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STUDY OF ECONOMICS APPLICATIONS IN CERTAIN NON-

LINEAR PROGRAMMING DUALITY PROBLEMS 

Harshita Gupta , Anuja 

 

ABSTRACT  
 

 

The duality of nonlinear programming problems can provide interesting economic 

interpretations of nonlinear programming resource allocation models. An economic 

interpretation of dual problems specifies how changing the value of resources can 

change the optimal solution. In the first parts of this article, we will briefly 

introduce the concept of linear and non-linear programming. This article also 

provides some effective methods for solving nonlinear programming problems such 

as Lagrangian Method, Karush-Kuhn Tucker (KKT) conditions along with 

examples. Subsequently, the concept of duality for nonlinear programming is 

introduced. Various types of duals like Wolfe dual, Lagrangian dual are discussed 

in detail along with their examples. The Economic interpretation of duality is then 

explained in detail. An example of economic interpretation based on real life is also 

discussed. 

Keywords: Duality, KKT method, Lagrangian method, Economic interpretation, 

Wolfe Dual, Lagrangian Dual 
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CHAPTER 1 

 

NON-LINEAR PROGRAMMING PROBLEM: OVERVIEW 

 

 

 

1.1 Convex and Concave functions 

 

 

In creating models, concave and convex functions are essential. 

Convex set: Consider S be a non-empty set and assume arbitrary points x1 and x2 of S , 

then S be convex set if for any λ ∈ (0,1) ,  λx1 + (1- λ)x2 ∈ S. 

 

Convex function: Consider S ⊆ Rn to be convex set and f : S→R , f(x) be convex when 

 

f (λx + (1- λ)y ) ≤ λf(x) + (1- λ) f(y) , λ ∈ [0,1] ,  x,y ∈ S 

 

Concave function: Let S ⊆ Rn be convex set and f : S→R, f(x) is concave if, 

 

                          f ( λx + (1- λ)y ) ≥ λf(x) + (1- λ) f(y) , λ ∈ [0,1]  , x,y ∈ S 

 

1.2 Non Linear Programming Problem (NLPP) 

 

 

A Linear Programming Problem (LPP)  is a special case of NLPP in which there are 

specific linear restrictions and a linear objective function (OF)  that needs to be 

minimized or maximized. 

Standard form of LPP is: 

                                                        Max z = p1x1+ p2x2 + … + pnxn 

 

st  

            q11x1 + q12x2 + … + q1nxn =  b1 

 

            q21x1 + q22x2 + … + q2nxn =  b2 

     

                                                                   … 

                                                     qm1x1 + qm2x2 + … + qmnxn = bm 



  

 

 

2 

 

                                                    xi ≥ 0 , ∀ i = 1 to m 

where pi ∈ ℝnx1 , qi ∈ ℝmxn , bi ∈ ℝmx1 are real numbers. Variables  xi , i=1 to n are distinct  

 

In compact vector notation, the standard problem becomes: 

      Max{P}T as Z{X} 

                                           st                                                          

                                                      Q{X} = {B} 

                                                       

                                                    {X} ≥ 0 

Real-world optimization problems that can be formulated using linear objective 

functions as well as linear equality or inequality constraints are called linear 

optimization, while if such a problem cannot be formulated, this optimization problem 

is nonlinear. The accuracy rate of nonlinear programming is higher than that of linear 

programming and it can be applied to large-scale systems. In NLPP either we have 

nonlinear objective function or the constraints defining the feasible region are 

nonlinear.  

 

The general form of NLPP is:-[1] 
 

                Max f (x1 ,x2 , … ,xn),         

     st 

                                                      g1 ( x1 ,x2 , … ,xn )  ≤  b1 , 

  

                    … 

 

                                                      gm ( x1 ,x2 , … ,xn )  ≤ bm  

where g1 to gm, the constraint functions, are given and, 

       f ( x1 ,x2 , … ,xn ) = ∑ cj xj ,                   (i=1 to m) 

and gi ( x1 ,x2 , …  ,xn ) = ∑ aij xj (j =1 to n). 

 

 

In a compact vector notation, the standard problem becomes:[2] 

    Max f(x) , 
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                                          st 

                                                      gi (x) ≤  bi ( i = 1 to m ). 

 

 

For a linear programming, a feasible convex region is one that is described by a less than 

inequality with a convex function. For an NLPP i.e. gi (x) for i = 1 to m are convex 

function and points x = y and x = z satisfies gi (x)  ≤  bi ,i = 1 to m , λ ∈ [0,1] ,  

λy  + (1- λ) z is also feasible as the inequality  

gi ( λy  + (1- λ)z )  ≤  λ gi(y) + (1- λ) gi (z)  ≤  λ bi + (1- λ) bi = bi 

holds for every constraint. When the constraints are given by ≥ inequality and functions 

are convex, then feasible region is convex. 

 

 

Ques: Product of one unit of bottle by company H required 1 hr of production time and 

A requires 2 hr of production time. Having Total available time 100 hrs . Two firms H 

and A manufacture same product. Sale price relation for two company is given by the 

following table. 

 

Company Selling Price          Cost Function       Required quantity       Price/unit 

 

H       20                  400x1+0.2x1
2 + 20 200-8p1                          p1  

A                                10                    200x2+0.5x2
2 + 30 800-2p2                         p2  

 

Both company requires electricity where company H requires 8 units/ unit 

production and A requires 10 units/ unit production having supply limits to 400 units 

per day. Formulate the NLPP. 

