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ABSTRACT 

 
This project comprehensively investigates the applications of end-to-end ASR, including 

models like Transformers and the combination of RNNs with CNNs and CTC loss for the 

English language. The primary goal is to evaluate the performances of these architectures for 

sequence-to-sequence tasks that require accurate temporal alignment and robust handling of 

input sequences with varying lengths, specifically in the context of speech recognition. We tried 

to compare applications of E2E ASR by using RNN-CNN models and transformers models. 

We used the datasets from LJspeech for the English language. The RNN-CNN model combines 

the advantages of CNNs for extracting features and RNNs for processing sequential input to 

enable alignment-free training. The CNN component enhances the encoding of local features, 

while the RNN component captures temporal dependencies. The combined effect of both 

components leads to an improvement in recognition accuracy. The second model utilizes a 

Transformer architecture, which utilises self-attention for capturing long-range dependency 

without recurrent connections. This architectural design tackles the constraints of RNNs in 

managing lengthy sequences and parallel processing, resulting in the potential for quicker 

training and inference durations. The results of our experiments on a commonly used English 

language dataset namely LJspeech indicate significant performance improvements. 

 

The Transformer model also demonstrates higher scalability and efficiency when dealing 

with huge datasets. We compared the WER and computation time for both models and found 

superior WER performance by 3% to 4% for the transformer-based model over the RNN-CNN 

model. Additionally, the transformer based model was found to be five times more time efficient 

per epoch but requires more number of epochs for training The results indicate that RNN-CNN 

models are efficient for tasks with prominent local dependencies, whereas Transformers exhibit 

notable benefits in terms of computational efficiency and managing long-range dependencies. 

This makes Transformers a compelling option for large-scale English language processing 

applications. 
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CHAPTER 1 

INTRODUCTION 
ASR is a technological advancement which allow machines in comprehend and analyze human 

speechs. It entails the transformation of oral communication into written form, enabling smooth 

interaction between humans and computers. ASR systems play a fundamental roles in a wide range 

of applications, including technologies that are voice-activated, such as Alexa and Siri, as well as 

services that transcribe audio, and software that automates customer support processes. Recently, 

there is notable developments in the progress of ASR systems, which have made them more reliable 

and broadened their practical uses. The advancement can be mostly attributed to the growing 

utilization of speech as an intuitive interface between humans and computers, as well as the 

accessibility of extensive datasets. Recent advancements in training approaches, like Seq2Seq and 

CTC, has facilitated the advancement in state of the art ASR transport network.CNN and RNN are 

the deep learnings technique that are utilized by these transport networks. This study examines 

efficacy and feasibility of modern deep learning-based, end-to-end ASR models. More precisely, it 

investigates the utilization of CNN-RNN hybrid systems that is trained end-to-end[1] having CTC 

Loss in the English ASR task. 

HMM-depended ASR systems have consistently delivered top-notch performance for many decades. 

[2] [3]. In recent times, E2E ASR models have shown impressive results by tackling the task of 

converting speech into text using a single S2S system [4]. Attention based encoder decoder 

architectures, RNN-T), and CTC are the most efficient and often employed technique of E2E ASR 

[5],[6]. Online and streaming applications achieve high performance in ASR with the use of RNN-T 

based ASR systems. These systems have been successfully implemented in production systems [6], 

[7]. 

 

The neural network architecture is crucial for achieving high-quality ASR performance, and it is 

equally vital as the end-to-end ASR modeling technique- RNN architectures LSTM neural network 

is commonly employed in E2E ASR models. Out of the RNN-based systems, BLSTMs achieve the 

best results. However, they are not suitable for streaming applications. Instead, one-directional 

LSTMs or LCBLSTMs should be employed, as suggested by [8]. Compared to the LC-BLSTM, the 

PTDLSTM architecture features a lower WER gap between unidirectional and bidirectional systems 

and a higher computational complexity. Moreover, the Transformer model, a self-attention based 

encoder-decoder architecture initially designed for machine translation, has been applied to ASR 

recently. In comparison to designs based on RNNs, this application has produced WERs that are 

superior[9].This study focuses on enhancing a streaming Automatic Speech Recognition (ASR) 

application by including the Transformer concept into both an encoder and decoder type attention 

systems in model. In addition, the encoder utilizes time restricted self attention. In order to properly 

integrate the Transformer-Attention (TA) approach and achieve optimal outcomes in training and 

decoding, the model is trained concurrently with a CTC goal [10].Employing the frame- 

synchronously one pass decode method, which involves the simultaneous decoding and scoring of 

CTC-transformer. 

