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Abstract

Approximation theory is indeed an old topic in mathematical analysis that continues to be

an interesting field of research with several applications. After the well-known theorem

due to Weierstrass and the important convergence theorem of Korovkin, many new opera-

tors were proposed and constructed by several researchers. The theory of these operators

has been an important area of research in the last few decades. This thesis is mainly

concerned with convergence estimates of several positive linear operators. The introduc-

tory chapter is a collection of relevant definitions and literature of concepts that are used

throughout this thesis.

Several results have been established for different exponential-type operators, a no-

tion that was first presented by May and then extensively investigated in cooperation with

Ismail. The Bézier variant of these operators has been defined. Two decades ago it was

observed that if we modify the original operators, we can have a better approximation.

The basic properties and Voronoskaya type results for the approximation of exponential

operators have been studied, and after being modified to preserve exponential functions,

the results for improved error estimates have been achieved. A modification of certain

Gamma type operators that preserves the test functions tϑ, ϑ = {0}
⋃
N has been pro-

vided and rate of convergence for functions of bounded variation has been studied.

Some approximation properties of the Pólya distribution-based generalization of λ-

Bernstein operators, such as rate of convergence, interpolation behavior, and the impact

of changing parameter values, have been investigated. Certain theorems are derived to

verify the convergence of generalized Bernstein operators based on shifted knots.

Some results have been proved for bivariate generalization of operators involving a

class of orthogonal polynomials called Apostol-Genocchi polynomials. Furthermore, a

conceptual extension for these bivariate operators, referred to as the "generalized boolean

sum (GBS)", has been introduced with the goal of determining the degree of approxima-

tion for Bögel continuous functions.

Graphical illustration and tables that effectively showcase the convergence and

demonstrate the approximation error have been included for all the operators.
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Chapter 1

Introduction

"Close enough is often close to perfect."

These words express how, in many cases, it is not necessary for something to be totally

perfect; being near-perfect or close to your goal is sufficient. It acknowledges that striving

for perfection can be time consuming and may not significantly improve the outcome,

especially when a good approximation will do the job effectively. We can only make an

effort to enhance the approximation and to minimize the errors introduced in the process.

The concept of approximation dominates every area of research. Humankind has always

sought to complete tasks as accurately as possible while minimising errors brought on by

procedural, environmental, instrumental, or human factors.

In mathematics, the main focus of theory of approximation is on identifying the

best ways to approximate functions with simpler ones and quantifying the errors that are

introduced thereby. The foundation of approximation theory was laid on a result first

given by Karl Weierstrass [170] in 1885, which states that for every continuous function

f on a closed interval [a, b] and any ϵ > 0, there exists a polynomial p of degree n on

[a, b] such that

| f (x) − p(x)| < ϵ, ∀x ∈ [a, b].

In other words, any continuous function on a closed and bounded interval can be uni-

formly approximated on that interval by polynomials to any degree of accuracy.

1.1 Preliminaries

In this section, we recall some definitions and properties regarding approximation opera-

tors discussed here that will be of interest to the whole thesis.
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2 Introduction

1.1.1 Positive Linear Operators

Definition 1.1.1 Let X, Y be two linear spaces of real functions. Then the mapping L :

X → Y is a linear operator if:

L (α f + βg; x) = αL( f ; x) + βL(g; x),

for all f , g ∈ X and α, β ∈ R. If for all f ∈ X and f ≥ 0, it follows that L( f ; x) ≥ 0, then

L is called a positive operator.

Next, we define the modulus of continuity, mainly used to measure quantitatively the

uniform continuity of functions.

1.1.2 Usual and Higher Order Modulus of Continuity

Definition 1.1.2 Let f ∈ C[a, b] and δ ≥ 0, then

ω ( f ; δ) = sup {| f (x + h) − f (x)| : x, x + h ∈ [a, b], 0 ⩽ h ⩽ δ} .

Here ω is known as the usual modulus of continuity or simply first order modulus of

continuity which was introduced by Lebesgue in 1910.

Some of the error estimates in this thesis are given in terms of the modulus of continuity

of higher order. Therefore we now give the definition of ωr, r ∈ N, as given in 1981 by

Schumaker [148].

Definition 1.1.3 Let f ∈ C[a, b], then for r ∈ N and δ ≥ 0, the modulus of continuity of

order r is defined as:

ωr ( f ; δ) = sup
{∣∣∣∆r

h f (x)
∣∣∣ : x, x + rh ∈ [a, b], 0 ⩽ h ⩽ δ

}
, (1.1)

where

∆r
h f (x) =

r∑
i=0

(−1)r−i

 r

i

 f (x + ih)

denotes the forward difference with step size h. In particular, for r = 1, ω ( f ; δ) is the

usual modulus of continuity.

If f is continuous and bouned function on R, (1.1) will also define ωr ( f ; δ) for such a

function.
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Proposition 1.1.4 The modulus of continuity of order r verifies the following properties:

1. ωr ( f ; δ) is a positive, monotonically increasing function on (0,∞).

2. f is uniformly continuous⇔ lim
δ→0

ω ( f ; δ) = 0.

3. ωr ( f ; nx) ≤ nrωr ( f ; x) for all n ∈ N.

4. ωr ( f ; λδ) ⩽ (1 + λ)ωr ( f ; δ) , for any λ > 0.

5. ωr+1 ( f ; δ) ≤ 2ωr ( f ; δ).

For r = 1, these properties are valid for the usual modulus of continuity ω ( f ; .).

1.1.3 Peetre K-Functional

Definition 1.1.5 For f ∈ CB[a, b], let us consider the following K-Functional,

K2 ( f ; δ) = inf
g∈C2

B[a,b]

{∥∥∥ f − g
∥∥∥ + δ ∥∥∥g′′

∥∥∥ , δ > 0
}
,

where C2
B[a, b] = {g ∈ CB[a, b] : g′, g′′ ∈ CB[a, b]}. From [74], there exists an absolute

constant C > 0, such that

K2 ( f ; δ) ⩽ Cω2

(
f ;
√
δ
)
. (1.2)

1.1.4 Ditzian-Totik Modulus of Smoothness

We recall the definitions of the Ditzian-Totik first order modulus of smoothness and

the K-functional [74]. Let φ(x) =
√

x(1 − x) and f ∈ C[0, 1], then the first order modulus

of smoothness is defined as:

ωφ( f ; δ) = sup
0≤h≤δ

{∣∣∣∣∣∣ f
(
x +

hφ(x)
2

)∣∣∣∣∣∣ −
∣∣∣∣∣∣ f

(
x −

hφ(x)
2

)∣∣∣∣∣∣ , x ± hφ(x)
2
∈ [0, 1]

}
.

Further, the corresponding Peetre’s K-functional is given by

Kφ( f ; δ) = inf
g∈Wφ[0,1]

{∥ f − g∥ + δ ∥φg′∥} , δ > 0

where

Wφ[0, 1] = {g : ∥φg′∥ < ∞, g ∈ ACloc[0, 1]} ,

ACloc[0, 1] denotes the space of all absolutely continuous functions on every interval

[a, b] ⊂ (0, 1) and ∥.∥ is the uniform norm in C[0, 1]. Moreover, from [[74], p. 11],

there exists a constant C > 0 such that:

Kφ( f ; δ) ≤ Cωφ( f ; δ).



4 Introduction

1.1.5 Weighted Spaces and Corresponding Modulus of Continuity

Let Bρ(I) be the space of all functions f defined on the interval I ∈ R for which

there exist a constant C > 0 such that | f (x)| ≤ Cρ(x), for every x ∈ I, where ρ is a positive

continuous function called weight. In 1974, Gadjiev [80; 81] introduced the weighted

space Cρ(I), which is the set of all continuous functions f on the interval I ∈ R and

f ∈ Bρ(I). This space is a Banach space, endowed with the norm

|| f ||ρ = sup
x∈I

| f (x)|
ρ(x)

.

For I = [0,∞), the subspace C∗ρ[0,∞) is defined as follows:

C∗ρ[0,∞) := { f ∈ Cρ[0,∞) : lim
x→∞

| f (x)|
ρ(x)

= k < +∞}.

Many authors [9; 100] use the following weighted modulus of continuity Ω ( f ; δ) for

f ∈ C∗ρ[0,∞):

Ω ( f ; δ) = sup
x∈[0,∞),|h|<δ

| f (x + h) − f (x)|(
1 + h2) (1 + x2) .

Let us denote by C∗[0,∞), the Banach space of all real valued continuous functions on

[0,∞) with the property that lim
x→∞

f (x) exists and is finite endowed with the uniform norm.

In [44], the following theorem is proved:

Theorem 1.1.6 If the sequence An : C∗[0,∞) → C∗[0,∞) of positive linear operators

satisfies the conditions

lim
n→∞

An

(
e−kt; x

)
= e−kx, k = 0, 1, 2

uniformly in [0,∞), then

lim
n→∞

An ( f ; x) = f (x) ,

uniformly in [0,∞), for every f ∈ C∗[0,∞).

1.1.6 Modulus of Continuity for Exponential Functions

To find rate of convergence of operators satisfying the conditions from the above

theorem , we use the following modulus of continuity:

ω∗ ( f ; δ) = sup
{
| f (x) − f (t)| : x, t ⩾ 0,

∣∣∣e−x − e−t
∣∣∣ ⩽ δ}

defined for every δ ≥ 0 and every function f ∈ C∗[0,∞).

Proposition 1.1.7 The modulus of continuity defined for exponential functions has the

following properties:
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1. ω∗ ( f ; δ) can be expressed in terms of usual modulus of continuity, by the relation

ω∗ ( f ; δ) = ω ( f ∗; δ)

where f ∗ is the continuous function on [0,∞) given by:

f ∗ (x) =

 f (− ln (x)) , x ∈ (0,∞]

lim
t→∞

f (t) , x = 0
.

2. For every t, x ∈ [0, 1] and M > 0, we have

ω∗ ( f ; δ) ≤
(
1 + eM

)
· ω ( f ; δ) .

3. The defined modulus of continuity ω∗ possess the following property:

| f (t) − f (x)| ≤
1 + (

e−t − e−x)2

δ2

ω ( f ∗; δ) .

1.1.7 Lipschitz Class

Definition 1.1.8 A function f (x) defined on an intercept ⟨a, b⟩ (this may mean the segment

[a, b] and the interval (a, b) which, specifically, may also be (−∞,+∞), as well as one of

the half segment, [a, b) or (a, b]), and satisfying the condition

| f (y) − f (x)| ⩽ M|y − x|β (0 < β ≤ 1),

for all pair of values x, y of this intercept is said to satisfy a Lipschitz condition. We write

it as f (x) ∈ LipM(β), the class of all those functions satisfying the Lipschitz condition with

the exponent β and the coefficient M.

The definitions we provided above are for functions with a single variable. These

definitions are slightly different for a function with two independent variables. In this

thesis, we have also studied the bivariate generalization of some operators. Therefore we

provide some definitions which will be used accordingly.