 

 

Solution: Let the company H and A produces x1 and x2 units respectively. Cost 

function is given by: 

 

C1=400x1+0.2x1 
2 + 20 for H 

C2=200x2+0.5x2
2+30for A 

and, x1 = 200-8p1 , x2 = 800-2p2 

p1 = 
200−𝑥1

8
  ,  p2 = 

800−𝑥2

2
   

p1 = 25 - 0.125 x1 and p2 = 400 - 0.5x2 

Total revenue = p1x1 + p2x2 

R = ( 25 - 0.125 x1)x1 + ( 400 - 0.5x2 )x2 

    = 25x1 - 0.125x1
2 + 400x2 - 0.5x2

2 
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Therefore, Profit z = R - C1 - C2 

  = ( 25x1 - 0.125x1
2 + 400x2 - 0.5x 2 ) – ( 400x1 + 0.2x 2 + 20) - (200x2 + 0.5x2

2 + 30) 

     = 25x1 - 0.125x1
2 + 400x2 - 0.5x2

2 - 400x1 - 0.2x1
2 - 200x2 - 0.5x 2 - 30 

     = -375x 1- 0.325x1
2 + 200x2 - x2

2 – 50 

Therefore , NLPP becomes : 

Max z = -375x1 - 0.325x1
2 + 200x2 - x2

2 - 50 

Subject to 

8x1 + 10x2  ≤  400  

x1 + 2x2  ≤  100  

x1 , x2  ≥ 0 

 

 

NLPP has various types and no single algorithm can solve every kind of NLPP. Various 

techniques have been created to address various NLPP types. 

 

1.2.1 Various types of NLPP are [3] 

 

 

1. Unconstrained optimization: 

An optimization problem without any constraint is known as unconstraint optimization 

problem. Standard form is: 

Maximize f(x) for all x = ( x1,x2, … ,xn ) 

When f(x) is a differentiable function, the prerequisite for x = x* to be the optimal 

solution be:  

       ∂f / ∂xj (x = x* ) = 0   , j = 1 , 2, … , n 

For concave function f, the aforementioned requirement is also satisfied. 

The previous sufficient and necessary conditions marginally alter and become when the 

variable xj lacks non-negativity constraints, xj  ≥  0.   
 

                     ∂f/∂xi= {
≤  0 , 𝑎𝑡 𝑥 =  𝑥 ∗  𝑖𝑓  𝑥𝑗 ∗ =  0
= 0,     𝑎𝑡 𝑥 =  𝑥 ∗  𝑖𝑓  𝑥𝑗 ∗ >  0

     ∀ 𝑗                                                     

 

2. Linearly constrained optimization problem: 

In these problems, we consider the feasible region of LPP along with one nonlinear 

function, and the simplex method can be extended to handle such issues. These 

problems have constraints that fully satisfy the linear programming. In this case, all 

gi(x) are linear however, f(x), the OF, is not linear. 

 

3.  Quadratic programming problem: 
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For these situations, linear constraints and a quadratic objective function (f(x)) are 

needed. 

 

4. Convex programming problem (CPP) : 

Assuming maximizing the OF with 

a. Function f(x) exhibits convexity. 

b. Each gi(x) have convexity. 

In this case the local maxima become the global maxima. In case of minimization, f is 

concave function. 

 

5. Separable Programming Problems: 

If f(x) is separable, then functions of individual variables can be separated into sums of 

their functions. Separable functions are those whose terms involve only one variable.   
f(x) = ∑ 𝑓𝑛

𝑗=1 j (xj) where terms involving xj are included in each fj (xj). An extension of 

convex programming, separable programming requires that f(x) and gi (x) be separable 

functions. 

6. Non-Convex Programming Problem: 
NLPP not satisfying the condition of convex programming problem are said to be non-

convex programming problems. An algorithm that finds the best answer to these kinds of 

problems does not exist. 

 

7. Geometric Programming Problem: 

When NLPP is used to solve economic and statistical problems, the constraints and OF 

become:  

g(x) = ∑ 𝑐𝑁
𝑖=1 i Pi (x) 

where, Pi (x) = 𝑥1
𝑎𝑖1𝑥2

𝑎𝑖2  . . . 𝑥𝑛
𝑎𝑖𝑛 i= 1 to N , and ci and aij represents physical constants, 

xj is the design variable. These functions are neither convex nor concave 

 

8. Fractional Programming Problems: 
The OF in these kinds of problems have the form :  

                                            

                                           Max f(x) = 
𝑓1(𝑥)

𝑓2(𝑥)
  

Best way to solve the fractional programming problem is by transforming it into standard      

problem for which solution is available. 

 

1.2.2 We now discuss some methods of solving NLPP: 

 

 

a) Lagrangian Multiplier Method: 

This method is pertinent for solving NLPP having constraints with equality sign. 

Consider general NLPP with equality constraints, 
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                                                     Max/Min z = f (X) 

st 

                                                     gi(X) = 0 ,      i = 1 to m 

                                                          X ≥ 0         ,  X = (x1 , x2, … ,xn) 

To ascertain the prerequisite for the minimum or maximum value of z, we create new 

function L by adding a multiplier λ , also referred to as the Lagrange multiplier or 

Lagrangian. 