The significance of depth in achieving efficient end-to-end ASR models utilizing the Transformer is 

paramount .Additionally, we conduct an extensive comparision studies between Transformer and the 

RNN, revealing notable improvements in performances, especially in tasks belongings to Automatic 

Speech Recognition (ASR). 

 

This study offers a comprehensive examination of the entire E2E model. We demonstrate the 

progression of E2E technology, assess the advantages and disadvantages of several end-to-end 
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technology frameworks, and offer a concise comparison of RNN based and Transformer-based E2E 

models. I have employed the WER as a means of evaluating the caliber of the model. The WER is 

determined by aggregating the amount of insertions, deletions, and substitutions that occur inside a 

recognized sequence of words, and then dividing that sum by the total number of words initially 

pronounced. The WER will assist us in assessing the quality of the model. 

Finally, I offer my insights and conclusions for future projects. 

 

Overview 

This report is structured into 4 further chapters ,whose objectives are 

1. Chapter 2: Discuss the key insights obtained from literature survey 

2. Chapter 3: Defines the proposed Network model and formulates the problem statements 

and 

Analytical solution 

3. Chapter 4: Discusses about the results that is obtained. 

4. Chapter 5: Concluding the report and laying the scope of future work. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter explores the research papers, articles etc. that were examined to acquire insights into current 

advancements in E2E ASR and the formulation of the problem statement. The papers serve the purpose 

of conforming to industry and academia requirements and comprehending the current research 

deficiencies. 

 

 

Literature Survey 

2.1 End to end ASR and Deep Learning: 

HMM-GMM acoustic models, which employed HMMs for accurate alignment and GMMs for 

associating compatible tri-phones with written characters, plays a pivotal role in the advancement of 

conventional ASRs. These systems held a dominant position in the market for a period of time before 

being surpassed by the HMM-DNN system, which utilizes deep neural networks instead of GMMs. The 

combination of (Seq2Seq) systems and CTC models has significantly transformed the training approach 

for speech recognition systems. This approach involves to train a single network which maps directly 

to audio sequences to the corresponding text output. The E2E models, utilizing RNN [11], [12], attention 

model[13], [14], and other models, attained exceptional performance on various dataset benchmarks. 

Mostly contemporary deep learning based E2E systems input log-spectrogram or MFCC properties into 

their networks. In recent times, there has been a shift towards focusing on extracting features directly 

from the raw audio output. This is because deep neural networks possess an innate capability to learn 

and understand the properties present in raw inputs. Recently, a proposed approach to do this involves 

using trainable filter banks that are based on time-delay convolution. These filter banks have been found 

to perform similarly to Mel filter bank-based systems on the WSJ dataset. The HMM-based model has 

traditionally the most efficient LVCSR model for achieving accurate recognition results. The HMM- 

based model is divided in three distinct components: an acoustic system, pronunciation system and a 

language system. Every each component serves a unique purpose and is independent from the rest. 

 

An acoustic model is tasked with transforming speech input in a sequence of features, typically phoneme 

and sub phoneme. The pronunciation model, typically created by proficient linguists, seeks to establish 

a connection between these phoneme and sub phoneme and grapheme. The language modeling directs 

these character sequences to a fluid final transcriptions [15]. In this HMM, sound is the observable 

variable and its hidden state represents the underlying characteristic. HMM-based models are used to 

represent an HMM with a state set {1,..., J}. In this HMM, sound is observed and its hidden state 

represents its characteristic. Models in the HMM with a set {1,..., M} based on HMMs decomposes 
𝐾 

𝑝 ( ). 
𝑋 



4 
 

( ) 

𝒔 

 

arg max 
𝐾 

𝑝 ( 
𝑋 

) = arg max 

K∈ 𝑍+ 

𝑝(𝐾,𝑋) 
 

 

𝑝(𝑋) 
(1) 

= arg max p(𝐾, 𝑋) (2) 

K∈ 𝑍+ 
= arg max ∑𝑠 𝑝(𝐾, 𝑋, 𝑆) 

K ∈ 𝑍+ 
(3) 

= arg max ∑ 

K∈ 𝑍+ 
=arg max ∑ 

𝑋 

𝑠 𝑝 (
𝑆 

, 𝐾) 𝑝 

𝑋 

(𝑆, 𝐾) 

 
𝑆 

(4) 

 (5) 
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Conditionally independent hypothesis states that we may approximate to p(X|S, K) ≈ p(X|S). 

