34/200

] - O0s 10ms/step - loss:

1.5222

1.5252

1.5413

1.4539 -

1.4378

1.4406

1.3940

1.3691

1.3755

1.3285

1.3756

1.3003

1.3637

1.2477

1.2602

1.2318

1.2424

1.2035

1.2113

38

] - 1s 1lms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

- Os 10ms/step

- val accuracy: 0.

] - 1s l4ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 1l4ms/step

- val accuracy: 0.

] - 1s léms/step

- val accuracy: 0.

] - 1s 15ms/step

- val accuracy: O.

- 1s 1l4ms/step

- val accuracy: 0.

48/48 | =

accuracy: 0.6396 val loss: 1.0782
Epoch 35/200

48/48 | =

accuracy: 0.6253 val loss: 1.0555
Epoch 36/200

48/48 | =

accuracy: 0.6261 val loss: 1.0727
Epoch 37/200

48/48 | =

accuracy: 0.6159 val loss: 1.0383
Epoch 38/200

48/48 | =

accuracy: 0.6128 val loss: 1.0571
Epoch 39/200

48/48 | =

accuracy: 0.6397 val loss .0486
Epoch 40/200

48/48 | =

accuracy: 0.6304 val loss: 1.0580
Epoch 41/200

48/48 [=

accuracy: 0.6423 val loss: 1.0291
Epoch 42/200

48/48 | =

accuracy: 0.6527 val loss: 0.9967
Epoch 43/200

48/48 | =

accuracy: 0.6580 val loss: 1.0016
Epoch 44/200

48/48 | =

accuracy: 0.6580 val loss: 9957
Epoch 45/200

48/48 [==============================]
accuracy: 0.6463 val loss: 0196
Epoch 46/200

48/48 | =

accuracy: 0.6630 val loss: 0048
Epoch 47/200

48/48 | =

accuracy: 0.6594 val loss: 1.0296
Epoch 48/200

48/48 | =

accuracy: 0.6534 val loss .9920
Epoch 49/200

48/48 | =

accuracy: 0.6777 val loss: 1.0003
Epoch 50/200

48/48 | =

accuracy: 0.6618 val loss: 9901
Epoch 51/200

48/48 [==============================]
accuracy: 0.6657 val loss 9834
Epoch 52/200

48/48 [==============================]
accuracy: 0.6546 val loss: 9896

Epoch 53/200

- Os 10ms/step

- val accuracy: 0.

- loss:

6811

- loss:

6804

- loss:

6887

- loss:

6920

- loss:

6841

- loss:

6993

- loss:

6767

- loss:

6990

- loss:

7033

- loss:

7113

- loss:

7090

- loss:

7013

- loss:

7066

- loss:

6880

- loss:

7040

- loss:

7013

- loss:

7040

- loss:

7023

- loss:

7060

.1820

L2267

.2334

.2498

.2815

L1727

.2200

.1616

.1324

.1106

.1057

.1427

.0892

.0937

.1321

.0290

.0927

.0807

L1077

39

48/48 |

accuracy: 0.6608 val loss: 0.9876 - val accuracy: 0.7050
Epoch 54/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.6662 val loss: 0.9739 - val accuracy: 0.7070
Epoch 55/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.6658 val loss: 0.9942 - val accuracy: 0.7020
Epoch 56/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6515 val loss: 1.0154 - val accuracy: 0.6917
Epoch 57/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.6518 val loss: 0.9620 - val accuracy: 0.7086
Epoch 58/200

48/48 [=] - O0s 9ms/step - loss:
accuracy: 0.6892 val loss .9760 - val accuracy: 0.7070
Epoch 59/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.6795 val loss: 0.9482 - val accuracy: 0.7150
Epoch 60/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.6850 val loss: 0.9348 - val accuracy: 0.7213
Epoch 61/200

48/48 [=] - 0Os 10ms/step - loss:
accuracy: 0.7002 val loss: 0.9350 - val accuracy: 0.7213
Epoch 62/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7035 val loss: 0.9408 - val accuracy: 0.7243
Epoch 63/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7097 val loss: 0.9815 - val accuracy: 0.71
Epoch 64/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.6738 val loss: 0.9562 - val accuracy: 0.7166
Epoch 65/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.6748 val loss: 0.9798 - val accuracy: 0.7163
Epoch 66/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.6762 val loss: 0.9751 - val accuracy: 0.7100
Epoch 67/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.6703 val loss .9539 - val accuracy: 0.7186
Epoch 68/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.6924 val loss: 0.9413 - val accuracy: 0.7140
Epoch 69/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7021 val loss: 0.9307 - val accuracy: 0.7249
Epoch 70/200