L(X, λ) = f(X) + λ g(X)       λ is unrestricted in sign 

The given constrained optimization problem is transformed into an unconstrained 

optimization problem by using  Lagrangian multiplier. Necessary conditions are given 

by: 
𝜕𝐿

𝜕𝑋
 = 0 ,   

𝜕𝐿

𝜕𝜆
 = 0 

Solving these two equations we get the stationary points (X*,λ*). Solve the above 

equations to find x1 , x2 , x3,... , xn , λ . Sufficient condition for general NLPP at the 

stationary points (X*,λ*) can be found by two methods: 

 

Method 1 

Necessary condition becomes sufficient condition for max(min) if : 

1. f(x), the objective function, is concave (convex). 

2. Constraints have equality sign 

 

 

Method 2 

In this method we define a bordered Hessian Matrix HB as HB =[
0 𝑈
𝑈𝑇 𝑉

] 

HB is a (m + n) x (m + n) matrix and m being composed of m constraints and n variables. 

 

U = [
𝜕𝑔

𝜕𝑋
] = [

𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2
⋯

𝜕𝑔

𝜕𝑥𝑛
] 

V = [
𝜕2𝐿

𝜕𝑋2
]  = 

[
 
 
 
 

𝜕2𝐿

𝜕𝑥1
2 ⋯

𝜕2𝐿

𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝐿

𝜕𝑥𝑛𝜕𝑥1
⋯

𝜕2𝐿

𝜕𝑥𝑛
2 ]

 
 
 
 

 

Now at the stationary point (X*, λ*). Calculate the final principal minors (n-m) of 

Hessian matrix HB beginning with principle minor of order 2m+1. The stationary 

points is a maximum point if the principle minors forms Alternative signs starting 

with (-1)m+n and if the principle minors exhibit signs of the form (-1)m , the 

stationary point is the minimum point. 
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b) Karush-Kuhn Tucker Condition (KKT Conditions): 

KKT condition is used for finding solution of NLPP having constraints with inequality. It 

is also called first derivative test. Consider general NLPP with inequality constraints, 

                                                      Max/Min z = f(x) 

                                            st 

                                                      gi (x)  ≤  bi ,         i = (1 to m) 

                                                            x ≥ 0,                  x = (x1,x2, … ,xn) 

General NLPP for Maximization case, 

                                                          Max z = f (x) 

                                             st                                                               … (1.1) 

                                                     gi (x) ≤ bi 

Convert each inequality constraint into equality constraint by adding the non negative 

slack variables si
2. Consequently, the initial problem turns into 

 

                                                      Max f(x) 

                                        st 

                                                        gi(x) + si
2  = b       x ≥ 0                   … (1.2) 

 

                                                     Max f (x) 

                                            St                                                                         … (1.3) 

                                                           hi(x) = 0   where hi (x) = gi (x) + si
2 - bi                

                                                           x ≥ 0
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Now applying Lagrangian multiplier method : 

L(x, s ,λ) = f (x) + ∑ 𝜆i ℎi (𝑥) 

                = f (x) - ∑ 𝜆I (gi (x) + si
2 – bi ) 

Necessary condition:  
𝜕𝐿

𝜕𝑥
 = 0 ⇒ 

𝜕𝑓

𝜕𝑥
 - ∑𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥
 = 0                                  … (1.4) 

 
𝜕𝐿

𝜕𝜆𝑖
 = 0  ⇒  gi (x) + si 

2 – bi = 0 ⟹ si 
2 = bi  - g (x)                                … (1.5) 

 
𝜕𝐿

𝜕𝑠𝑖
  = 0 ⇒ λi si

2  = 0 ⟹ λi (bi - gi (x)) = 0                                   (from 1.5) 

          ⟹ 𝜆i = 0 or bi = gi (x) 

Given that λi calculates the rate at which f varies in relation to bi . 

Hence 
𝜕𝑓

𝜕𝑏𝑖
 =  𝜆𝑖 and 𝜆i si = 0 ⟹ 𝜆i = 0 or si = 0 or both zero. 

 

 

Case 1: si ≠ 0 ⟹ 𝜆I = 0 

Since gi (x) + si
2  = bi ⟹ gi (x)  ≤  bi 

Hence the constraint is satisfied as strict inequality. Therefore if we make the constraint 

larger stationary point will not be affected. 

 

 

Case 2: λi ≠ 0 ⟹ si = 0 

⟹ Constraints are satisfied as equality 

 Let λi < 0 , 
𝜕𝑓

 𝜕𝑏𝑖
 < 0. Hence if  bi increases , the OF decreases . As bi  decreases, more space 

becomes feasible and OF cannot decrease.  

⟹ 𝜆i > 0 or 𝜆i = 0 

⟹  𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑖𝑡𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠 𝑎𝑠 𝜆i  ≥  0. 

Similarly for minimum case. 

 

Hence the necessary condition for 

i) Maximization case: 

Max f (x) 

St 

gi (x) ≤ b 
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is: 

 
𝜕𝐿

𝜕𝑥
 = 0 

λi (g-b) = 0 

λ ≥ 0 

gi  ≤  bi  

λi ≥ 0 

 

ii) Minimization case:     

Min f(x) 

St 

gi(x) ≤ bi 

𝜕𝐿

𝜕𝑥
 = 0 ⇒ 

𝜕𝑓

𝜕𝑥
 - ∑𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥
 = 0   

λi (g-b) = 0 

gi  ≤  bi 

λi ≤ 0 

 

 

Now the sufficient conditions are: 

1. Maximization case If 

a)  f(x) shows concavity and 

b)  gi (x) be convex, then the KKT necessary conditions becomes sufficient. 