Consequently, 
 

arg max 
𝐾 

𝑝 ( ) ≈ 𝑋 arg max ∑ 
𝑋 𝑆 

𝑠 𝑝 (
𝑆 

, 𝐾) 𝑝 ( ) 𝑝(𝐾) (6) 
𝐾 

K∈ 𝑍+ 
These three factors p(X|S), p(S|K), and p(K) correspond to an acoustics model, pronunciations model and 

languages model. 

2.2 Acoustic model P(X|S): 

 
Given the hidden sequence S, it measures the likelihood of seeing X. The probability P(X/S) can be found 

in Hidden Markov Models (HMMs) by applying the chain rule of probability and assuming that 

observations in HMMs depend solely on the hidden state at any one time. Given an event S, the conditional 

probability of occurrence X is P(X/S). Is potentially decomposing in the following parts: 

p 𝑿  = ∏𝑻 𝒑(𝒙 / 𝒙 , … . , 𝒙 , 𝑺) (7) 
𝑺 𝒊=𝟏 

≈ ∏𝑻 
𝒕 

𝒙𝒕 

𝟏 

∏𝑻 

𝒕−𝟏 

𝒑(𝒔𝒕/𝒙𝒕) 

𝒕=𝟏 𝒑(  ) ∝ 
𝒕 

𝒕=𝟏 𝒑(𝒔 
 
𝒕) 

(8) 

 
For the acoustic model, p(𝑥𝑡) is observational probability, which is represented generally by GMM. The 

𝑠𝑡 

PDF of a hidden states 𝑝(𝒔𝒕/𝒙𝒕) is computed using the DNN method. This leads to two distinct models 

for 𝑃(𝑋∣𝑆): HMM-GMM and HMM-DNN. Traditionally, the HMM-GMM method has been the 

conventional framework for voice recognition. Nevertheless, as deep learning progressed, speech 

recognition for acoustic modelling started integrating DNNs [12]. This approach uses a DNN to determine 

the HMM state's posterior probability. It can replace the traditional GMM observation probabilities with 

this probability by transforming it into likelihood [16]. As a result, the HMM-GMM model has developed 

in the HMM-DNN model [17], which surpasses the HMM-GMM model and has become the most 

advanced technique in ASR. 

The HMM-based model integrates several technologies and achieves certain goals through its multiple 

components. Frame-by-frame dynamic time warping is a significant application of HMMs. The emission 

probabilities of the hidden states in the HMM are calculated using either GMM or DNN methodologies. 

The design and operational strategies of the HMM based model determine how it addresses challenges in 

practical applications. 

The training process is complex and rigorous in order to optimize on a global scale. The HMM-based 

model often employs various training procedures and datasets for its different modules. Each module is 

independently optimized with its own objective functions, which typically do not align with the real 

𝐾 
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criteria used to assess the effectiveness of LVCSR. Hence, even if every module operates optimally, it 

does not guarantee overall global optimization. The HMM-type model utilizes the assumptions of 

conditional independence, both across modules and within a module, to streamline the training process 

and produce the model. This is incongruent with the factual circumstances of LVCSR. 

 

2.3 END TO END MODEL 

As previously described, there are limitations in the HMM-based model, as deep learning methods 

progresses, have resulted in a growing number of research papers focusing on end-to-end LVCSR. An 

E2E model refers to a system which immediately converts an audio input sequence into either a word or 

another sequence of graphemes. 

In Figure 2.1, its functional structure is displayed. 
 