1.1.8 Total and Partial Modulus of Continuity

To establish the degree of approximation of bivariate operators in the space of con-

tinuous functions on compact set Iab = [0, a] × [0, b], the total modulus of continuity for

function f ∈ C(Iab) is defined by:

ωtotal( f ; δ1, δ2) = sup{| f (t1, t2) − f (x, y)| : (t1, t2), (x, y) ∈ Iab, |t1 − x| ≤ δ1, |t2 − y| ≤ δ2}.
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Further, the partial moduli of continuity with respect to the independent variables x and y

is given as:

ω1( f ; δ) = sup{| f (x1, y) − f (x2, y)| : 0 ≤ y ≤ b, |x1 − x2| ≤ δ}

and

ω2( f ; δ) = sup{| f (x, y1) − f (x, y2)| : 0 ≤ x ≤ a, |y1 − y2| ≤ δ}.

Both total and partial modulus of continuity for bivariate functions satisfy the properties

of usual modulus of continuity and can be studied more in [26].

Next, to establish the rate of convergence of bivariate operators, we define the fol-

lowing Peetre’s K-functional.

1.1.9 Peetre’s K-Functional for Bivariate Operators

Let C2(Iab) denote the set of all continuous functions on Iab = [0, a] × [0, b], whose

first and second derivatives exist and are continuous on the interval Iab. We define the

norm:

∥ f ∥C2(Iab) = ∥ f ∥C(Iab) +

2∑
k=1

∥∥∥∥∥∥∂k f
∂xk

∥∥∥∥∥∥
C(Iab)

+

∥∥∥∥∥∥∂k f
∂yk

∥∥∥∥∥∥
C(Iab)

.
From Butzer and Berens[46], the Peetre’s K-functional for f ∈ C2(Iab) is defined as:

K ( f ;σ) = inf
t∈C2(Iab)

{
∥ f − t∥C2(Iab) + σ∥t∥C2(Iab), σ > 0

}
.

For a positive constant M, Peetre’s K-functional satisfies the following inequality:

K ( f ;σ) ⩽ M
{
ϖ2

(
f ;
√
σ
)
+min {1, σ} ∥ f ∥C(Iab)

}
where ϖ2

(
f ;
√
σ
)

is the second order modulus of continuity for bivariate functions, de-

fined as:

ϖ2

(
f ;
√
σ
)
= sup


∣∣∣∣∣∣∣

2∑
i=0

(−1)2−i f (x + ix0, y + iy0)

∣∣∣∣∣∣∣
: (x, y) , (x + ix0, y + iy0) ∈ Iab, |x0| ⩽ σ, |y0| ⩽ σ

}
.

1.2 Historical Background and Literature Review

A simple yet powerful tool for deciding whether a given sequence of positive linear oper-

ators on C[0, 1] or C[0, 2π] is an approximation process or not are the Korovkin theorems.

These theorems are an abstract results in approximation which gives conditions for uni-

form approximation of continuous functions on a compact metric space. The Korovkin
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theorem [[25] pp.218] elegantly says that if (Ln)n≥1 is an arbitrary sequence of positive

linear operators on the space C[a, b], and if

lim
n→∞

Ln (ei; x)→ ei uniformly on [a, b],

for the test functions ei(x) = xi, i = 0, 1, 2 then

lim
n→∞

Ln ( f ; x)→ f uniformly on [a, b],

for each f ∈ C[a, b].

The above theorem, known as Korovkin’s first theorem, was proposed by Korovkin

[119] in 1953. Korovkin’s second theorem has a similar statement, but the space C[0, 1]

is replaced by the space C[0, 2π], i.e. the space of all 2π periodic real-valued functions

on R. The test functions ei in this case belong to the set {1, cos(x), sin(x)} for i = 0, 1, 2

respectively. H. Bohmann [43] in 1952 had proved a result similar to Korovkin’s first

theorem but concerning sequences of positive linear operators on C[0, 1] of the form

Ln ( f ; x) =
∑
i∈I

f (ai) ϕi, f ∈ C[0, 1]

where (ai)i∈Λ is a finite set of numbers in [0, 1] and ϕi ∈ C[0, 1], i ∈ Λ. Therefore,

Korovkin’s first theorem is also known as Bohman-Korovkin Theorem. An immediate

analogue of Korovkin’s theorem does not hold if the domain of definition of the function

f becomes unbounded and hence requires the function to have some finite limit at infinity.

For continuous and unbounded functions on [0,∞), Gadžiev [80] in 1974 introduced a

weighted space Cρ[0,∞) defined as the set of all continuous functions f on the interval

[0,∞) for which there exists a positive constant M such that | f (x)| ≤ Mρ(x), for every

x ∈ [0,∞). Here ρ is a positive continuous function called the weight function. The space

Cρ[0,∞) is a Banach space equipped with the norm

∥ f ∥ρ = sup
x∈[0,∞)

| f (x)|
ρ (x)

.

The Korovkin theorem by Gadžiev is given as: Let φ : [0,∞)→ [0,∞) be a contin-

uous, strictly increasing and unbounded function. Set ρ (x) = 1 + φ2 (x). If the sequence

of positive linear operators Ln : Cρ [0,∞)→ Cρ [0,∞) verifies

lim
n→∞

∥∥∥Ln(φi; x) − φi(x)
∥∥∥
ρ
= 0, i = 0, 1, 2

Then,

lim
n→∞
∥Ln( f ; x) − f (x)∥ρ = 0

for every f ∈ Cρ [0,∞) for which lim
n→∞

f (x)
ρ(x) exists and is finite.
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With the application of Korovkin theorems to study the uniform convergence of pos-

itive linear operators, advancement in approximation theory began with the development

of new positive linear operators, the first and most important of which are the Bernstein

polynomials. In 1912, Bernstein [39] gave an elegant proof of the famous Weierstrass

approximation theorem by defining a sequence of polynomials called Bernstein operators

on the closed interval [0, 1] (extended on [a, b] by simple manipulations). These operators

are defined as:

Let f be a bounded function on [0, 1]. The Bernstein operators of degree n with

respect to f is defined as:

Bn ( f ; x) =
n∑

k=0

bn,k (x) f
(

k
n

)
, x ∈ [0, 1] (1.3)

where

bn,k (x) =

 n

k

 xk(1 − x)n−k, k = 0, 1, 2, · · · , n

and

 n

k

 = Γ(n+1)
Γ(k+1)Γ(n−k+1) represents the binomial coefficient. It should be noted that

bn,k (x) ∈ Pn, k = 0, 1, 2, · · · , n where Pn denotes the space of all polynomials of degree

at most n, are the so-called Bernstein polynomials.

Since the Bernstein operators were only suitable for approximating functions on a

compact interval, Szász in 1950 [163], and Mirakjan in 1941 presented a generalization

of these operators for a continuous function f on the interval [0,∞) which later came to

be known as Szász-Mirakjan operators. These operators are defined as:

S n( f ; x) =
∞∑

k=0

sn,k (x) f
(

k
n

)
, x ∈ [0,∞), (1.4)

where

sn,k (x) = e−nx (nx)k

k!
.

In 1957, Baskakov [36] introduced another sequence of positive linear operators on

the interval [0,∞) called Baskakov operators which are defined as:

Vn( f ; x) =
∞∑

k=0

vn,k (x) f
(

k
n

)
, x ∈ [0,∞), (1.5)

where

vn,k (x) =
(
n + k − 1

k

)
xk

(1 + x)n+k .
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To approximate integrable functions on the compact interval [a, b], Kantorovich

[114] was the first to define the integral variant of Bernstein operators by replacing the

weight function with the average mean of the weight function in the vicinity of the point
k
n as:

B̂n ( f ; x) = (n + 1)
n∑

k=0

bn,k (x)

(k+1)/(n+1)∫
k/(n+1)

f (t) dt.

where bn,k (x) is defined in (1.3). Similarly, Szász Kantorovich operators on the un-

bounded interval [0,∞) for given basis function sn,k (x) in (1.4) are defined as:

Ŝ n ( f ; x) = n
∞∑

k=0

sn,k (x)

(k+1)/n∫
k/n

f (t) dt. (1.6)

For Baskakov operators, the integral variant on the semi real axis is:

V̂n ( f ; x) = (n − 1)
∞∑

k=0

vn,k (x)

(k+1)/(n−1)∫
k/(n−1)

f (t) dt. (1.7)

where vn,k (x) is defined in similar manner as in (1.5). To estimate functions on

an unbounded interval, Kantorovich forms of various approximation operators have

been defined from time to time. For further reference, one can visit the articles

[8; 15; 24; 59; 84; 134].

In 1967, Durrmeyer [77] gave a more generalized integral modification of Bernstein

operators by replacing the values of f (k/n) by an integral over the weight function on

the interval [0, 1]. These so called Bernstein-Durrmeyer operators were first studied by

Derrienic [66] and are defined as:

B̃ ( f ; x) = (n + 1)
n∑

k=0

bn,k (x)

1∫
0

bn,k (t) f (t) dt. (1.8)

In 1985, Mazhar and Totik [131] introduced the Szász-Durrmeyer operators as follows:

S̃ n ( f ; x) = n
∞∑

k=0

sn,k (x)

∞∫
0

sn,k (t) f (t) dt. (1.9)

In the same year Sahai and Prasad [161] also established the Baskakov-Durrmeyer oper-

ators defined as follows:

Ṽn ( f ; x) = (n − 1)
∞∑

k=0

vn,k (x)

∞∫
0

vn,k (t) f (t) dt. (1.10)
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where bn,k (x), sn,k (x) and vn,k (x) are same as in (1.3), (1.4) and (1.5) respectively. Dur-

rmeyer type variants of a number of positive linear operators were constructed in subse-

quent years. One can refer to the articles [4; 18; 57; 83; 111].

Bernstein polynomials, with their helpful structure and applications in various ar-

eas (computer technologies, engineering sciences, physics, etc.), have been the subject of

intense research for more than a century. A variety of modifications and generalizations

of Bernstein polynomials have also been investigated in the literature. One of the main

goals of these modifications and generalizations are to transfer Bernstein polynomials

over unbounded intervals in order to extend the class to which the desired function be-

longs. For example, Chlodowsky [56], transferred these polynomials from [0, 1] to [0, bn](
bn → ∞,

bn
n → 0

)
by introducing a new version of Bernstein polynomials. Usta [167]

proposed a new modification of Bernstein operators which fix constant and preserve Ko-

rovkin’s other test functions in limit case. Another goal of continuing research on Bern-

stein polynomials is to improve approximation speed and reduce the absolute error that

occur as a natural outcome of the approximation process. Gadjiev and Ghorbanalizadeh

[82] carried out one of these research and defined Bernstein-Stancu type polynomials with

shifted knots. Shifted knots have the benefit of allowing approximation on interval (0, 1)

and its subinterval. It also increases the flexibility of operators for approximation.

Depending on the parameter λ, Cai et al. [50] proposed and took into consideration

a new generalization of Bernstein polynomials known as λ-Bernstein operators. When

λ = 0, these λ-Bernstein operators reduce into the well-known Bernstein operators [39].