2.  Minimization case If 
a) f(x) shows convexity and 

b) gi (x) be convex, then the KKT necessary conditions becomes sufficient. 

 

 

Example: Solve the given NLPP using KKT conditions 

                                     Max z = 2.4 x1 - 0.4 x1
2 + 0.8x2 - 0.2 x2

2 

Subject to            

                                     2x1 + x2 ≤ 10  

                                       x1 , x2 ≥ 0 
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Solution: L = f (x) – λ g(x) 

                 = (2.4x1 – 0.4x1
2 + 0.8x2 – 0.2x2

2 ) – λ(2x1 + x2 - 10) 

Necessary condition: 
𝜕𝐿

𝜕𝑥1
 = 0 , 

𝜕𝐿

𝜕𝑥2
 = 0 , λ ≥ 0 , g ≤  0, X ≥ 0. 

⟹ 2.4 - 0.8x1 - 2 λ = 0     ...(1) 

      0.8 - 0.4x2 - λ = 0         ...(2) 

      λ ( 2x1 + x2 – 10) = 0    ...(3) 

      λ ≥ 0                               ...(4)  

      2x1 + x2  ≤ 10                  …(5) 

      x1 , x2 ≥ 0  

Case 1: Let λ = 0 

From 1 and 2 we get x1 = 3, x2 = 4 

Altering the x1 and x2 values in the formula 5 we get 10 = 10. Hence x1 and x2 satisfies 

(5) also .  

The stationary points are given by : (x1,x2,λ) = (3,4,0) 

The KKT necessary condition will be met when the problem is one of maximizing, f(x) be 

a concave function while g(x) ≤ 0 being a convex function. 

Forming the Hessian matrix for f(x) we get HB = |
−0.8 0

0 −0.4
| 

Minors are : D1 = -0.8  

                    D2 = 0.32 

Since minors D1 and D2 have opposite signs starting with < 0 . Hence we proved f(x) to be 

Concave. 

Since g(x) = 2x1 + x2 ≤ 10 is linear function and its all linear functions be convex. Therefore      

g(x) is convex and hence the KKT necessary condition is also a sufficient condition. 

Therefore z = 3.6 
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CHAPTER 2 

 

 

DUALITY IN NONLINEAR PROGRAMMING PROBLEM 

 

 

 
 

Duality is a crucial idea in both linear and nonlinear problems. It is significantly simpler 

to solve a dual problem than a primal problem, and duality helps with convergence, 

finding the near-optimal solution, sensitivity analysis of the primal problem, and many 

other things. [4]. 

 

2.1 The canonical primal (CP) and canonical dual (CD) problems: 

 

 

The CP problem of X is as follows if X be nonempty convex set and all of its functions 

are convex.:                          

                                                         Min f(x) 

                                           st                                                                                             (P) 

                                                       g(x) ≤ 0, x ∈ X  

where g(x) = (g1(x), … ,gm(x))t , and function f and gi’s are all real-valued defined on X 

⊆ Rn . Next, its Dual in relation to the g-constraint is provided by: 

 

                                 Maximize [inf f (x)+ ut g(x) , u ≥ 0                              (D)                                        

where u is a dual variable m-vector. 

2.2 Lagrange Multiplier: 

 

The dual is represented by transforming the provided problem into a standard 

Lagrange multiplier problem. We are restricting our discussion to convex case 

only. Let us consider real valued function f , gi (i=1 to m) which are convex 

functions over ℝn . 

Consider the following LPP: 

            Min f(x)  

 s.t                                                                              … (2.1) 

                        gi(x) ≤ 0    i ={1 to m} 
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Lagrange function is given by :                                                                                                       

L(x, λ) = f (x) + ∑ 𝜆𝑖 
𝑚
𝑖=1 gi(x) 

             = f (x) + λt g (x)        X ∈ Rn , g(x) = (g1(x), … ,gm(x))t 

To construct dual for LPP, we construct the following functions. 

L*(x) = Max L(x, λ),λ ≥ 0 be the primal function.  

L*(x) = Min L(x, λ) be the dual function. 

L*(x) can be written as: 

L*(x) = Max L(x, λ) λ ≥ 0 

          = Max (f(x) + λTg(x) 

          = 𝑓(𝑥) = {
𝑓(𝑥), 𝑖𝑓𝑔𝑖(𝑥) ≤ 0

+ 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

Therefore, the problem  

Min L*(x) = Min Max L(x, λ) , is same as initial problem. 

Similarly,  

Max L*( λ), = Max Min L(x, λ), 𝜆 ≥ 0 

The two problems Min Max L(x, λ) and Max Min L(x, λ) are related exactly the similar 

to how standard LPP and its dual are connected. And could be taken as standard primal-

dual pair of LPP. Therefore, for the original problem, the dual is represented  as:  

Max L *( λ) 

Max Min L(x, λ) 

Max Min (f(x) + λT g(x)),  

Max f(u) + λT g(u) 

st 

f(u) + λT g(u) = Min( f(x) + λT  g(x)) , λ≥ 0 

 

 

NOTE: To be more precise replace ‘max’ and ‘min’ by ‘sup’ and ‘inf’ respectively 

 

 

As f and gi are differentiable convex functions. Therefore, L(x, λ) = f (x) + ∑ 𝜆𝑖 
𝑛
𝑖=1 gi(x) 

is also convex in x ∀ fixed , λ ≥ 0. Therefore, 𝛁xL(x, λ) |( 𝑥̅, 𝜆̅) = 0 iff L(𝑥̅, 𝜆̅) is the min 

value of L(x, λ) i.e.  