 

 

L = {𝑙 ,…,𝑙 } Output 
1 𝑁 

 

F = {𝑓1,…,𝑓𝑇} 

 

 

 

 

 

 

 

 

X = {𝑥1,…,𝑥𝑇} 

Features 

 

 

 

 

 

 

 

 

Input 

 

 

Fig 2.1. Functional Structure of E2E models [4] 

 

 

 

The constituents of the vast majority of E2E speech recognition models are as follows: The encoder maps 

speech input sequences to feature sequences, the aligner aligns language and feature sequences, and the 

decoder decodes the final identification result. It is important to understand that this division may not 

always happen because an engineered modular system is a complete structure when seen from start to 

finish, and it is usually challenging to discern which part conducts each sub-task. 

Aligner 

Decoder 

Encoder 
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The end-to-end approach differs from the HMM-based model by utilizing a deep network to directly 

associate auditory inputs with label sequences, eliminating the requirement for meticulously built 

intermediate states. Furthermore, there is no need for any subsequent processing of the output. 

 

Both Hidden Markov Model (HMM)-based and end-to-end models face challenges when it comes to 

aligning data, particularly in the context of voice recognition. An issue that often arises is the task of 

finding the appropriate alignment between a label in the sequence and the corresponding speech data. End- 

to-end models employ soft alignment, wherein each audio frame is probabilistically linked to all potential 

states without a mandatory, explicit connection. 

The end-to-end model can be classified into one of three categories based on the implementation of soft 

alignment: 

 

• CTC-based: The process starts by enumerating all possible exact alignments (represented as paths), and 

then CTC combines these alignments to get a flexible alignment. The CTC algorithm calculates the 

number of hard alignments on the assumption that the output labels are independent of each other. 

• The RNN-transducer algorithm calculates all possible hard alignments and then combines them to obtain 

a soft alignment. However, in terms of defining the path, RNN-transducer is different from CTC because 

it does not make separate assumptions about labels while calculating hard alignments and probability 

computation. 

• Attention Based: This approach utilizes the Attention mechanism to compute the soft alignment 

information between the input data and the resulting label, instead of enumerating all possible hard 

alignments. 

 

2.4 Research Gaps 

 
HMMs and GMMs are widely recognized techniques in the fields of statistical modeling and machine 

learning. However, despite their extensive use, there are still several unresolved research requirements and 

opportunities for enhancement. Some of the primary research gaps in these models are adapting HMMs 

for new domains with limited labeled data and developing transfer learning algorithms specifically 

designed for HMMs. 

1. Restricted comprehension of the context. 

 

HMM and GMM models predominantly depend on processing each frame individually, which restricts 

their capacity to grasp distant relationships in speech. They consider each frame to be conditionally 

independent of others, disregarding the wider context that could enhance recognition accuracy. 

 

2. Assumption of Gaussian Distributions 

 

The GMM component postulates that the data can be represented by a combination of Gaussian 

distributions. This assumption may be excessively naive, as real-world speech samples frequently display 

more intricate patterns that Gaussian mixtures are unable to accurately represent. 

 

3. Problems in handling sentences of long length 

 

As the speech datasets become more sophisticated and larger in size, HMM-GMM models face challenges 

in terms of scalability. Training these models on big datasets is computationally demanding and time- 

consuming, which restricts their practical usability in contemporary voice recognition tasks. 
 

 

 



7 
 

 

 

4. Challenges in Optimization 

 

The training method for HMM-GMM models entails separately optimizing numerous modules, each with 

its own distinct objective function. This modular optimization method does not provide global optimality, 

resulting in inferior overall performance. The absence of end-to-end optimization can impede the model's 

capacity to get the highest level of recognition accuracy. 
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CHAPTER 3 

METHODS AND TECHNIQUES 

 
3.1 CNN-RNN MODEL WITH CTC LOSS 

In the next subsections, we present information about the evaluated EESR networks that utilize 

a combination of CNN and RNN, together with the use of CTC loss. 
 

 

 

 

 

Fig 3.1 Sample CNN-RNN Network for end-to-end ASR with 3 BiGRU layers[1] 
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Convolution, 64, k={41,11}, s={3,3} 

Batchnorm 

Hardtanh 

Convolution, 64, k={21,11}, s={2,1} 

Batchnorm 

Hardtanh 

Figure 3.1 explains overall structure of the CNN-RNN based EESR models, which have been 

increasing popularly in recent research[1][12]. The convolution block stands for an n-layer 

convolution stack [1] Figure 3.2 shows the first 2-layer convolution stack. Hard Tanh non-linearity 

and Batch Normalization layers follow each convolutional layer [13]. 
 