In this thesis, the generalization of λ-Bernstein operators [50] based on Pólya distribution

is presented.

Zeng and Piriou [174] pioneered the study of Bézier variant of Bernstein operators.

It is well known that Bézier curves are the parametric curves used in computer graphics

and designs, interpolation, approximation, curve fitting etc. In graphics of vectors, these

are used to model smooth curves and also used in animation designs. These curves were

invented by Pierre Etienne Bézier, a French engineer at Renault. Later on, Chang [54]

introduced Bézier variant for generalized Bernstein operators and studied some of its ap-

proximation properties. Zeng and Chen [175] introduced the Bézier Bernstein-Durrmeyer

operators and studied the rate of convergence for these operators. These works have been

continued ever since by several authors with construction of Bézier variants of different

operators and analyzed their approximation properties. For further references, one can

refer to articles [23; 67; 91; 96; 97; 104; 144; 153; 157; 158].

The operators we have covered up to this point were only appropriate for approx-

imating functions with one variable. So Kingsley [176] initiated the study of Bern-
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stein operators for the two variable case for the class of k-times continuously differen-

tiable functions on a closed and bounded rectangle region. Butzer [177] investigated

some approximation properties for these operators. After that, Stancu [178] introduced

another kind of generalization of Bernstein operators for the two and several variable

case. In last couple of years, researchers have proposed bivariate of various operators

and demonstrated their convergence behaviour. Readers can go through these papers

[19; 34; 61; 89; 103; 123; 134; 140] to get some knowledge about this topic.

In the past few decades, GBS operators have gained substantial importance amongst

researchers to study functions in Bögel space. In 1934, Bögel [41; 42] developed the

study of B-continuous and B-differentiable functions. Later, Dobrescu and Matei [75]

illustrated that the convergence of GBS operators corresponding to the bivariate Bern-

stein polynomial is uniform. Badea and Cottin [33], instituted Korovkin-type theorem for

GBS operators. Thereafter Badea et al. [31] proved the well known "Test function theo-

rem" to approximate these kinds of functions. Badea and Badea [32] for these functions

established a quantitative variant of the Korovkin-type theorem. In recent years many

researchers [13; 38; 93; 98] contributed in the area of approximation theory.

With the advancement in approximation theory, researchers were drawn to develop-

ing novel approximation operators that had faster convergence rates and were applicable

within a variety of functions and spaces. May [129] in 1976 first defined operators of the

form:

Wλ ( f ; x) =

∞∫
−∞

S (λ, x, t) f (t) dt,

and termed it as exponential operators provided they satisfy two conditions, first is the

homogenous partial differential equation

∂

∂x
S (λ, x, t) =

λ(t − x)
q(x)

S (λ, x, t) , (1.11)

where, S (λ, x, t) ≥ 0 is the kernel of these operators and q is a polynomial of at most

degree n which is analytic and positive for x ∈ (a, b) for some a, b such that −∞ ≤ a ≤

b ≤ +∞, while second is the normalization condition

Wλ (1; x) =

∞∫
−∞

S (λ, x, t)dt = 1. (1.12)

Operators satisfying the above conditions are, for example, the Bernstein operators, Szász

Mirakjan operators, Post-Widder operators, Gauss-Weierstrass operators and Baskakov

operators. These well-known operators are thus referred to as exponential operators.

Some approximation properties were also studied for polynomials of degree at most 2.
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A year later, Ismail and May [102] proved that for a polynomial q of any degree, the ap-

proximation operators Wλ can be uniquely determined and satisfies the differential equa-

tion (1.11) along with the normalisation condition (1.12). As a consequence of this, they

recovered some known operators for constant, linear and quadratic polynomials. Fur-

ther, they gave some new operators for cubic polynomials q such as: for the polynomial

q(x) = x(1 + x)2, new exponential operators derived by Ismail and May using the method

of bilateral Laplace transform are defined as:

Rn( f ; x) = e−nx
∞∑

k=0

n(n + k)k−1

k!
(
xe−x)k f

(
k

n + k

)
, n ∈ N x ∈ (0, 1). (1.13)

The convergence properties and the corresponding Kantorovich variant of these opera-

tors were extensively studied in [134]. A complete asymptotic expansion for this se-

quence of operators is also derived in [2]. Another exponential operators corresponding

to q(x) = 2x3/2 is also studied in [1; 122]. Sato [162] studied the global behaviour of ex-

ponential operators like Bernstein, Szász Mirakjan, Gauss-Weierstrass etc., in weighted

spaces. Totik [165] described their theoretical approximation properties from the point of

view of global uniform approximation. For more information on exponential operators,

one can refer to the book [94] and the articles cited therein. In this thesis, we have inves-

tigated some modifications of exponential operators given by Ismail and May [102] and

discussed their convergence properties.

Another approximation operators examined in this thesis are the Gamma-type op-

erators. A vital tool among the researchers to study positive linear operators is Euler’s

gamma function, which for r > 0 is defined as follows:

Γ (r) =
∫ ∞

0
e−ttr−1dt.

For (a, b) ∈ R, Miheşan [132] defined a more general linear transform of f , also called

the (a, b)−gamma transform, as follows:

Γ(r)(a,b) ( f ; x) =
1
Γ (r)

∫ ∞

0
e−ttr−1 f

(
xe−bt

( t
r

)a)
dt. (1.14)

The transform (1.14) reproduces distinct integral operators for different values of a, b and

r. The derived operators have been introduced and studied extensively by researchers

over the past few decades; for instance, see [28; 95; 121; 126; 138]. For b = 0, a =

−1 and r = n + 1, one can obtain particular operators first introduced and studied by

Lupaş and Müller [127] and also referred to as Gamma operators. In this thesis work, we

have proposed certain Gamma-type operators which possess the property of reproducing

polynomial functions of the form tϑ, ϑ ∈ N.
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1.3 Improvement in Order of Approximation

The central idea in approximation theory is to estimate the rate of convergence of the

sequence of operators using various convergence methods. These methods aim to im-

prove the rate of convergence of operators, thereby reducing the error induced during the

approximation process.

Our interest in this thesis is to improve the order of approximation of classical and

existing operators. An important approach to improve the order of approximation was

given by King in his pioneer work [117]. He presented a non-trivial sequence of positive

linear operators defined on C[0, 1] that preserved the test functions e0 and e2. Let {rn (x)}

be a sequence of continuous functions defined on [0, 1] such that rn (x) ∈ [0, 1]. Then the

operators Vn,rn : C[0, 1]→ C[0, 1] are defined as:

Vn,rn ( f ; x) =
n∑

k=0

(rn (x))k(1 − rn (x))n−k f
(

k
n

)
, x ∈ [0, 1]

where

rn (x) =

 x2, n = 1
−1

2(n−1) +

√(
n

n−1

)
x2 + 1

4(n−1)2 , n = 2, 3, · · ·

The operators Vn,rn interpolate f at the endpoints 0 and 1 and are not polynomial oper-

ators. King also proved that the order of approximation of operators Vn,rn is at least as

good as the order of approximation of Bernstein operators for x ∈ [0, 1
3 ]. Inspired by

his work, other modifications of well-known operators were constructed as well to fix

certain functions and to study their approximation and shape-preserving properties. In

[52] Cárdenas-Morales et al. presented a family of sequences of linear Bernstein-type

operators Bn,α, n > 1, depending on a real parameter α ≥ 0, and fixing the polynomial

function e2+αe1. Among other things, the authors prove that if f is convex and increasing

on [0, 1], then f (x) ≤ Bn,α( f ; x) < Bn( f ; x) for every x ∈ [0, 1]. Duman and Özarsalan

[76] gave a modification of the classical Szász-Mirakjan operators to provide a better er-

ror estimation. Ozsarac and Acar [141] presented a new modification of the Baskakov

operators, which preserve the functions eµt and e2µt, µ > 0.

In this thesis, we have used King’s approach to present a better modification of

various operators, thereby reducing the error and improving the rate of approximation of

the considered operators.

1.4 Chapter-wise Overview of the Thesis

The thesis consists of six chapters, whose contents are described below:
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Chapter 1 provides an in-depth analysis of the literature and historical context of

some key approximation operators. Along with a brief summary of the chapters this

thesis is divided into, we also discuss some preliminary instruments that will be employed

subsequently to derive our main results.

Chapter 2 is dedicated to some exponential operators, a concept first studied by

May and later explored thoroughly in collaboration with Ismail. This chapter is majorly

divided into two distinct sections. The initial section considers an exponential operators

associated with the polynomial x(1 + x)2 which is defined as:

R̃λ( f ; t) = e−
λt

(1+t)

∞∑
k=0

λ(λ + k)k−1

k!

( t
1 + t

)k
e−

λt
(1+t) f

(
k
λ

)
, λ > 0, t ∈ (0,∞).

With change of variables x = t
1+t , Ismail and May [102] defined positive linear operators

for a continuous function f ∈ C[0, 1], as follows:

Rλ( f ; t) = e−λx
∞∑

k=0

λ(λ + k)k−1

k!
(
xe−x)k f

(
k

λ + k

)
.

We studied the approximation properties of Ismail-May operators [102] based on a non-

negative real parameter λ. We provide some graphs and an error estimation table for

a numerical example depicting the convergence of our proposed operators. We further

define the Bézier variant of these operators in the following way:

Rα
λ( f ; t) =

∞∑
k=0

f
(

k
λ + k

)
ϑαn,k (x), α ≥ 1, x ∈ [0, 1],

where ϑαλ,k (x) =
(
Pλ,k(x)

)α
−

(
Pλ,k+1(x)

)α, and Pλ,k(x) =
∞∑
j=k

rλ, j(x) for k = 0, 1, 2, ..λ are the

Bézier basis functions and

rλ,k(x) = e−λxλ(λ + k)k−1

k!
(xe−x)k, x ∈ [0, 1].

We established a direct approximation theorem using the Ditizan-Totik modulus of

smoothness and a Voronovoskaya-type asymptotic theorem. We also study the error in the

approximation of functions having derivatives of bounded variation. Lastly, we present

the bivariate generalization of Ismail May operators as follows:

Rk1k2
λ1λ2

( f ; x, y) =
∞∑

k1=0

∞∑
k2=0

ℏk1k2
λ1λ2

(x, y) f
( k1

λ1 + k1
,

k2

λ2 + k2

)
, (1.15)

where the basis function is considered as:

ℏk1k2
λ1λ2

(x, y) = e−(λ1 x+λ2y)λ1λ2(λ1 + k1)k1(λ2 + k2)k2

k1!k2!
(
xe−x)k1(ye−y

)k2 .
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We estimate its rate of convergence for functions of the Lipschitz class.