L(𝑥̅, 𝜆̅) =Min [ f (x) + ∑ 𝜆𝑖 
𝑚
𝑖=1 gi(x)] 

 

Hence the Dual is 

Max f(u) + ∑ 𝜆𝑖 
𝑚
𝑖=1 gi(u)] 

s.t.                                                                                                                      …(2.3) 

∇ f(u) + ∑ 𝜆𝑖 
𝑚
𝑖=1 gi(u) =0     

λi ≥ 0 , i ∈ I 

Let eqn (2.1) be CP and (2.2) be CD. 
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2.3 Theorem: Weak Duality Theorem: 

 

 

Assuming x be feasible for CP and (u,λ) is feasible for CD then:    

                                 f(x) ≥ f(u) + + ∑ 𝜆𝑖 
𝑛
𝑖=1 gi(u) 

 

2.4 Wolfe’s Dual  

 

 

Dual problem having differentiable OF and constraints is called Wolfe duality. It was 

named after Philip Wolfe. We can find the lower bound for min problem because of 

weak duality principle using this concept. We Assumed to be convex are functions f(x) 

and gi(x). 
                                                       Min f(x) 

                                   st 

                                                       gi (x) ≤ 0                             i = 1 to m  

Its Lagrangian dual (LD) problem becomes: 

           Max inf ( f(x) + ∑ 𝑢𝑗
𝑚
𝑗=1  gj(x) ) 

                                   st 

                         ui ≥ 0                           i = 1 to m 

provided that f and gi 's functions are convex and continuous differentiable , 

infimum occurs where gradient = 0 

Therefore ,  

         Max  f(x) + ∑ 𝑢𝑗
𝑚
𝑗=1  gj(x) 

                                   st 

                                        ∇ f(x) + ∑ 𝑢𝑗  ∇ 𝑚
𝑗=1 gj(x) = 0            … (2.3) 

                        ui ≥ 0                                        i = 1 to m 

The Wolfe dual problem is the name given to the aforesaid problem. The KKT 

conditions are utilized as a constraint in this problem , also its inequality constraint. 

∇ f(x) + ∑ 𝑢𝑗  ∇ 𝑚
𝑗=1 gj(x) is nonlinear in general 

The Wolfe dual problem could be an optimization problem that is not convex. 

 

 

Example: Write the Wolfe dual of following NLP: 

Min z = 3x1
2+6x2  

s.t. 

     x1
2 + x2

2 ≤ 3  

     x1 + x2 ≤ 8  

     x1 , x2 ≥ 0 

 

Solution: Given f(x) = 3x1
2 + 6x2  

g1(x) = x1
2 + x2

2 

g2(x) = x1 + x2 
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Dual is Max f(x) +u1g1(x) +u2g2(x) 

st                                                                                                                          

     [
6𝑥1

6
] + u1[

2𝑥1

2𝑥2
] + u2[

1
1
] = [

0
0
] 

   u1 ,u2 ≥0 

   x1 , x2∈ X 

Therefore Wolfe Dual is: 

Max z = 3x1
2 + 6x2 + u1(x1

2+ x2
2) + u2(x1+x2) 

st 

     6x1 + 2x1u1 + u2 = 0 

   6 + 2x2u1 + u2 = 0 

 

2.5 Lagrange Dual (LD): 

 

 

We examine optimization problems constrained by inequality as well as equality. 

                                                           Minimize f(x) 

                                st 

          hi (x) = 0, i = 1, … ,m , 

                                               gj (x) ≤ 0,  j = 1, … ,r 

Let f* be the function f 's optimal value under the constraints; that is, f* = f(x*) if the 

minimum is reached at x*, the global minimum of the function. 

 

2.5.1 Lagrange dual function: 

 

The Lagrangian of aforementioned problem is the function L: Rn x Rm x Rr → R defined 

by:  L(x, λ, μ) = f(x) + ∑ 𝜆𝑖
𝑚
𝑖=1 hi(x) + ∑ 𝜆𝑗

𝑚
𝑗=1 gj (x) 

Now the LD function q: Rm x Rr → R is defined by: 

q(λ, μ) = inf L (x, λ, μ) , x ∈ Rn 

         = inf (f(x) + ∑ 𝜆𝑖
𝑚
𝑖=1 hi(x) + ∑ 𝜆𝑗

𝑚
𝑗=1 gj (x)) 

Therefore, regarding the specified primal problem: 

                                                         Minimize f(x) 

                          st 

                                                              h(x) = 0 

                                                              g(x) ≤ 0 

                                                              

Its LD problem is: 

Maximize q (λ, μ) 

St 

μ ≥ 0 
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q being a concave LD function in this case and its Lagrange multipliers are μ 

associated with the constraints g(x) ≤ 0 and λ associated with h(x) = 0. 