 

 

 

 

 

Fig 3.2. Deepspeech2 CNN model [1] 
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Fig 3.3 Proposed CNN Model 

Despite challenges in their real-time implementation, bidirectional recurrent neural systems often achieve 

superior performance compared to unidirectional models [1]. The quantity of bidirectional layer and the 

quantity of hidden unit per layers are displayed in Column RNN Config. 

 

3.2 TRANSFORMER WITH CTC LOSS 

The Transformer is a S2S architecture that efficiently replaces RNN in applications of natural language 

processing. The development of this technology first focused on neural machine translation (NMT) [1]. I 

evaluate its performance relative to that of RNN for speech application, such as speech translation (ST) 

and automatic voice recognition (ASR). The Transformer model necessitates more intricate setups, such 

as the optimizer, network structure, and data augmentation, compared to typical RNN-based models. This 

complexity poses a significant difficulty when employing Transformer for speech applications. Our goal 

is to share our knowledge and experience in using the Transformer model for voice-related activities. We 

aim to help the community achieve the same impressive outcomes by providing accessible open-source 

tools and instructions that can be easily replicated. 

Conv, 64, k={7,3}, s={2,2} 

Conv, 64, k={3,3}, s={2,1} 

Conv, 64, k={7,3}, s={2,2} 

Conv, 64, k={3,3}, s={2,1} 

Conv, 64, k={3,2}, s={1,1} 

Conv, 64, k={3,1}, s={1,1} 
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Input 
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Fig 3.4 Architecture Model of Transformer [9] 
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3.2.1 Encoder-Decoder with Attention 

The model's two primary parts are the decoder and the encoder. The decoder produces the target sequence, 

while the encoder receives the source sequence and outputs a simplified version of it. 

 

Given the encoder's representation and the decoder's previously created tokens, the probability of the series 

of discrete tokens can be expressed as a sequential product of distribution. A conditional language model 

describes how the decoder sees the data. 

 

A neural network that can distinguish between the input and output time steps is necessary for both the 

encoder and the decoder. Additionally, an alternative to recursion must be implemented so that the decoder 

can depend on certain elements of the encoder's model representation. 

. 

3.2.2 Multi-Head Attention 

At its core, attention is the process of extracting information using a content-based extractor from a set 

of queries Q, keys K, and values K. The weighted total of the data is returned by the retrieval function, 

which is predicated on similarities [18] between the queries and the keys: 

 
Attention (Q, K, V) = softmax(Q𝐾𝑇)V 

The current improvement in dot-product attention is achieved by pre-scaling the queries and introducing 

sub-space projection for keys, queries, and values into n parallel heads. Attention operations are performed 

using corresponding heads in this manner. The result is obtained by combining the attention outputs of 

each head. 

Self-attention is a method that gathers information from all time-steps without the need for intermediate 

transformations. This is different from recurrent connections, which use a single state with a gating 

mechanism to transmit data, or convolution connections, which combine local states within a limited 

kernel size. 

 

 

 

3.3.3 Layer Architecture 

Figure 3.3 displays the overall structure of the architecture. The Transformers' encoder and decoder are 

constructed of stacked layers, each including feed-forward neural networks connected to self-attentional 

sub-layers. To adjust the encoder for lengthy speech utterances, we follow the reshaping strategy from 

[19] by merging consecutive frames into a single phase. The input features are subsequently merged with 

sinusoidal positional encoding [20]. Although the direct addition of auditory characteristics to the 

positional encoding during training can possibly lead to divergence [19], we managed to circumvent this 

problem by projecting the concatenated features to a higher dimension (512), similar to the other hidden 

layers in the model. In the specific context of voice recognition [12], positional encoding is undeniably 

more effective than learnable positional embeddings. This is due to the fact that speech signals exhibit a 

greater degree of variability compared to text sequences and can have variable lengths. 

 

 

 

3.3 ASR training and decoding 

With respect to corresponding source X, the decoder and the CTC module both predict the frame-wise 
posterior distribution of Y during ASR training.𝑃 

𝑌 
and 𝑃 

𝑌 
, using a weighted sum of those 

𝑆2𝑆(
𝑋

) 𝐶𝑇𝐶 (𝑋
) 
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negative Log likelihood values : 𝐿𝑎𝑠𝑟 = -∝ log𝑃 

hyperparameter. 