The subsequent section is devoted to a modification of other exponential operators

proposed by Ismail and May [102] associated with the polynomial 2x3/2 and is defined as:

T̈n ( f ; x) = e−n
√
ϱn(x)

 f (0) + n

∞∫
0

e−nt/
√
ϱn(x)t−1/2I1

(
2n
√

t
)

f (t) dt

 .
The computation of the function ϱn (x) = x3/2

√
4n2+x+2n2 x+x2

2n2 is based on the assumption

that these operators preserve the exponential functions of the form e−x. The moments of

the modified operators are achieved by using the concept of moment-generating function,

with the aid of Mathematica software. This study aims to demonstrate the uniform con-

vergence of these modified operators and analyze their asymptotic behavior through the

Voronovskaya-type theorem. Furthermore, we confirm our claim by presenting graphical

evidence that our modified operators possess better approximation in comparison to the

original operators for a certain family of functions. Finally, the graphs for the convergence

of the modified operators is achieved by employing Mathematica software.

Over the past few decades, scholars have dedicated their efforts to investigating a

wide range of approximation operators in light of the advancements made in the theory of

the gamma function. Chapter 3 therefore focuses mainly on investigating a modification

of certain Gamma-type operators. In this study, we used King’s approach [117] to present

a modification of certain Gamma-type operators. The objective of this modification is to

ensure the preservation of the test functions tϑ, ϑ ∈ N. The modified operators are defined

as:

G(ϑ)
n ( f ; x) =

(2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

∞∫
0

tn(
β(ϑ)

n (x) + t
)2n+4 f (t)dt,

where

β(ϑ)
n (x) =

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ
x.

The notation (n)ϑ is used to represent the rising factorial, where (n)ϑ =

n (n + 1) ... (n + ϑ − 1) and (n)0 = 1. Recursion formulas were employed to derive the

moments and central moments of the operators under consideration. These moments were

subsequently utilized to determine the convergence rate of proposed operators in the sense

of the usual modulus of continuity and Peetre’s K-functional. Furthermore, the degree of

approximation is also established for the function of bounded variation. We also illustrate

via figures and tables that the proposed modification provides a better approximation for

preserving the test function e3.
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Chapter 4 is divided into two sections. Pólya distribution-based generalization of

λ-Bernstein operators is dealt with in the first section. For f ∈ C [0, 1], λ ∈ [−1, 1] ,

µ = µ(n)→ 0 as n→ ∞, the generalization of λ-Bernstein operators [50] based on Pólya

distribution is presented in the following manner:

P⟨λ,µ⟩n ( f ; x) =
n∑

k=0

p̂⟨λ,µ⟩n,k (x) f
(

k
n

)
,

where p̂⟨λ,µ⟩n,k (x), k = 0, 1, ..., n are defined as:
p̂⟨λ,µ⟩n,0 (x) = p⟨µ⟩n,0 (x) − λ

n+1 p⟨µ⟩n+1,1 (x) ,

p̂⟨λ,µ⟩n,k (x) = p⟨µ⟩n,k (x) + λ
(

n−2k+1
n2−1 p⟨µ⟩n+1,k (x) − n−2k−1

n2−1 p⟨µ⟩n+1,k+1 (x)
)
, 1 ⩽ k ⩽ n − 1,

p̂⟨λ,µ⟩n,n (x) = p⟨µ⟩n,n (x) − λ
n+1 p⟨µ⟩n+1,n (x) .

and

p⟨µ⟩n,k (x) =

 n

k


k−1∏
i=0

(x + iµ)
n−k−1∏

i=0
(1 − x + iµ)

n−1∏
i=0

(1 + iµ)
.

We establish some basic results that are relevant for establishing key theorems. We present

a theorem and graphical illustrations in support of the proposed operator’s interpolation

behaviour. In order to verify the convergence of the proposed operators, we provide

theoretical results alongside Mathematica-generated graphs.

The second section is concerned with the generalization of Bernstein operators with

shifted knots. Shifted knots have the benefit of allowing approximation on interval (0, 1)

as well as its subinterval. For x ∈
(

a2
n+b2

, n+a2
n+b2

)
, and ap, bp, p = 1, 2 are positive real num-

bers with the condition 0 ⩽ a2 ⩽ a1 ⩽ b1 ⩽ b2, we introduce the following generalization

of Bernstein operators:

O⟨ai,bi⟩
n ( f ; x) =

n∑
k=0

o⟨ai,bi⟩
n (x) f

(
k + a1

n + b1

)
,

where

o⟨ai,bi⟩
n (x) = (n + b2)

(
n + b2

n

)n−1(k + a2

n + b2
− x

)2(
x −

a2

n + b2

)k−1(n + a2

n + b2
− x

)n−k−1

.

We derive some theorems to establish the convergence of our newly constructed operators.

To demonstrate asymptotic behaviour, we present Voronovskaja, and Grüss Voronovskaja

type theorems. Finally, the convergence is verified using an absolute error table and graph-

ical representations.

Chapter 5 is based on the bivariate generalization of operators involving a class

of orthogonal polynomials called Apostol-Genocchi polynomials. Consider the set C(I),
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which represents the class of real-valued continuous functions defined on the interval

I = [0,∞] × [0,∞]. For f ∈ C(I), the bivariate generalization is defined as:

Gα,β
n1,n2

( f ; x1, x2) = e−(n1 x1+n2 x2)
(
1 + eβ

2

)2α ∞∑
k1=0

∞∑
k2=0

gαk1
(n1x1; β)

k1!

gαk2
(n2x2; β)

k2!
f
(

k1

n1
,

k2

n2

)
,

The expression gαk (x; β) represents the generalized Apostol-Genocchi polynomials of or-

der α. We obtain the rate of convergence in terms of partial and total modulus of conti-

nuity and order of approximation by means of a Lipschitz-type function and Peetre’s K-

functional. In addition, we propose a generalization known as "generalized boolean sum

(GBS)" for these bivariate operators in order to determine the order of approximation for

Bögel continuous functions. We utilize Mathematica software to present a few graphical

illustrations that effectively showcase the rate of convergence for the bivariate operators.

It gets known through those graphs that for some particular functions the bivariate oper-

ators exhibits superior convergence when α < β. Based on our analysis and comparison

of the error of approximation between the bivariate operators and the associated GBS op-

erators, it can be concluded that the GBS operators exhibit a faster convergence towards

the function.

The concluding chapter, Chapter 6, offers a summary of the thesis followed by the

author’s thoughts on the future direction of the research.

We now move on to our first chapter, which explores some important exponential opera-

tors based on recent studies by Ismail and May.





Chapter 2

On exponential operators due to Ismail
and May

This chapter is dedicated to some exponential operators, a concept first introduced by

May and later explored thoroughly in collaboration with Ismail. The operators are com-

monly known as Ismail-May operators among active researchers. The first section of

this chapter is devoted to approximation properties of exponential operators linked to the

polynomial x(1+ x)2. Further, we define its Bézier variant and estimate the rate of conver-

gence for functions with derivatives of bounded variation, a direct approximation theorem

using Ditizan-Totik modulus of smoothness, and a Voronovoskaya type result. Moreover,

a two-variable generalization of the proposed operators and their approximation proper-

ties are also investigated. The second section is focused on another exponential operators

associated with the polynomials 2x3/2. These operators are modified in a way that pre-

serves the exponential function e−x and provides improved approximations compared to

the original operators for certain family of functions. We gave a result and supporting

graphs to prove the goodness of modified operators.

2.1 General family of exponential operators

2.1.1 Introduction

In the year 1976, May [129] introduced the concept of positive exponential operators

Lλ on C(−∞,∞) (space of continuous functions defined on the entire real line) into C∞

19
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(space of infinitely differentiable functions) as:

Lλ ( f ; x) =

∞∫
−∞

W(λ, t, s) f (s)ds,

where W(λ, t, s) ≥ 0 is a kernel of distribution and satisfy the following conditions:

1. Lλ (1; x) =
∞∫
−∞

W(λ, t, s)ds = 1 normalisation condition.

2. ∂
∂t W(λ, t, s) = λ

p(t)W(λ, t, s)(s−t), where p(t) is analytic and positive for t ∈ (−∞,∞).

The combination of the partial differential equation and the normalization condition es-

tablishes, at most, a single kernel W(λ, t, u) for an exponential operator associated with a

given polynomial p(t). Furthermore, the normalization condition yields

exp

λ
g(x)∫
c

θdθ
p(θ)

 =
∞∫
−∞

C (λ, s) exp (λsx) ds, x ∈ Range of q(t), (2.1)

where q(t) =
t∫

c

dv
p(v) and g(q(t)) = q(g(t)).

Ismail and May [102] demonstrated that for a linear or quadratic p(t), there exist

several well-known operators, including Bernstein, Szász, Baskakov, Gauss-Weierstrass,

Post-Widder etc., which satisfy above conditions and can therefore be classified as expo-

nential operators. For example, when p(t) = t and c = 1, the corresponding approximation

operators are Szász operators:

S λ ( f ; t) = e−λt
∞∑

k=0

(λt)k

k!
f
(

k
λ

)
, t ∈ (0,∞).

For p(t) = 1 and c = 0, equation (2.1) become the Gauss-Weierstrass operators:

Wλ ( f ; t) =

√
λ

2π

∞∫
−∞

exp
{
−λ(s − t)2

2

}
f (s)ds, t ∈ (−∞,∞).

Similarly, for a quadratic p(t) = t(1−t) with t ∈ (0, 1) and c = 1
2 , equation (2.1) transforms

into the very known Bernstein operators:

Bλ ( f ; t) =
n∑

k=0

 n

k

tk(1 − t)n−k f
(

k
n

)
, n = 1, 2, .., t ∈ [0, 1].

Ismail and May [102] also constructed some new approximation operators for cubic

polynomials by determining a unique generalized function C(λ, s) for which correspond-

ing kernel is given by:

W (λ, t, s) = exp

λ
t∫

c

s − θ
p (θ)

dθ

C(λ, s). (2.2)
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For p(t) = t(1 + t)2, c = 1 and considering the following identity (see [142])

eλx =

∞∑
k=0

λ(λ + k)k−1

k!
(
xe−x)k

, (2.3)

we get

C (λ, s) = 2−λse−
λ(1+s)

2

∞∑
k=0

λ(λ + k)k−1

k!
δ(k − λs).

For this value of C(λ, s), the corresponding exponential operators are

R̃λ ( f ; t) = e−
λt

(1+t)

∞∑
k=0

λ(λ + k)k−1

k!

( t
1 + t

)k
e−

λt
(1+t) f

(
k
λ

)
.

With change of variables x = t
1+t , Ismail and May [102] defined a positive linear operators

for a continuous function f ∈ [0, 1], as follows:

Rλ ( f ; x) = e−λx
∞∑

k=0

λ(λ + k)k−1

k!
(
xe−x)k f

(
k

λ + k

)
. (2.4)

The Kantorovich form of the operator (2.4) and its bivariate are introduced in [134], along

with significant approximation results.

2.1.2 Basic Results

In this section, we discuss some auxiliary results that are essential to prove our main

results for the operators (2.4).