48/48 [==============================] - Os 9ms/step - loss:
accuracy: 0.7086 val loss .9749 - val accuracy: 0.7166
Epoch 71/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.6788 val loss: 0.9467 - val accuracy: 0.7169

Epoch 72/200

] - O0s 10ms/step - loss:

1.0898

1.0711

1.0554

1.1327 -

1.1185

0.9873 -

1.0146

0.9967

0.9420

0.9403

0.9185

1.0444

1.0335

1.0285

1.0509

0.9573

0.9467

0.9035 -

1.0191

40

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 1l4ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

- Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: O.

- Os 10ms/step

- val accuracy: 0.

48/48 [=

accuracy: 0.7017 val loss: 0.9605
Epoch 73/200

48/48 [=

accuracy: 0.7135 val loss: 0.9461
Epoch 74/200

48/48 [=

accuracy: 0.6703 val loss: 0.9670
Epoch 75/200

48/48 [=

accuracy: 0.6770 val loss: 0.9540
Epoch 76/200

48/48 [=

accuracy: 0.6829 val loss: 0.9518
Epoch 77/200

48/48 [=

accuracy: 0.7058 val loss .9429
Epoch 78/200

48/48 [=

accuracy: 0.6879 val loss: 0.9563
Epoch 79/200

48/48 [=

accuracy: 0.7165 val loss: 0.9515
Epoch 80/200

48/48 [=

accuracy: 0.6782 val loss: 0.9638
Epoch 81/200

48/48 [=

accuracy: 0.7144 val loss: 0.9368
Epoch 82/200

48/48 [=

accuracy: 0.6969 val loss: 0.9569
Epoch 83/200

48/48 [============================== 1
accuracy: 0.7101 val loss: 0.9369
Epoch 84/200

48/48 [=

accuracy: 0.7153 val loss: 0.9295
Epoch 85/200

48/48 [=

accuracy: 0.7272 val loss: 0.9455
Epoch 86/200

48/48 [=

accuracy: 0.7013 val loss .9521
Epoch 87/200

48/48 [=

accuracy: 0.7152 val loss: 0.9450
Epoch 88/200

48/48 [=

accuracy: 0.6919 val loss: 0.9439
Epoch 89/200

48/48 [============================== 1
accuracy: 0.7250 val loss 9557
Epoch 90/200

48/48 [============================== 1
accuracy: 0.7086 val loss: 9477

Epoch 91/200

- Os 10ms/step

- val accuracy: 0.

- loss:

7130

- loss:

7209

- loss:

7113

- loss:

7136

- loss:

7213

- loss:

7246

- loss:

7209

- loss:

7176

- loss:

7146

- loss:

7203

- loss:

7193

- loss:

7266

- loss:

7256

- loss:

7236

- loss:

7173

- loss:

7196

- loss:

7103

- loss:

7140

- loss:

7193

L9477

.9007

.0585

.0215

.9895

.9138

.9879

.8851

.0296

.8760

.9633

. 9151

.8776

.8423

.9699

.8877

.9732

.8517

.9303

41

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 1s 10ms/step

- val accuracy: 0.

] - Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

- Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 1s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: O.

- 1s 1lms/step

- val accuracy: 0.

48/48 | =

accuracy: 0.7069 val loss: 0.9450
Epoch 92/200

48/48 | =

accuracy: 0.6940 val loss: 0.9599
Epoch 93/200

48/48 | =

accuracy: 0.7147 val loss: 0.9156
Epoch 94/200

48/48 | =

accuracy: 0.7356 val loss: 0.9148
Epoch 95/200

48/48 | =

accuracy: 0.7350 val loss: 0.9372
Epoch 96/200

48/48 | =

accuracy: 0.7178 val loss .9313
Epoch 97/200

48/48 | =

accuracy: 0.7290 val loss: 0.9397
Epoch 98/200

48/48 [=

accuracy: 0.7326 val loss: 0.9337
Epoch 99/200

48/48 | =

accuracy: 0.7279 val loss: 0.9505
Epoch 118/200

48/48 | =

accuracy: 0.7278 val loss: 0.9390
Epoch 119/200

48/48 | =

accuracy: 0.7497 val loss: 0.9616
Epoch 120/200

48/48 [==============================]
accuracy: 0.6969 val loss: 0.9403
Epoch 121/200