2.6 Geometric Interpretation 

We examine the primal problem: 

                                                            Minimize f(x) 

                             st 

                                                                  g(x) ≤ 0, 

where functions f , g : Rn → R . We shall explain its weak and strong duality 

geometrically. 

a) Optimal value f* 

 

Examine the R2 subset that is specified by  S = { ( g (x), f (x) | x ∈ ℝn ) }.The formula 

yields the optimal value f*.: 

                 f* = inf { t | (u, t ) ∈ S, u ≤ 0 } 

 

         
             Figure 2.1: Optimal value f* 

 

 

b) Dual function q(µ) 

 

 

For µ ≥ 0, the dual function is provided by: 

                                             q(µ) = inf { f(x) + µ g(x) } , x ∈ ℝn 
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                                                             = inf {µu + t}              , (u,t) ∈ S 

                                            Figure 2.2: Dual function 

 

 

c) Dual optimal d* 

 

 

The dual optimum value is provided by: 

                                                 d* = sup q (µ)  ,  µ ≥ 0 

                                                      = sup inf{µu + t}, (u,t)∈ S  

                                                         

                                                 Figure 2.3: Optimal of dual 

 

 

d) Weak duality 

 

d* ≤ f* 
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                                       Figure 2.4: Weak duality 

 

e) Strong duality: 

 

 

For convex problems when the points are strictly feasible: d* = f* 

 

                                  
 

                                                Figure 2.5: Strong Duality 
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CHAPTER 3 

 

 

ECONOMIC INTERPRETATION OF DUALITY 

 

 

 

 

In economics, nonlinear problems often involve non-proportional relationships between 

variables. The economic interpretation depends on the specific context, but 

nonlinearities can capture phenomena such as diminishing returns, increasing marginal 

costs, or complex market dynamics. Analyzing these nonlinearities allows for a more 

realistic representation of economic systems, enabling better policy insights and 

decision-making. 

 

3.1 Investment Analysis 

 

 

An important function of financial management is efficient allocation of funds. 

Investment analysis consist of evaluation of cash flows, consideration of proposals for 

investment. 

 

3.2 Portfolio Model 

 

 

Now we will discuss economic interpretation of duality using the portfolio model which  

aims to maximize the return and minimize the risk. A portfolio model is a framework 

that is used in finance and investment management to build and oversee a group of 

assets (bonds, stocks, and other securities) in order to accomplish particular 

financial goals. 

 

3.2.1 The Primal-Dual Interior Point Method for Solving Nonlinear Portfolio 

Optimization Problem [5] 

 

 

Stochastic programming is recognized as a powerful tool in financial planning for 

facilitating decision-making amidst uncertainty. Large dimensions characterize the 

deterministic equivalent formulations of stochastic systems, even when considering 

modest numbers of assets, time phases, and outcomes per time. Until now, approaches to 
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mathematical programming have only been able to handle basic linear or quadratic 

models because the solvers that are currently on the market cannot handle NLP issues 

with typical sizes. Stochastic programming issues, however, have a lot of structure. 

Therefore, being able to take advantage of their structure is essential to solving such 

challenges effectively. Large-scale nonlinear optimization problems are a good fit for 

interior point approaches. In this study, we leverage this capability to illustrate how the 

most recent solver can be employed to address POP involving millions of decision 

variables and constraints along with constrains on the objective’s skewness, semi-

variance, or nonlinear utility functions. We show that the mathematical programming 

approach can deal with the huge problems arising from portfolio optimization, even 

when extensive nonlinear constraints or objective terms are present. Markowitz [6,7] 

mean variance model may lead to inferior conclusions, i.e some optimal solutions may 

be stochastically dominated by other feasible solutions.[8,9]. Therefore Ogryczak and 

Rusczynski [8] replaced the usual objective in the Markowitz  model with a new one 

composed of mean and semi deviation. Additionally, they contend that in a case of an 

asymmetric distribution of asset returns, investors' preference for a positive deviation 

from the mean should be expressed by adding skewness to the OF. Changes to the 

Markowitz model [6,7] need adding nonlinearities to the constraints or the objective 

function, It yields formulations that are deterministic counterparts of the class NLP 

(nonlinear programming). 

 

 

The paper’s goal is to show that solving very large, complex, nonlinear stochastic 

algorithms with a modern general structure that uses an interior point approach—like 

our Object-Oriented Parallel Solver (OOPS)—is feasible. [10,11]. Moreover, this 

approach can be used with a variety of objective functions and constraints in stochastic 

programming and is not restricted to any particular environment. 

 

3.2.1(a) Mean-Variance problem with Asset Liability Management (ALM) 

 

 

We will offer a multi-step procedure for managing assets and liabilities that uses 

variance to evaluate risk and mean to determine return. Our problem description is in 

accordance with those found in [12,13]. The best strategy to invest in assets with j = 

1,...,J is what we are trying to figure out. Asset returns are unpredictable. The portfolio 

may need to be rebalanced periodically. t = 1,...,T after an initial cash investment of b at 

t = 0. Maximizing the expected ultimate portfolio’s value at time T + 1 and reducing 

related risk as shown by the final wealth variance are the goals. By xt , we indicate the 

decision variables at time t. 

                                          



  

 

 

20 

 

 
                                      Figure 3.1: Event tree of portfolio model 

 

 

An event tree can be used to illustrate the process's unpredictable nature. Discrete 

random occurrences ωt with, at moments t = 0, There are only a limited amount of 

outcomes that can occur t = 0 . . . , T. For any sequence of observed events (ω0, ..., ωt), 

we anticipate that the next observation, ωt + 1, will provide one of a finite number of 

alternative outcomes. A tree with its roots at the original event ω0 is produced by this 

branching process.  At time t, Lt stands for the collection of nodes of past observations 

LT  represents the final nodes set and indicate the set of all nodes as L = ∪tLt, the 

collection of end nodes (leaves)  

From here on, a variable  i∈ L will represent nodes;  as seen in Fig.3.1, i = 0 will 

represent the root node, and π(i) will represent the node i’s antecedent (parent).  