Lemma 2.1.1 For ei(s) = si, i = 0, 1, 2, 3, 4 and λ > 0, we have

Rλ (e0; x) = 1;

Rλ (e1; x) =
λ

λ + 1
x;

Rλ (e2; x) =
λ2

(λ + 1)(λ + 2)
x2 +

λ

(λ + 1)2 x;

Rλ (e3; x) =
λ3

(λ + 1)(λ + 2)(λ + 3)
x3 +

λ2(3λ + 4)
(λ + 1)2(λ + 2)2 x2 +

λ

(λ + 1)3 x;

Rλ (e4; x) =
λ4

(λ + 1)(λ + 2)(λ + 3)(λ + 4)
x4 +

2λ3(3λ2 + 11λ + 9)
(λ + 1)2(λ + 2)2(λ + 3)2 x3

+
λ2(7λ2 + 18λ + 12)

(λ + 1)3(λ + 2)3 x2 +
λ

(λ + 1)4 x.
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Lemma 2.1.2 If µλ,m = Rλ ((s − x)m; x) denote the central moments of the operators (2.4),

then for m = 1, 2, 4, we have

µλ,1(x) = −
x

(λ + 1)
;

µλ,2(x) = −
(λ − 2)

(λ + 1)(λ + 2)
x2 +

λ

(λ + 2)
x;

µλ,4(x) =
(3λ2 − 46λ + 24)x4

(λ + 1)(λ + 2)(λ + 3)(λ + 4)
+
λ(−6λ3 + 36λ2 + 216λ + 216)x3

(λ + 1)2(λ + 2)2(λ + 3)2

+
λ(3λ3 − 6λ2 − 36λ − 32)x2

(λ + 1)3(λ + 2)3 +
λx

(λ + 1)4 .

Remark 2.1.3 For sufficiently large λ, we have

lim
λ→∞

λµλ,1(x) = −x;

lim
λ→∞

λµλ,2(x) = x(1 − x);

lim
λ→∞

λ2µλ,4(x) = 3x2(x − 1)2.

Lemma 2.1.4 Let f be a continuous function in [0, 1], then we have

|Rλ ( f ; x)| ≤ ∥ f ∥ .

2.1.3 Main Results

Theorem 2.1.5 Suppose f be a continuous function defined on the interval [0, 1], then

Rλ ( f ; x)→ f (x) uniformly in [0, 1].

Proof: From Lemma 2.1.1, Rλ (e0; x) = 1, Rλ (e1; x) → x and Rλ (e2; x) → x2 as λ → ∞.

Then by Bohman-Korovkin theorem, Rλ ( f ; x)→ f (x) uniformly in [0, 1].

Now we estimate the rate of convergence of operators (2.4), with the help of first

and second order modulus of continuity (see also [151]).

Theorem 2.1.6 For f ∈ C[0, 1], λ > 0, we have

|Rλ ( f ; x) − f (x)| ≤ Cω2

 f ;

√
µλ,2(x) + ψ(x)

2

 + ω( f ;ψ2(x)),

where ψ(x) =
√ x

λ+1 and µλ,2(x) is stated in Lemma 2.1.2.

Proof: We consider auxiliary operators

R̃λ ( f ; x) = Rλ ( f ; x) − f
(
λx
λ + 1

)
+ f (x). (2.5)
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Suppose g ∈ C2[0, 1], by Taylor’s expansion, we have

g(s) = g(x) + g′(x)(s − x) +

s∫
x

(s − u)g′′(u)du.

From (2.5), R̃λ (e0; x) = 1, R̃λ (e1; x) = x and R̃λ ((s − x); x) = 0, we have

∣∣∣R̃λ (g (s) − g (x) ; x)
∣∣∣ ≤

∣∣∣∣∣∣∣∣∣∣
λx
λ+1∫
x

(
λx
λ + 1

− u
)
g′′(u)du

∣∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣Rλ


s∫

x

(s − u)g′′(u)du; x


∣∣∣∣∣∣∣∣

≤ ∥g′′∥


λx
λ+1∫
x

∣∣∣∣∣ λx
λ + 1

− u
∣∣∣∣∣du + Rλ


s∫

x

|(s − u)|du; x




≤
∥∥∥g′′∥∥∥ (

µλ,2(x) + ψ(x)
)
. (2.6)

From (2.5) and using Lemma 2.1.4, we get

R̃λ ( f ; x) ≤ 3 ∥ f ∥ . (2.7)

Using equations (2.5) -(2.7), we have

|Rλ ( f ; x) − f (x)| ≤
∣∣∣R̃λ ( f (s) − g (s) ; x) − ( f − g)(x)

∣∣∣ + ∣∣∣R̃λ (g (s) − g (x) ; x)
∣∣∣ + ∣∣∣∣∣ f (

λx
λ + 1

)
− f (x)

∣∣∣∣∣
≤4

[
∥ f − g∥ +

(
µλ,2(x) + ψ(x)

)
4

∥∥∥g′′∥∥∥] + ω( f ;ψ2(x)). (2.8)

Taking infimum on the right hand side of (2.8), we have

|Rλ ( f ; x) − f (x)| ≤ 4K2

(
f ;
µλ,2(x) + ψ(x)

4

)
+ ω( f ;ψ2(x)).

By using relation (1.2), we get the desired result .

In our next theorem, we discuss the rate of convergence for the operators Rλ using

the functions of Lipschitz class as defined in subsection 1.1.7.

Theorem 2.1.7 Let f ∈ LipM(β), x ∈ [0, 1] and λ > 0, we have

|Rλ ( f ; x) − f (x)| ≤ M
(
µλ,2(x)

) β
2 .

Proof: For the positive linear operators Rλ and f ∈ LipM(β) , we have

|Rλ ( f ; x) − f (x)| ≤
∣∣∣R̃λ (| f (s) − f (x)| ; x)

∣∣∣
=e−λx

∞∑
k=0

λ(λ + k)k−1

k!
(
xe−x)k

∣∣∣∣∣∣ f
(

k
λ + k

)
− f (x)

∣∣∣∣∣∣
≤Me−λx

∞∑
k=0

λ(λ + k)k−1

k!
(
xe−x)k

∣∣∣∣∣ k
λ + k

− x
∣∣∣∣∣β.
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Using Hölder’s inequality,

|Rλ ( f ; x) − f (x)| ≤ M
[
µλ,2(x)

] β
2 .

Hence the proof.

Theorem 2.1.8 If the function f (x) is bounded on [0, 1] , x ∈ (0, 1) and for which f ′(x),

f ′′(x) exist then, we have

lim
λ→∞

λ
[
Rλ ( f ; x) − f (x)

]
= −x f ′(x) +

x(1 − x)
2

f ′′(x).

Proof: Suppose x ∈ [0, 1] be a fixed point, by Taylor’s formula, we can say

f (s) = f (x) + (s − x) f ′(x) +
(s − x)2

2
f ′′(x) + r(s, x)(s − x)2, (2.9)

r(s, x) ∈ C[0, 1] be the Peano form of the remainder. By using L’hospital rule we can

easily say that r(s, x) converges to 0 when s approaches to x.

In (2.9), applying Rλ(., x), we obtain

lim
λ→∞

λ
[
Rλ ( f ; x) − f (x)

]
= f ′(x) lim

λ→∞
λRλ ((s − x); x) +

f ′′(x)
2

lim
λ→∞

λRλ

(
(s − x)2; x

)
+ lim

λ→∞
λRλ

(
r(s, x)(s − x)2; x

)
. (2.10)

Applying Cauchy-Schwarz inequality in the last term of (2.10), we get

λRλ

(
(s − x)2; x

)
≤

√
Rλ

(
r2(s, x); x

)
.

√
λ2Rλ

(
(s − x)4; x

)
.

Since r2(x, x) = 0 and from Remark 2.1.3, we obtain

lim
λ→∞

λRλ

(
r(s, x)(s − x)2; x

)
= 0. (2.11)

From (2.10), (2.11) and using Remark 2.1.3, we get the required result.

From [74] the unified Ditzian-Totik modulus of smoothness is given as follows:

ωϕτ ( f ; t) = S up
0<h≤t

{∣∣∣∣∣∣ f
(
x +

hϕτ (x)
2

)
− f

(
x −

hϕτ (x)
2

)∣∣∣∣∣∣ , x + hϕτ (x)
2
∈ [0, 1]

}
.

Further, the appropriate K-functional is defined by

Kϕτ ( f ; t) = inf
g∈Wϕτ[0,1]

{∥ f − g∥ + t ∥ϕτg′∥} (t > 0) ,

where 0 ≤ τ ≤ 1, Wϕτ [0, 1] = {g : g ∈ ACloc [0, 1] , ∥ϕτg′∥ < ∞} , g ∈ ACloc [0, 1] denotes

the class of all locally absolutely continuous function and ∥.∥ is the sup norm on C [0, 1] .

It is well known [74] that there exists a constant C > 0 such that

C−1ωϕτ ( f ; t) ≤ Kϕτ ( f ; t) ≤ Cωϕτ ( f ; t) . (2.12)
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Theorem 2.1.9 Let f ∈ C[0, 1]. Then for ϕ(x) =
√

x(1 − x) and for every x ∈ (0, 1), we

have

|Rλ (g; x) − g(x)| ≤ Cωϕτ

(
f ;
ϕ1−τ(x)
√
λ

)
,

where C is a constant.

Proof: Since g ∈ Wϕτ , we obtain

g(s) = g(x) +

s∫
x

g′(u)du,

Therefore, we can write

|Rλ (g; x) − g(x)| ≤ Rλ


∣∣∣∣∣∣∣∣

s∫
x

g′(u)du

∣∣∣∣∣∣∣∣; x

 . (2.13)

Applying Hölder’s inequality, we get∣∣∣∣∣∣∣∣
s∫

x

g′(u)du

∣∣∣∣∣∣∣∣ ≤ ∥ϕτg′∥
∣∣∣∣∣∣∣∣

s∫
x

du
ϕτ

∣∣∣∣∣∣∣∣ ≤ ∥ϕτg′∥ |s − x|1−τ

∣∣∣∣∣∣∣∣
s∫

x

du
ϕ(u)

∣∣∣∣∣∣∣∣
τ

(2.14)

and ∣∣∣∣∣∣∣∣
s∫

x

du
ϕ(u)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

s∫
x

du
√

u(1 − u)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
s∫

x

(
1
√

u
+

1
√

1 − u

)
du

∣∣∣∣∣∣∣∣
≤ 2[

∣∣∣√s −
√

x
∣∣∣ + ∣∣∣∣√1 − s −

√
1 − x

∣∣∣∣]
= 2 |s − x|

[
1

√
s +
√

x
+

1
√

1 − s +
√

1 − x

]
≤ 2 |s − x|

[
1
√

x
+

1
√

1 − x

]
≤

2
√

2 |s − x|
ϕ(x)

.

From (2.14), we have

s∫
x

g′(u)du ≤ ∥ϕτg′∥ |s − x|1−τ
2
√

2 |s − x|
ϕ(x)

τ = ∥ϕτg′∥ |s − x| 2
τ
2
τ
2

ϕτ(x)
.
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Applying Cauchy-Schwarz inequality,

|Rλ (g; x) − g(x)| ≤
2
τ
2
τ
2 ∥ϕτg′∥Rλ (|s − x| ; x)

ϕτ(x)

≤
2

3τ
2 ∥ϕτg′∥

√
Rλ

(
(s − x)2; x

)
ϕτ(x)

≤
2

3τ
2 ∥ϕτg′∥

ϕτ(x)
C1ϕ(x)
√
λ
=

C12
3τ
2 ∥ϕτg′∥ ϕ1−τ(x)
√
λ

.