 

𝑆2𝑆 
(𝑌/𝑋) – (1-∝) log𝑃  

𝐶𝑇𝐶 
(𝑌/𝑋), where ∝ is a 

 
Using beam search, which combines the scores of S2S, CTC, and the RNN language model (LM) as 
follows, the decoder predicts the subsequent token given the speech attribute X and the prior predicted 
tokens during the decoding step Y = argmax {λ log𝑃𝑆2𝑆(𝑌/𝑋) + (1-∝) log𝑃𝐶𝑇𝐶(𝑌/𝑋) + 𝛼 log𝑃𝑙𝑚 (𝑌) where 

Y is target sequence hypothesis. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

This section is a discussion of the dataset used in experiments and the corresponding quantative 

and qualitative results. 

 

4. 1Dataset 
The dataset is downloaded from the LJSpeech Dataset.This dataset has a recording of 

Nearly 13,000 audio files which is in wav files in the /wavs/folder.This audio files is further divided as 

strings which is given in metadata.csv file. There are: 

 

• ID: Designate the name that matches the .wav file. 

• Transcription: Verbal utterances made by the speaker Normalized Transcription: Transcription that 

includes ordinal numbers, numerical values, and monetary units, all of which are written down in full 

words. 

 

Fig.4.1 speech to text transcription 

 

 
4.2 Training and Result 

For training use of normalized log-spectrogram which is obtained using a window 

Size of width 200ms and stride 120ms, following by a 160point FFT given as input to the system. Using 

CTC 

Loss function the network is trained end to end that is used for character prediction sequentially from 

input. 

 

Training is performed using A100 Nvidia GPU and subsequently WER and CTC loss are calculated for 

the 

RNN and transformer model. 
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Using spectrogram features the audio is converted into speech to text. 

 

 

Fig 4.2 audio spectrogram 
 

Fig.4.3 signal wave 
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Fig 4.3 Deepspeech 2 Model 
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4.3 RESULT FOR RNN-CNN MODEL 

The word error rate is calculated for 50 epochs. Each epoch took around 9-10 minutes on Nvidia GPU 

A100 on Google Colab-pro. The loss vs epoch curve in Fig. 4.4 and the wer vs epoch curve in Fig. 

4.5 shows that the optimal performance is achieved after 35 epochs. This model achieved a word 

error rate of 22% to 23%. 
 

 

 

 

 

 

Fig 4.4 Loss Vs epoch graph 
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Fig. 4.5 wer vs epoch plot. 

 

 

4.4 Result for the Transformer Model 

The word error rate is calculated for 100 epochs. Each epoch took around 1-2 minutes on Nvidia GPU A100 on 

Google Colab-pro. The loss vs epoch curve in Fig. 4.6 shows that the optimal performance is achieved after 80 

epochs. This model achieved a word error rate of 19% to 20%. 
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Fig.4.6 Epochs vs loss graph 
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CHAPTER 5 

CONCLUSION 

This study examines the effectiveness and suitability of two prominent end-to-end ASR pipelines for 

the English language. The first pipeline consists of a deep neural network based on CNN-RNN 

architecture, trained using the CTC loss function. Additionally, a transformer model is also used. The 

study evaluates and compares these two network configurations with varying complexities. The 

Transformer-based model has more computational speed compared to the RNN model, however, it is 

hindered by its inherent complexity. Also, the word alignment in case of long vocabulary sentences 

needs a greater number of epochs with better tuning of the decoding hyperparameters. There is a 

significant reduction in wer by 3% to 4% in the case of transformer based model over the considered 

RNN-CNN model. The suggested network configurations can be extended to other related languages 

such as Spanish and Dutch, with possibility of similar outcomes due to their shared phonetic space with 

English. The replicable recipes, pretrained models, and training instructions outlined in this work are 

expected to expedite research efforts on Transformer based voice applications. Progress in transformer 

topologies will result in substantial enhancements in transcription precision and effectiveness. These 

models will improve their capacity to comprehend context by effectively managing long-range 

dependencies in the speech. 
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