48/48 | =

accuracy: 0.7509 val loss: 0.9334
Epoch 122/200

48/48 | =

accuracy: 0.7462 val loss: 0.9385
Epoch 123/200

48/48 | =

accuracy: 0.7401 val loss .9256
Epoch 124/200

48/48 | =

accuracy: 0.7664 val loss: 0.9435
Epoch 125/200

48/48 | =

accuracy: 0.7240 val loss: 9484
Epoch 126/200

48/48 [==============================]
accuracy: 0.7072 val loss 9241
Epoch 127/200

48/48 [==============================]
accuracy: 0.7553 val loss: 9614

Epoch 128/200

- 1s 13ms/step

- val accuracy: 0.

- loss:

7262

- loss:

7143

- loss:

7233

- loss:

7289

- loss:

7246

- loss:

7282

- loss:

7243

- loss:

7186

- loss:

7203

- loss:

7342

- loss:

7216

- loss:

7176

- loss:

7256

- loss:

7249

- loss:

7336

- loss:

7336

- loss:

7256

- loss:

7306

- loss:

7282

.9039

L9729

.8729

.8032

.8085

.8878

.8352

.8274

.8433

.8489

L7649

.9693

L7701

.7663

.7988

.7096

.8600

.9166

.7618

42

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 12ms/step

- val accuracy: 0.

] - 1s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

- Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: O.

- Os 10ms/step

- val accuracy: 0.

48/48 [=

accuracy: 0.7396 val loss: 0.9544
Epoch 129/200

48/48 [=

accuracy: 0.7345 val loss: 0.9214
Epoch 130/200

48/48 [=

accuracy: 0.7410 val loss: 0.9445
Epoch 131/200

48/48 [=

accuracy: 0.7485 val loss: 0.9445
Epoch 132/200

48/48 [=

accuracy: 0.7592 val loss: 0.9471
Epoch 133/200

48/48 [=

accuracy: 0.7572 val loss .9364
Epoch 134/200

48/48 [=

accuracy: 0.7735 val loss: 0.9680
Epoch 135/200

48/48 [=

accuracy: 0.7464 val loss: 0.9435
Epoch 136/200

48/48 [=

accuracy: 0.7594 val loss: 0.9493
Epoch 137/200

48/48 [=

accuracy: 0.7689 val loss: 0.9685
Epoch 138/200

48/48 [=

accuracy: 0.7464 val loss: 9664
Epoch 139/200

48/48 [============================== 1
accuracy: 0.7653 val loss: 0.9595
Epoch 140/200

48/48 [=

accuracy: 0.7396 val loss: 0.9389
Epoch 141/200

48/48 [=

accuracy: 0.7601 val loss: 0.9634
Epoch 142/200

48/48 [=

accuracy: 0.7723 val loss .9869
Epoch 143/200

48/48 [=

accuracy: 0.7397 val loss: 0.9771
Epoch 144/200

48/48 [=

accuracy: 0.7459 val loss: 0.9595
Epoch 145/200

48/48 [============================== 1
accuracy: 0.7459 val loss 9641
Epoch 146/200

48/48 [============================== 1
accuracy: 0.7282 val loss: 9521

Epoch 147/200

- 1s 10ms/step

- val accuracy: 0.