Therefore

|Rλ ( f ; x) − f (x)| ≤ |Rλ (( f − g); x)| + |Rλ (g; x) − g(x)| + |g(x) − f (x)|

≤ 2 ∥ f − g∥ + |Rλ (g; x) − g(x)|

≤ 2 ∥ f − g∥ +
C12

3τ
2 ∥ϕτg′∥ ϕ1−τ(x)
√
λ

≤ C
{
∥ f − g∥ +

ϕ1−τ(x)
√
λ
∥ϕτg′∥

}
≤ CKϕτ

(
f ,
ϕ1−τ(x)
√
λ

)
,

where C = max
{
2,C12

3τ
2

}
.

Using relation (2.12), we get required result.

Example 2.1.10 For λ = 10, 20, 100 the rate of convergence of the operators Rλ to the

function f (x) = 9x2 − 6x + 6/5 is illustrated in Fig 2.1. Further, in Table 2.1, we have

estimated the absolute error Eλ = |Rλ ( f ; x) − f (x)| for different values of λ and given the

corresponding graph for error depicting the convergence in Fig 2.2 . It can be clearly

seen from Fig 2.1, Fig 2.2 and from the Table 2.1 that for larger values of λ the proposed

operators (2.4) converges to f (x).
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0.0 0.2 0.4 0.6 0.8 1.0
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λ=10 λ=20 λ=100 f(x)

Figure 2.1: The convergence of operators Rλ to the function f (x) = 9x2 − 6x + 6/5 for

λ = 10, 20, 100.
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Figure 2.2: Graphical representation of absolute error of operators Rλ to the function

f (x) = 9x2 − 6x + 6/5 for λ = 5, 10, 20, 50, 100.
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Table 2.1: Error of approximation process for f (x) = 9x2 − 6x + 6/5.

x E5 E10 E20 E50 E100

0.08 0.156686 0.089180 0.047780 0.019951 0.010122

0.16 0.266743 0.150426 0.080101 0.033300 0.016867

0.24 0.330171 0.183749 0.096962 0.040046 0.020235

0.32 0.346971 0.189144 0.098363 0.040189 0.020226

0.40 0.317143 0.166612 0.084304 0.033729 0.016834

0.48 0.240686 0.116152 0.054786 0.020667 0.010077

0.56 0.117600 0.037765 0.009808 0.001002 0.000064

0.64 0.052114 0.068549 0.050630 0.025266 0.013581

0.72 0.268457 0.202790 0.126528 0.058137 0.030475

0.80 0.531429 0.364959 0.217885 0.097610 0.050747

0.88 0.841029 0.555055 0.324702 0.143686 0.074395

0.96 1.197260 0.773078 0.446979 0.196364 0.101421

2.1.4 Bézier Variant of Ismail-May Operators

Zeng and Piriou [174] in the year 1997, constructed the Bernstein-Bézier type oper-

ators and studied its rate of convergence for bounded variation functions. Gupta et.al. [97]

proposed the Bézier variant of the Szász-Kantorovich operators and investigated a conver-

gence theorem for locally bounded functions subsuming the approximation of functions

of bounded variation as a special case.

Motivated by the above stated work, this section presents the formal definition of the

Bézier variant of the operators (2.4) in the following manner:

Rα
λ ( f ; x) =

∞∑
k=0

f
(

k
λ + k

)
ϑαλ,k (x), α ≥ 1, x ∈ [0, 1], (2.15)

where ϑαλ,k (x) =
(
Pλ,k(x)

)α
−

(
Pλ,k+1(x)

)α, and Pλ,k(x) =
∞∑
j=k

rλ, j(x) for k = 0, 1, 2, ..n are the

Bézier basis functions and

rλ,k(x) = e−λxλ(λ + k)k−1

k!
(xe−x)k, x ∈ [0, 1].

Lemma 2.1.11 Let f ∈ C[0, 1]. Then Bézier variant of the operators derived from the

Ismail-May operators exhibit the following property:

(i)
∥∥∥Rα

λ

∥∥∥ ≤ ∥ f ∥ ;

(ii) Rα
λ ( f ; x) ≤ αRλ ( f ; x) .
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Proof:

(i) Rα
λ (e0; x) =

∞∑
k=0

1.ϑαλ,k(x) = 1,

it follows that ∣∣∣Rα
λ ( f ; x)

∣∣∣ ≤ ∥ f ∥ ∞∑
k=0

ϑαλ,k(x) = ∥ f ∥ .

(ii) Using the inequality |aα − bα| ≤ α |a − b| where 0 ≤ a, b ≤ 1, and α ≥ 1, we get

0 ≤
(
Pλ,k(x)

)α
−

(
Pλ,k+1(x)

)α
≤ α

(
Pλ,k(x) − Pλ,k+1(x)

)
= αrλ,k(x).

Hence in view of definition of Rα
λ and the positivity of f , we get the result.

2.1.5 Global Approximation Theorem

Now, we present a global approximation theorem for the operators (2.15) using the

first order Ditzian Totik modulus of smoothness defined in subsection 1.1.4.

Theorem 2.1.12 Let f ∈ [0, 1] and ϕ(x) =
√

x(1 − x). For every x ∈ [0, 1) and sufficiently

large λ, we have ∣∣∣Rα
λ ( f ; x) − f (x)

∣∣∣ ≤ Cωϕ

(
f ;

1
√
λ

)
.

Proof: By definition of Kϕ( f , t), for fixed λ, x we can choose g = gλ,x ∈ Wϕ[0, 1) such that

∥ f − g∥ +
1
√
λ
∥ϕg′∥ +

1
λ
∥g′∥ ≤ ωϕ

(
f ;

1
√
λ

)
. (2.16)

Then ∣∣∣Rα
λ ( f ; x) − f (x)

∣∣∣ ≤ ∣∣∣Rα
λ ( f − g; x)

∣∣∣ + | f − g| + ∣∣∣Rα
λ (g; x) − g(x)

∣∣∣
≤ C ∥ f − g∥ +

∣∣∣Rα
λ (g; x) − g(x)

∣∣∣ .
In order to calculate the relation mentioned above, the domain is divided into two subin-

tervals, x ∈ Iλ = [0, 1
λ
] and x ∈ Ic

λ = ( 1
λ
, 1).

Using the representation

g(s) = g(x) +

s∫
x

g′(z)dz,

we can write ∣∣∣Rα
λ (g; x) − g(x)

∣∣∣ ≤
∣∣∣∣∣∣∣∣Rα

λ


s∫

x

g′(z)dz; x


∣∣∣∣∣∣∣∣ . (2.17)
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Let x ∈ Ic
λ = ( 1

λ
, 1), we have∣∣∣∣∣∣∣∣

s∫
x

g′(z)dz

∣∣∣∣∣∣∣∣ ≤ ∥ϕg′∥
∣∣∣∣∣∣∣∣

s∫
x

1
ϕ(z)

dz

∣∣∣∣∣∣∣∣
≤ ∥ϕg′∥

∣∣∣∣∣∣∣∣
s∫

x

1
√

z(1 − z)
dz

∣∣∣∣∣∣∣∣
≤ ∥ϕg′∥

2
√

2 |s − x|
ϕ(x)

. (2.18)

By combining (2.17) and (2.18), we have

∣∣∣Rα
λ (g; x) − g(x)

∣∣∣ ≤ 2
√

2 ∥ϕg′∥
ϕ(x)

∣∣∣Rα
λ (|s − x| ; x)

∣∣∣
≤

2
√

2 ∥ϕg′∥
ϕ(x)

∣∣∣∣∣∣∣(Rα
λ

(
(s − x)2; x

))1/2∣∣∣∣∣∣∣
≤

2
√

2α ∥ϕg′∥
ϕ(x)

√
cx(1 − x)

λ

≤ C
∥ϕg′∥
√
λ
.

Again for x ∈ Iλ = [0, 1
λ
], using Lemma 2.1.11 and Remark 2.1.3∣∣∣Rα
λ (g; x) − g(x)

∣∣∣ ≤ ∥g′′∥ ∣∣∣Rα
λ (|s − x| ; x)

∣∣∣
≤
√
α ∥g′′∥

(
Rα
λ

(
(s − x)2; x

)) 1
2

≤
√
α ∥g′′∥

√
cx(1 − x)

λ

≤
C ∥g′′∥
λ

.

Therefore, ∣∣∣Rα
λ (g; x) − g(x)

∣∣∣ ≤ C
(
∥ϕg′′∥
√
λ
+
∥g′∥

λ

)
. (2.19)

Collecting equations (2.16)-(2.19), we obtain the required result.

2.1.6 Voronovoskaya Theorem

In this section, we present a quantitative Voronovoskaya theorem for operators (2.15)

involving Ditizan Totik modulus of smoothness (see also [154]).
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Theorem 2.1.13 Let f ∈ C2[0, 1], x ∈ [0, 1). For sufficiently large λ the following in-

equality hold ∣∣∣∣∣∣λ
[
Rα
λ ( f ; x) − f (x) − µ(1)

λ,α(x) f ′(x) −
1
2
µ(2)
λ,α(x) f ′′(x)

]∣∣∣∣∣∣
≤

Cωϕ( f ′′; λ−1/2ϕ(x))

Cϕ(x)ωϕ( f ′′; λ−1/2),

where µ(n)
λ,α(x) = Rα

λ ((s − x)n; x) .

Proof: Let f ∈ C2[0, 1] be given and s, x ∈ [0, 1]. Using Taylor’s expansion

f (s) − f (x) = (s − x) f ′(x) +

s∫
x

(s − u) f ′′(u)du,

we get

f (s) − f (x) − (s − x) f ′(x) −
1
2

(s − x)2 f ′′(x) =

s∫
x

(s − u) f ′′(u)du −

s∫
x

(s − u) f ′′(x)du

=

s∫
x

(s − u)[ f ′′(u) − f ′′(x)]du.