Moreover, node  i+ 1 before π(i).     

Pi represents the probability of reaching node I, which is calculated as the sum of the 

probabilities for each level set that adds upto give one. Given an asset j and a transaction 

cost ct , let vj be its value.One can always purchase an asset j for (1 + ct)vj or sell it for (1 

–ct)vj , as it is expected that the asset’s value would remain constant over time. 

An additional return ri,j will be generated by an asset j unit stored in node i in its place. 

(originating from node π(i)). xh
i,j denotes the quantity of assets j held at node i in units 

and the number of transactions (buying, selling) of this asset at this node (i)  is denoted 

by xb
i,j , x

s
i,j , respectively. In a similar vein, the random variables xh

t,j , x
b
t,j , and xs

t,j 

describe the holding, purchasing, and selling of asset j at time stage t. We make the 

assumption that we have b dollars at the start to invest but zero holdings in all assets. 

Additionally, cash is assumed to be one of the assets, and available funds are assumed to 

be completely invested at all times . In actuality, the value of asset vj fluctuates in 

response to market swings, whereas the quantity of asset xh
t,j stays constant (until buying 

or selling occurs). Set a   modelling standard that treats each asset's wealth accumulation 

as a product vj . x
h

t,j , where xh
t,j changes and vj remains constant. 

 

 

The following is an expression of the usual investment policy constraints: Cash balance 
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limitations, which take transaction costs into consideration, outline potential purchasing 

and selling actions inside a scenario: 

 

                 ∑j(1 + ct)vj x
b

i,j = ∑j(1 –ct)vj x
s
i,j∀ i ≠0                … (3.1) 

            

                                   ∑j(1 + ct)vj x
b
0,j = b 

 

 

Inventory constraints, which are balancing restrictions on asset holdings that take into 

consideration the erratic return on asset, bind each scenario to its parent: 

  

                               (1 + ri,j ) x
h

π(i),j = xh
i,j – xb

i,j + xs
i,j  ∀ 0, j                    … (3.2) 

 

 

Non negative variables are: 

         

                               xh
i,j ≥ 0, xb

i,j ≥ 0 , xs
i,j ≥ 0, ∀ i,j                                 … (3.3) 

 

 

The ultimate wealth maximization and the reduction of related risk are taken into 

consideration. The final portfolio’s anticipated value transformed into cash is how the 

final wealth, y, is simply represented [14] 

 

                              y = E ((1 –ct) ∑ 𝐯
𝐉
𝐣=𝟏 j x

h
T,j )  

                                  

                                 = (1 –ct ) Σi∈LT   pi ∑ 𝐯
𝐉
𝐣=𝟏 j x

h
i,,j                                                  …(3.4) 

 

 

Traditionally, risk is represented as the return’s variance: 

 

                    Var ((1 –ct) ∑ 𝐯
𝐉
𝐣=𝟏 j x

h
T,,j) = Σi∈LT pi [(1 –ct)] ∑j vj x

h
i,j – y]  … (3.5)                     

The traditional Markowitz POP combines these two goals into a single objective that 

takes the form. 

 

                              f(x) = E(X) – ρ Var(X)                                                … (3.6) 

 

 

Total worth of the portfolio when converted to cash (3.4) is denoted by X, and the scalar 

ρ represents the investor’s risk tolerance. Accordingly, we would maximize (3.6) in the 

classical model while taking into account the constraints (3.1), (3.2), and (3.4). Convex 

quadratic programs are problems like this. Concave quadratic function of x is its 

objective, and all of its restrictions are linear. When variance (3.5) accumulates all xh
T,j  
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(assets held in the previous time period), a quadratic form xTQx is generated, where 

matrix Q contains large number of nonzero entries.Rephrasing the problem to take 

advantage of the variance's partial separability was suggested by Gondzio and Grothey 

[10]. This would yield a non-convex formulation of the problem, albeit with a 

significantly increased sparsity in the quadratic term. 

The reformulated expression utilizes an alternative variance representation (Var(X) = 

E(X2)– E(X)2 ) :  

 

          Var((1 – ct) ∑ 𝐯
𝐉
𝐣=𝟏 j x

h
T,j) = E((1 – ct)

2 [ ∑j vjx
h

T,j ]
2 ) − E( (1 – ct) ∑j vjx

h
T,j )

2 

 

                                                  = Σi∈LT   pi(1 – ct)
2 [ ∑j vj x

h
T,j] 

2 – y2 

 

Remarkably, We find that the space of constraints is convex in our non-convex 

formulation. While one extra choice variable, y, is used in the goal in the non-convex 

formulation, the resulting Hessian matrix has improved block-sparsity qualities. 

 

                
                                                     

                         Figure 3.2 Hessian Matrix in two compositions of the variance 

 

 

3.2.1(b) Extensions and solution of ALM problems 

 

 

The serious drawback of classical Markowitz model was that the the mean-variance 

model fails to meet the requirements for second-order stochastic dominance. 

We can easily extend the previous section to consider only a semi-variance (downside 

risk). 

To improve the flexibility of modelling , we include a constraint and two additional 
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variables,  si
+ and si

-  per node i ∈ LT ,illustrating the deviations from the mean, both 

positive and negative. 