- loss:

7143

- loss:

7352

- loss:

7252

- loss:

7289

- loss:

7259

- loss:

7309

- loss:

7332

- loss:

7319

- loss:

7299

- loss:

7292

- loss:

7336

- loss:

7349

- loss:

7369

- loss:

7342

- loss:

7269

- loss:

7216

- loss:

7286

- loss:

7332

- loss:

7289

.8048

.8353

.7940

.7855

.7268

L7252

.6841

.7878

.7366

.7039

.8043

L7239

.8058

.7398

. 6877

.8046

L7891

.7859

.8409

43

48/48 |

accuracy: 0.7687 val loss: 0.9619 - val accuracy: 0.7326
Epoch 148/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.7549 val loss: 0.9882 - val accuracy: 0.7266
Epoch 149/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.7477 val loss: 0.9621 - val accuracy: 0.7256
Epoch 150/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.7234 val loss: 0.9632 - val accuracy: 0.7229
Epoch 151/200

48/48 [=] - 0s 10ms/step - loss:
accuracy: 0.7443 val loss: 0.9661 - val accuracy: 0.7269
Epoch 152/200

48/48 [=] - O0s 10ms/step - loss:
accuracy: 0.7710 val loss .9850 - val accuracy: 0.7239
Epoch 153/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7748 val loss: 0.9767 - val accuracy: 0.7326
accuracy: 0.7437 val loss: 0.9932 - val accuracy: 0.7312
Epoch 159/200

48/48 [=] - 1s 1l4ms/step - loss:
accuracy: 0.7800 val loss: 1.0220 - val accuracy: 0.7259
Epoch 160/200

48/48 [=] - 1s 13ms/step - loss:
accuracy: 0.7226 val loss: 0.9922 - val accuracy: 0.7223
Epoch 161/200

48/48 [=] - 1s 1llms/step - loss:
accuracy: 0.7451 val loss: 9923 - val accuracy: 0.7193
Epoch 162/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.7725 val loss: 9508 - val accuracy: 0.7336
Epoch 163/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7651 val loss: 9914 - val accuracy: 0.7249
Epoch 164/200

48/48 [==============================] - Os 9ms/step - loss:
accuracy: 0.7553 val loss 9763 - val accuracy: 0.7276
Epoch 165/200

48/48 [=] - 1s 1llms/step - loss:
accuracy: 0.7499 val loss .0140 - val accuracy: 0.7130
Epoch 166/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7371 val loss: 0.9609 - val accuracy: 0.7226
Epoch 167/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7578 val loss: 9673 - val accuracy: 0.7252
Epoch 168/200

48/48 [==============================] - Os 10ms/step - loss:
accuracy: 0.7751 val loss: 9751 - val accuracy: 0.7279
Epoch 169/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7890 val loss: 0.9746 - val accuracy: 0.7352
Epoch 170/200

48/48 [=] - Os 10ms/step - loss:
accuracy: 0.7771 val loss: 0.9969 - val accuracy: 0.7236

Epoch 171/200

] - O0s 10ms/step - loss:

0.7062

0.7556

0.7996

0.8592

0.7608

0.6865

0.6815

0.6705

0.8632

0.7958

0.6953

0.7078

0.7439 -

0.7623

0.7967

0.7451

0.6773

0.6263

0.6701

44

] - 1s l4ms/step

- val accuracy: 0.

] - 1s 1l4ms/step

- val accuracy: 0.

] - 1s 13ms/step

- val accuracy: 0.

] - 1s 1llms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

- Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

- Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

- Os 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 0s 10ms/step

- val accuracy: 0.

] - 1s 1lms/step

- val accuracy: 0.

- 0s 10ms/step

- val accuracy: 0.

48/48 [=

accuracy: 0.7599 val loss: 1.0013
accuracy: 0.7682 val loss: 0.9921
Epoch 185/200

48/48 [=

accuracy: 0.7549 val loss: 1.0040
Epoch 186/200

48/48 [=

accuracy: 0.7700 val loss: 0.9859
Epoch 187/200

48/48 [=

accuracy: 0.7973 val loss: 1.0128
Epoch 188/200

48/48 [=

accuracy: 0.7669 val loss .0204
Epoch 189/200

48/48 [=

accuracy: 0.7883 val loss .0250
Epoch 190/200

48/48 [==============================]
accuracy: 0.7894 val loss 0130
Epoch 191/200

48/48 [=

accuracy: 0.7931 val loss: 0.9946
Epoch 192/200

48/48 [=

accuracy: 0.8001 val loss: 1.0099
Epoch 193/200

48/48 [=

accuracy: 0.8001 val loss: 1.0217
Epoch 194/200

48/48 [==============================]
accuracy: 0.7917 val loss: 0074
Epoch 195/200