Applying Rα
λ to both sides of the above relation, we obtain∣∣∣∣∣Rα

λ ( f ; x) − f (x) − µ(1)
λ,α(x) f ′(x) −

1
2
µ(2)
λ,α(x) f ′′(x)

∣∣∣∣∣
≤ Rα

λ


∣∣∣∣∣∣∣∣

s∫
x

|s − u| | f ′′(u) − f ′′(x)| du

∣∣∣∣∣∣∣∣ ; x

 . (2.20)

From [79], for g ∈ Wϕ[0, 1] the following estimates can be obtained,∣∣∣∣∣∣∣∣
s∫

x

|s − u| | f ′′(u) − f ′′(x)| du

∣∣∣∣∣∣∣∣ ≤ 2 ∥ f ′′ − g∥ (s − x)2 + 2 ∥ϕg′∥ ϕ−1(x)|s − x|3. (2.21)

Using relations (2.20)-(2.21), Lemma 2.1.11, Remark 2.1.3 and Cauchy-Schwarz inequal-

ity, we have∣∣∣∣∣Rα
λ ( f ; x) − f (x) − µ(1)

λ,α(x) f ′(x) −
1
2
µ(2)
λ,α(x) f ′′(x)

∣∣∣∣∣
≤ 2 ∥ f ′′ − g∥Rα

λ

(
(s − x)2; x

)
+ 2 ∥ϕg′∥ ϕ−1(x)Rα

λ

(
|s − x|3; x

)
≤ 2 ∥ f ′′ − g∥αRλ

(
(s − x)2; x

)
+ 2α ∥ϕg′∥ ϕ−1(x)

{
Rλ(s − x)2; x

}1/2{
Rλ(s − x)4; x

}1/2

≤ 2 ∥ f ′′ − g∥αRλ

(
(s − x)2; x

)
+

2αC
λ
∥ϕg′∥

{
Rλ(s − x)2; x

}1/2

≤ 2 ∥ f ′′ − g∥α
Cx(1 − x)

λ
+

2αC
λ
∥ϕg′∥

√
Cx(1 − x)

λ

≤
C
λ

{
ϕ2(x) ∥ f ′′ − g∥ + λ−1/2ϕ(x) ∥ϕg′∥

}
,
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where the constant C > 0 is not the same at each occurrence.

Since ϕ2(x) ≤ ϕ(x) ≤ 1 and x ∈ [0, 1), we obtain∣∣∣∣∣Rα
λ ( f ; x) − f (x) − µ(1)

λ,α(x) f ′(x) −
1
2
µ(2)
λ,α(x) f ′′(x)

∣∣∣∣∣
≤

C
λ

{
∥ f ′′ − g∥ + λ−1/2ϕ(x) ∥ϕg′∥

}
. (2.22)

The above inequality can be rewritten as∣∣∣∣∣Rα
λ ( f ; x) − f (x) − µ(1)

λ,α(x) f ′(x) −
1
2
µ(2)
λ,α(x) f ′′(x)

∣∣∣∣∣
≤

Cϕ(x)
λ

{
∥ f ′′ − g∥ + λ−1/2 ∥ϕg′∥

}
. (2.23)

Taking infimum on RHS of (2.22) and (2.23) and for g ∈ Wϕ[0, 1], we have∣∣∣∣∣∣λ
[
Rα
λ ( f ; x) − f (x) − µ(1)

λ,α(x) f ′(x) −
1
2
µ(2)
λ,α(x) f ′′(x)

]∣∣∣∣∣∣ ≤
CKϕ

(
f ′′; λ−1/2ϕ(x)

)
Cϕ(x)Kϕ

(
f ′′; λ−1/2

)
.

2.1.7 Functions with Derivative of Bounded Variation

Let DBV[0, 1] be the space of all absolutely continuous functions f defined on [0,1]

and having a derivative f ′ equivalent with a function of bounded variation on [0, 1]. For

f ∈ DBV[0, 1] we may write,

f (x) =

x∫
0

g (t) dt + f (0).

We can rewrite the operators given by (2.15) as

Rα
λ ( f ; x) =

1∫
0

f (s)
∂

∂s
{
Mα

λ (x, s)
}
dw,

where

Mα
λ (x, s) =


∑
k

k+λ≤s
Qα
λ,k (x) , 0 < s < 1

0 , s = 0.

 .
The subsequent Lemma is referenced as a prerequisite for establishing the main theorem

(see also [152]).

Lemma 2.1.14 Let x ∈ [0, 1), then for sufficiently large n, we have

(i) ϑαλ (x, s) ≤ Cαx(1−x)
λ(x−s)2 ;

(ii) 1 − ϑαλ (x, z) ≤ Cαx(1−x)
λ(x−z)2 .
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Proof:

(i) ϑαλ (x, s) =

s∫
0

∂

∂v
{Mα

λ(x, v)}dv ≤

s∫
0

( x − v
x − s

)2 ∂

∂v
{Mα

λ(x, v)}dv

=
1

(x − s)2 (Rα
λ(x − v)2)(x, v) ≤

Cαx(1 − x)
λ(x − s)2 .

(ii) The proof of this part is left to the readers which is similar to part (i).

In the theorem given below, we study the rate of convergence for functions with

derivative of bounded variation (see [72]).

Theorem 2.1.15 Let f ∈ DBV[0, 1]. Then, we have

∣∣∣Rα
λ ( f ; x) − f (x)

∣∣∣ ≤ ∣∣∣∣∣ ( f ′(x+) + α f ′(x−))
α + 1

∣∣∣∣∣
√

Cαx(1 − x)
λ

+ |( f ′(x+) + α f ′(x−))|

√
Cαx(1 − x)

λ

+
Cα(1 − x)

λ

[
√
λ]∑

k=1

x∨
x−x/k

fx
′ +

x
√
λ

x∨
x−x/

√
λ

fx
′ +

1 − x
√
λ


x+ 1−x√

λ∨
x

fx
′

 + Cαx
λ

[
√
λ]∑

k=1


x+ 1−x

k∨
x

fx
′

,
where

fx
′(s) =


f ′(s) − f ′(x−), 0 ≤ s < x

0 s = x

f ′(s) − f ′(x+), x < s < ∞.

(2.24)

Proof: For f ∈ DBV[0, 1], we may write

f ′(s) = fx
′(s) +

1
α + 1

( f ′(x+) + α f ′(x−)) +
1
2

( f ′(x+) − f ′(x−))
(
sgn(s − x) +

α − 1
α + 1

)
+ δx(s)

[
f ′(s) −

1
2

( f ′(x+) + f ′(x−))
]
, (2.25)

where

δx(s) =


1 s = x

0, s , x.
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Again, we have

Rα
λ ( f ; x) − f (x)

=

1∫
0

( f (s) − f (x))
∂

∂s
{
Mα

λ(x, s)
}
ds

=

x∫
0

( f (s) − f (x))
∂

∂s
{
Mα

λ(x, s)
}
ds +

1∫
x

( f (s) − f (x))
∂

∂s
{
Mα

λ(x, s)
}
ds

= −

x∫
0


x∫

s

f ′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds +

1∫
x


x∫

s

f ′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

= −Aα
λ(x) + Bα

λ(x). (2.26)

Now, from equation (2.25), we have

Aα
λ(x) =

( f ′(x+) + α f ′(x−))
α + 1

x∫
0

(x − s)
∂

∂s
{
Mα

λ(x, s)
}
ds +

x∫
0


x∫

s

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

−
2

α + 1
f ′(x+) − f ′(x−)

2

x∫
0

(x − s)
∂

∂s
{
Mα

λ(x, s)
}
ds. (2.27)

Similarly,

Bα
λ(x) =

( f ′(x+) + α f ′(x−))
α + 1

1∫
x

(s − x)
∂

∂s
{
Mα

λ(x, s)
}
ds +

1∫
x


s∫

x

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

+
2α
α + 1

f ′(x+) − f ′(x−)
2

1∫
x

(s − x)
∂

∂s
{
Mα

λ(x, s)
}
ds. (2.28)

Using (2.27)-(2.28)and from (2.25), we get

Rα
λ ( f ; x) − f (x)

=
( f ′(x+) + α f ′(x−))

α + 1

1∫
0

(s − x)
∂

∂s
{
Mα

λ(x, s)
}
ds +

2
α + 1

f ′(x+) − f ′(x−)
2

×

x∫
0

(x − s)
∂

∂s
{
Mα

λ(x, s)
}
ds +

2α
α + 1

f ′(x+) − f ′(x−)
2

1∫
x

(s − x)
∂

∂s
{
Mα

λ(x, s)
}
ds

−

x∫
0


x∫

s

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds +

1∫
x


s∫

x

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds.
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Hence∣∣∣Rα
λ ( f ; x) − f (x)

∣∣∣ ≤ ∣∣∣∣∣ ( f ′(x+) + α f ′(x−))
α + 1

∣∣∣∣∣ (Rα
λ |s − x|)(x) + | f ′(x+) − f ′(x−)|

∣∣∣Rα
λ |s − x|)(x)

∣∣∣
+

∣∣∣∣∣∣∣∣
x∫

0


x∫

s

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣

1∫
x


s∫

x

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

∣∣∣∣∣∣∣∣ .
Applying Cauchy-Schwarz inequality, we get∣∣∣Rα

λ ( f ; x) − f (x)
∣∣∣ ≤ ∣∣∣∣∣ ( f ′(x+) + α f ′(x−))

α + 1

∣∣∣∣∣ √(Rλ,α(s − x)2)(x) + | f ′(x+) − f ′(x−)|
√

(Rλ,α(s − x)2)(x)

+

∣∣∣∣∣∣∣∣
x∫

0


x∫

s

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣

1∫
x


s∫

x

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

∣∣∣∣∣∣∣∣ .
(2.29)

Now, using Lemma 2.1.1 and integration by parts, we get
x∫

0


x∫

s

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds =

x∫
0


x∫

s

fx
′(u)du

 ∂

∂s
{
ϑαλ(x, s)

}
ds = −

x∫
0

fx
′(s)ϑαλ(x, s)ds.

Therefore∣∣∣∣∣∣∣∣
x∫

0


x∫

s

fx
′(u)du

 ∂

∂s
{
Mα

n (x, s)
}
ds

∣∣∣∣∣∣∣∣ ≤
x∫

0

∣∣∣ fx
′(s)

∣∣∣ϑαn (x, s)ds

≤

x− x√
λ∫

0

∣∣∣ fx
′(s)

∣∣∣ϑαn (x, s)ds +

x∫
x− x√

λ

∣∣∣ fx
′(s)

∣∣∣ϑαn (x, s)ds.

Using fx
′(x) = 0 and ϑαλ(x, s) ≤ 1, we get

x∫
x− x√

λ

∣∣∣ fx
′(s)

∣∣∣ϑαλ(x, s)ds =

x∫
x− x√

λ

∣∣∣ fx
′(s) − fx

′(x)
∣∣∣ϑαλ(x, s)ds

≤

x∫
x− x√

λ

x∨
s

( fx
′)ds ≤

x∨
x−x/

√
λ

fx
′

x∫
x− x√

λ

x∨
s

fx
′ds =

x
√
λ

x∨
x−x/

√
λ

fx
′.

Again, using ϑαλ(x, s) ≤ Cαx(1−x)
λ(x−s)2 and putting s = x − x

u , we get

x− x√
λ∫

0

∣∣∣ fx
′(s)

∣∣∣ϑαλ(x, s)ds ≤
Cα(1 − x)

λ

√
λ∫

1

x∨
x−x/

√
λ

fx
′du ≤

Cα(1 − x)
λ

[
√
λ]∑

k=1

x∨
x−x/k

fx
′.