 

                             si
+ ≥ 0 , si

-≥ 0, ∀ i                                                          … (3.7) 

 

                             (1 – ct) ∑ 𝐯
𝐉
𝐣=𝟏 j x

h
i,j + si

+ – si
-= y,  i ∈  LT                                  … (3.8) 

 

It’s possible that not every situation mentioned calls for these variables. Their main goal 

is to demonstrate how simple it is to incorporate additions to the mean-variance model, 

which results in structured sparse problems. 

 

                             Var(X) = Σi∈LT   pi(s
+

i – s-
i )

2 = Σi∈LT   pi((s
+

i )
2 + (s-

i ) 
2) , … (3.9) 

 

 

The Hessian matrix’s sparsity would be further enhanced by the formulation that 

includes these slack variables. The Hessian Matrix formed would be diagonal and hence 

the QP will be separable . This new formulation makes it simple to extend the method of 

measuring downside risk by using the semi variance   E[(X − X)2]. 

 

                             sVar(X) = Σi∈LT  pi( si
+ )2                                                  …(3.10) 

 

                             Maxx,y,s>0  y – ρ [ Σi∈LT   pi ((si
+ ) 2 + (si

-)2 )]                      

               s.t                                                                                                   … (3.11)                                                               

                             (3.1) ,(3.2) ,(3.3) ,(3.4) ,(3.7) ,(3.8) 

which is a convex QPP. 

 
 

The following modifications, which result in formulations of nonlinear problems, will be 

discussed: 

1. A risk constraint (assessed by variance): We directly represent the risk-adversity of 

investors using nonlinear constraints. , i.e. 

                              Maxx,y,s≥0   [ Σi∈LT   pi ( (si
+ )2 + (si

-)2 ) ≤ ρ]             

                s.t                                                                                                  ... (3.12)                                                                        

                              (3.1) ,(3.2) ,(3.3) ,(3.4) ,(3.7) ,(3.8) 

2.  A constraint on downside risk (assessed by the semi-variance): 

    

                              Maxx,y,s≥0    y 

 

                s.t         [ Σi∈LT   pi(si
+ )2 ≤ ρ]                                                         … (3.13) 
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                s.t         (3.1) ,(3.2) ,(3.3) ,(3.4) ,(3.7) ,(3.8) 

 

3.  The objective includes a logarithmic utility function: 

 

                             Maxx,y,s≥0      (1 – ct) Σi∈LT   pi log( ∑ 𝐯
𝐉
𝐣=𝟏 j x

h
i,j) 

                

                s.t         Σi∈LT  pi ((si
+ )2   ≤ ρ                                                         … (3.14) 

                          

                            (3.1) ,(3.2) ,(3.3) ,(3.4) ,(3.7) ,(3.8) 

 

4.  An objective having skewness: 

 

                             Maxx,y,s≥0      y + Σi∈LT  pi (si+ - si- ) 
 
                                 s.t Σi∈LT  pi ((si

+ )2 + (si-  )2  ≤ ρ                                       … (3.15) 

 

                            (3.1) ,(3.2) ,(3.3) ,(3.4) ,(3.7) ,(3.8) 

All these formulations are NLPP. 

 

 

We apply a SQP approach to assess the nonlinear ALM variations (3.12) to (3.15). In 

this method, our OOPS serves as the primary QP solver. An SQP algorithm to solve  

                                                       Min    f(x) 

                                     s.t 

                                                        g(x) ≤ 0, 

generates primal iterates (x(k)) and dual iterates ( λ(k)) and solves the QPP at each step 

                                                        Min∆x ∇f(x(k) )T ∆x + 1/2 ∆xT Q∆x 

                                    s.t          

                                                        A∆x  ≤ −g(x(k))                                …(3.16) 

where   A = ∇g(x(k) ) is the Jacobian of the constraints and Q = ∇2 f(x(k) ) + ∑i λ
(k) ∇2 gi 

(x(k) ) being the Lagrangian’s Hessian. OOPS, our interior point based QP solver, is 

capable of effectively utilising almost any nested block structure that exists between the 

system matrices A and Q. 
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We have demonstrated how to use general purpose structures to take use of interior point 

solvers to solve nonlinear portfolio optimization issues. Three modifications to the 

conventional mean-variance approach to the Asset and Liability Management problem 

have been the focus of our attention; these modifications generate distinct nonlinear 

programming problems. 

Although the theoretical significance of these variations has been acknowledged           

for some time, the conventional thinking holds that mathematical programming 

techniques are not appropriate for these models. We have demonstrated that this is no 

longer the case in light of recent developments in structure that take advantage of 

interior point solvers. Currently, nonlinear ALM problems with millions of variables can 

be handled by a general solver in a reasonable amount of time. These problems can be 

solved by standard optimization software by employing a structure exploiting interior 

point method 
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CHAPTER 4 

 

 

CONCLUSION 

 

 

 

 

We have presented an example of economic interpretation of duality of 

nonlinear programming by presenting a portfolio model. We have discussed 

2 methods of solving NLPP, the first one being Lagrange Multiplier 

Method and the second one KKT conditions. We have also discussed The 

duality of NLPP and subsequently we have discussed Wolfe dual and 

Lagrange dual briefly. An instance of utilizing an interior point solver with 

a general purpose structure to tackle nonlinear POP was also discussed. 
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