48/48 [=

accuracy: 0.8108 val loss: 0472
Epoch 196/200

48/48 [==============================]
accuracy: 0.8014 val loss 0746
Epoch 197/200

48/48 [=

accuracy: 0.7746 val loss .0410
Epoch 198/200

48/48 [=

accuracy: 0.7884 val loss: 1.0289
Epoch 199/200

48/48 [=

accuracy: 0.7944 val loss: 0188
Epoch 200/200

48/48 [==============================]
accuracy: 0.8005 val loss 0536
377/377 [==============================]
accuracy: 0.8846

Train Loss =
Train Accuracy =

0.4105406403541565
0.8846058249473572

95/95 [

accuracy: 0.8794

Test Loss =

0.4465959370136261

] - 0s 9ms/step - loss:
- val accuracy: 0.
- val accuracy: 0.

7209
7362

- loss:

7269

- loss:

7249

- loss:

7266

- loss:

7243

- loss:

7262

- loss:

7236

- loss:

7369

- loss:

7346

- loss:

7385

- loss:

7309

- loss:

7329

- loss:

7233

- loss:

7276

- loss:

7326

- loss:

7292

- loss:

7309

- 2s 4ms/step - loss:

] - 1s 5ms/step - loss:

45

0.7395 -

0.7465 -

0.7079 -

0.6058 -

0.7111 -

0.6535 -

0.6310 -

0.6393 -

0.6045 -

0.6173 -

0.6285 -

0.5553 -

0.5985 -

0.7101 -

0.6393 -

0.6331 -

0.6045

0.4105 -

0.4466 -

Test Accuracy = 0.8794019818305969

dic = {}

dic[l] =1

dic[2] = 2

dic([3] = [3, 3, 4]

dic[4] = [2, 2, 3, 3]

dic[5] = 5

dic[e6] = [1, 1, 2, 2, 2, 2]
dic[7] = [1, 1, 1, 1, 2, 2, 2]
dic[8] = [1, 1, 1, 1, 1, 1, 2, 2]
dic[9] = [1, 1, 1, 1, 1, , , , 2]
dic[10] = 10

def Mario CNN plus (input shape, classes, n of streams, dic):

X input = Input (input shape)
split rules = dic[n of streams]

Mario Brothers Split

Xsl = tf.split (X input, split rules, 2)
Xs2 = []

i=20

Multiple Streams
for X in Xsl:

i +=1
X = Conv2D(filters=32, kernel size=(3,3),
strides=(1,1),padding="'same', name= (str(i) + ' convl')) (X)

X = Activation('relu', name=(str(i) + ' relul')) (X)

X Conv2D (filters=32, kernel size=(3,3),
strides=(1,1),padding="'same', name=(str(i) + ' conv2')) (X)

X = Activation('relu', name=(str(i) + ' relu2')) (X)

X = MaxPooling2D((1,1), strides=(1,1), name=(str (i) +
'_pooll')) (X)

X = Conv2D(filters=64, kernel size=(5,5),
strides=(1,1),padding="'same', name=(str (i) + ' conv3')) (X)

X = Activation('relu', name=(str(i) + ' relu3')) (X)

X = MaxPooling2D((1,1), strides=(1,1), name=(str (i) +
'_pool2')) (X)

X = Conv2D(filters=64, kernel size=(5,1),
strides=(1,1),padding="'same', name=(str (i) + ' conv4d')) (X)
X

Activation('relu', name=(str (i) + ' relud')) (X)

X = Conv2D(filters=64, kernel size=(1,1),
strides=(1,1),padding="'same', name=(str (i) + ' conv5'")) (X)

46

Xs2.append (X)

Mario Brothers Reunion

X = tf.keras.layers.Concatenate (axis=2) (Xs2)

X = ZeroPadding2D ((0,1)) (X)

X = Flatten (name='flatten') (X)

X = Dropout (0.5) (X)

X = BatchNormalization (momentum=0.9) (X)

X = Dense (128, activation='relu',name='fcl') (X)

X = Dropout (0.5) (X)

X = Dense(classes, activation='softmax', name='softmax') (X)

model = Model (inputs=X input, outputs=X, name='MarioCNN')

return model

train_acc = []
test_acc = []
for j in range(l, 11):

model = Mario CNN plus (input shape = (12, 10, 1), classes = 52,
n of streams = j, dic=dic)

model.compile (optimizer="adam', loss='categorical crossentropy',
metrics=['accuracy'])

history = LossHistory()

model.fit (data, label, validation split=0.2, epochs=eps,
batch size=256, verbose=1, callbacks=[history])

preds train = model.evaluate (X train, Y train)

print ("Train Accuracy = " + str(preds_train[l]))

train_acc.append(preds_train[1l])

preds test = model.evaluate (X test, Y test)

print ("Test Accuracy = " + str(preds test[l]))

test acc.append(preds test[1])

history.loss _plot('epoch')

— train acc
3.0 — train loss
— wal acc
— wal loss
2.5
2.0
w
wl
=2
L
s 1.5
1.0
0.5

T T T T T
O 25 50 75 100 125 150 175 200
epoch

48

LIST OF PUBLICATION

[1] Sudhir Kumar, Rajesh Birok “.Enhanced sEMG Signals Process with Two-Stream CNN on
Gesture Classification” has been accepted for Publication in thel5th IEEE International
Conference on Computing ,Communication and Networking Technologies(ICCNT),IIT
Mandi,India.

5/27/24, 10:44 AM Gmail - 15th ICCCNT 2024 submission 2440

NI Gmaill SUDHIR KUMAR <sudhirkumardos999@gmail.com>

15th ICCCNT 2024 submission 2440

1 message

15th ICCCNT 2024 <15thicccnt2024@easychair.org> Mon, May 27, 2024 at 7:38 AM

To: Sudhir Kumar <sudhirkumardos999@gmail.com>

"Dear Authors,
Paper 1D:2440
Title: Enhanced sEMG Signals Process with Two-stream CNN on Gesture Classification

Congratulations! Your paper got accepted.
Similarity/Plagiarism Index: 11.2%

1. Work flow is good with sufficient results.

2. Provide a comparison table of proposed method with the state-of-the-art methods.

3. In table I, contents in the images are hard to read. Split the table such that, the content are clearly visible.

4. Does the accuracy value remains constant after 200 epochs?

5. Separate section for 'Results and Discussion' and Conclusion can be given. Conclusion can be precise and clear.
6. Plagiarism in the abstract should be reduced.

Author affiliation and paper should be in IEEE conference template
(https://www.ieee.org/conferences/publishing/templates.html)

***Complete the registration process immediately after receiving this email in order to prepare the presentation schedule
(https://15iccent.com/register/index.php).

For making payments (Indian Authors), using following bank account
Name of the Bank: Axis Bank

Account Name: ICCCNT Foundation

Account Name: 920020042183777 (savings bank account)

IFSC Code: UTIB0002811

Branch: Singanallur, Tamil Nadu, India

For authors outside India :
Paypal ID will be send soon (Kindly mention your Paper Id while making payments).

Fee Details: The fee details are mentioned in the following link https://15icccnt.com/registration.php
Similarity/Plagiarism Index should be below 5%.
Kindly update your manuscript based on the above comments and also update the same in the Easychair login at the

same paper ID.
We will inform you of any further updates or changes required, if any.

Best regards,
15th ICCCNT 2024"

https://mail.google.com/mail/u/0/?ik=08c668b6ac&view=pt&search=all&permthid=thread-f:1800169786824390939&simpl=msg-f: 1800169786824 390939

m”m

Similarity Report

PAPER NAME AUTHOR
Two sream cnn method.docx Sudhir Kumar

WORD COUNT CHARACTER COUNT

4671 Words 26958 Characters

PAGE FILE SIZE

COUNT 862.0KB

16 Pages

SUBMISSION DATE REPORT DATE

May 26, 2024 2:19 PM GMT+5:30 May 26, 2024 2:19 PM GMT+5:30

® 7% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

* 3% Internet database » 4% Publications database
* Crossref database » Crossref Posted Content
. database3% Submitted Works database

® Excluded from Similarity Report

+ Bibliographic material * Quoted

- materialSmall Matches (Less then 8 words)

Summary

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis

Total Pages Name of the Scholar

Supervisor (s)

(1)
2)
)

Department

This is to report that the above thesis was scanned for similarity detection. Process and outcome is given

below:

Software used: Similarity Index: , Total Word Count:

Date:

Candidate's Signature Signature of Supervisor(s)