Hence∣∣∣∣∣∣∣∣
x∫

0


x∫

s

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

∣∣∣∣∣∣∣∣ ≤ Cα(1 − x)
λ

[
√
λ]∑

k=1

x∨
x−x/k

fx
′ +

x
√
λ

x∨
x−x/

√
λ

fx
′. (2.30)
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Now ∣∣∣∣∣∣∣∣
1∫

x


s∫

x

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
z∫

x


s∫

x

fx
′(u)du

 ∂

∂s
{
1 − ϑαλ(x, s)

}
ds +

1∫
z


s∫

x

fx
′(u)du

 ∂

∂s
{
1 − ϑαλ(x, s)

}
ds

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣


z∫
x

fx
′(u)du

 {1 − ϑαλ(x, z)
}
−

z∫
x

fx
′ (s)

{
1 − ϑαλ(x, s)

}
ds

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣


z∫
x

fx
′(u)du

 {1 − ϑαλ(x, z)
}
−

1∫
z

fx
′ (s)

{
1 − ϑαλ(x, s)

}
ds

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
z∫

x

fx
′ (s)

{
1 − ϑαλ(x, s)

}
ds +

1∫
z

fx
′ (s)

{
1 − ϑαλ(x, s)

}
ds

∣∣∣∣∣∣∣∣∣
≤

z∫
x

s∨
x

fx
′ds +

Cαx(1 − x)
λ

1∫
z

 s∨
x

fx
′

 (s − x)−2ds.

Now, let z = x + 1−x
√
λ

and then putting u = 1−x
s−x , we get∣∣∣∣∣∣∣∣

1∫
x


s∫

x

fx
′(u)du

 ∂

∂s
{
Mα

λ(x, s)
}
ds

∣∣∣∣∣∣∣∣ ≤ 1 − x
√
λ


x+ 1−x√

λ∨
x

fx
′

 + Cαx(1 − x)
λ

1∫
x+ 1−x√

λ

 s∨
x

fx
′

 (s − x)−2ds

≤
1 − x
√
λ


x+ 1−x√

λ∨
x

fx
′

 + Cαx(1 − x)
λ

√
λ∫

1


x+ 1−x

u∨
x

fx
′

 (1 − x)−1du

≤
1 − x
√
λ


x+ 1−x√

λ∨
x

fx
′

 + Cαx
λ

[
√
λ]∑

k=1


x+ 1−x

k∨
x

fx
′

. (2.31)

Collecting estimates from (2.29-2.31), we get required result.

2.1.8 Bivariate Generalization of Ismail-May Operators

In this section, we introduce the bivariate generalization of the operators (2.4). A lot

of work has already been done on constructing the bivariate form of various positive linear

operators and analyzing their convergence results. We would like to recommend to the

readers some interesting articles [19; 22; 60; 61; 70; 89; 103; 116; 140; 149; 155] for more

information. The bivariate extension of the operators (2.4) for (x, y) ∈ I2 = [0, 1] × [0, 1]

and λ1 > 0,λ2 > 0 is defined as follows:

Rk1k2
λ1λ2

( f ; x, y) =
∞∑

k1=0

∞∑
k2=0

ℏk1k2
λ1λ2

(x, y) f
( k1

λ1 + k1
,

k2

λ2 + k2

)
, (2.32)
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where the basis function is considered as:

ℏk1k2
λ1λ2

(x, y) = e−(λ1 x+λ2y)λ1λ2(λ1 + k1)k1(λ2 + k2)k2

k1!k2!
(
xe−x)k1(ye−y

)k2 .

Lemma 2.1.16 Let en1n2(s1, s2) = sn1
1 sn2

2 ,0 ≤ n1 + n2 ≤ 2. For (x, y) ∈ I2 = [0, 1] × [0, 1]

and λ1, λ2 ∈ [0,∞), we have

(Rλe00(s1, s2))(x, y) = 1;

(Rλe10(s1, s2))(x, y) =
λ1

λ1 + 1
x;

(Rλe01(s1, s2))(x, y) =
λ2

λ2 + 1
y;

(Rλe20(s1, s2))(x, y) =
λ1

2

(λ1 + 1)(λ1 + 2)
x2 +

λ1

(λ1 + 1)2 x;

(Rλe02(s1, s2))(x, y) =
λ2

2

(λ2 + 1)(λ2 + 2)
y2 +

λ2

(λ2 + 1)2y.

Remark 2.1.17 Using Lemma 2.1.16, we have

(Rλ1λ2
k1k2

(e10 − x))(x, y) = −
x

(λ1 + 1)
;

(Rλ1λ2
k1k2

(e01 − y))(x, y) = −
y

(λ2 + 1)
;

(Rk1k2
λ1λ2

(e20 − x)2)(x, y) = −
(λ1 − 2)

(λ1 + 1)(λ1 + 2)
x2 +

λ1

(λ1 + 2)
x;

(Rk1k2
λ1λ2

(e02 − y)2)(x, y) = −
(λ2 − 2)

(λ2 + 1)(λ2 + 2)
y2 +

λ2

(λ2 + 2)
y.

Now we estimate the degree of approximation of bivariate operators (2.32) with the

help of Lipschitz class functions. We define Lipschitz class LipM(ζ1, ζ2) for bivariate

functions for 0 < ζ1 ≤ 1 and 0 < ζ2 ≤ 1 as follows:

| f (s1, s2) − f (x, y)| ≤ M|s1 − x|ζ1 |s2 − y|
ζ2 .

Theorem 2.1.18 If f ∈ LipM(ζ1, ζ2), then for ζ1, ζ2 ∈ (0, 1]

∣∣∣Rk1k2
λ1λ2

( f ; x, y) − f (x, y)
∣∣∣ ≤ Mδ

ζ1
2

n δ
ζ2
2

m .

Proof: If f ∈ LipM(ζ1, ζ2), we can write∣∣∣Rk1k2
λ1λ2

( f ; x, y) − f (x, y)
∣∣∣

≤
(
Rk1k2
λ1λ2
| f (s1, s2) − f (x, y)|

)
(x, y)

≤
(
Rk1k2
λ1λ2

(
M|s1 − x|ζ1 |s2 − y|

ζ2
))

(x, y)

≤ M
(
Rλ1 |s1 − x|ζ1

)
(x)

(
Rλ2 |s2 − y|

ζ2
)

(y).
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Using Hölder’s inequality∣∣∣Rk1k2
λ1λ2

( f ; x, y) − f (x, y)
∣∣∣

≤ M
(
Rλ1(e10 − x)2

) ζ1
2 (x, y)

(
Rλ1 (e00)

) 2−ζ1
2 (x, y)

×
(
Rλ2(e01 − y)2

) ζ2
2 (x, y)

(
Rλ2 (e00)

) 2−ζ2
2 (x, y)

≤ Mδ
ζ1
2

n δ
ζ2
2

m .
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2.2 On modification of certain exponential type

operators preserving constant and e−x

2.2.1 Introduction

In the year 2003, King achieved recognition for his work on modified Bernstein

operators which preserve test functions e0 and e2 on [0, 1]. As a result, King’s research

sparked the interest of many researchers in this particular area and they put forward many

relevant studies. Numerous researchers have made significant contributions in this direc-

tion by defining operators that preserve e0 and e2, e2 + ae1 for a > 0, linear functions,

exponential functions etc. Depending on the ultimate goal of this research, the scope of

this study will be limited to a smaller scale, with a specific focus on the preservation of

exponential functions exclusively. To the best of our knowledge, the study of preserva-

tion of exponential functions is currently in its early stage. Here we represent some most

recent references which are relevant to this study.

In their paper published in 2017, Acar et al. [6] introduced a modified version of the

Szász-Mirakjan operators that exhibit the property of preserving the function e2ax, where

a is a positive constant. They presented a comparative analysis between modified opera-

tors and the Szász-Mirakjan operators and examined their respective shape preservation

properties. The error was also estimated by using a natural transformation in terms of the

first-order modulus of continuity. Aral et al. [30] expanded the study of these modified

operators [6] and demonstrated the usefulness of these operators from a computational

point of view. In their study, Acar et al. [5] considered Szász-Mirakjan operators. These

operators were designed to simultaneously fix exponential functions of the form eax and

e2ax with a > 0. Additionally, the authors defined a new weighted modulus of smooth-

ness in order to establish the approximation order. Additionally, the researchers provided

saturation results as a means of validating the accuracy of the estimates for the modified

operators.

Over the past four years, numerous researchers have made modifications to var-

ious operators, such as the Bernstein operators [27], the Stancu type Szász-Mirakjan-

Durrmeyer operators [113], the Baskakov-Szász-Mirakjan operators [88], the Baskakov-

Schurer-Szász-Stancu operators [150], the Baskakov-Schurer-Szász operators [171], and

the Phillips operators [92; 164]. Deo et al. [62; 65] introduced a sequence of opera-

tors based on King’s approach that provides a better rate of convergence compared to the

Szász-Mirakjan Durrmeyer and Baskakov Durrmeyer operators. In 2018, Yilmaz et al.

[172] made modifications to the Baskakov-Kantorovich operators, resulting in the devel-
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opment of a sequence of operators that preserves the function e−x and constant functions

[172]. The overall goal of this article is to propose the modification of the operators [102]

while maintaining the preservation of the functions e−x and constant functions.

2.2.2 Construction of the Operators

May [129] has done excellent work by defining exponential operators Ln as

Ln( f ; x) =

∞∫
−∞

W(n, x, t) f (t)dt,

whereW is the kernel which satisfies two conditions given as follows:

1. Ln(1; x) = 1 normalisation condition.

2. ∂
∂xW(n, x, t) = (t−x)n

p(x) W(n, x, t), where p(x) is analytic and positive for x ∈ (−∞,∞).

This work was carried forward by Ismail-May [102]. They considered a couple of more

exponential operators and investigated their convergence properties. Using above defini-

tion, the authors reintroduced certain well-known operators, such as Bernstein operators,

Szász operators etc. and constructed some new operators which were later studied in

[86; 123; 134]. Among these new operators defined in [102], one operator is given as:

Tn ( f ; x) = e−n
√

x

 f (0) + n

∞∫
0

e−nt/
√

xt−1/2I1

(
2n
√

t
)

f (t) dt

 , (2.33)

where I1 is modified Bessel’s function of first kind defined as

Im (z) =
∞∑
j=0

(
z
2

)m+2 j

j!Γ (m + j + 1)
.

In a study conducted by Gupta [85], the moments and central moments were calculated for

the operators described in (2.33). Additionally, convergence estimates and direct results

were obtained.
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The objective of this article is to construct operators that preserve e0 and e−x. It is

assumed that operators (2.33) maintain the preservation of e−x, then

Tn
(
e−t; x

)
= e−n

√
ϱn(x)

1 + n

∞∫
0

e−nt/
√
ϱn(x)t−1/2

∞∑
j=0

(
n
√

t
)1+2 j

j!Γ ( j + 2)
e−tdt


= e−n

√
ϱn(x)

1 +
∞∑
j=0

n2(1+ j)

j!Γ ( j + 2)

∞∫
0

e
−

(
nt+
√
ϱn(x)t

√
ϱn(x)

)
t jdt


= e−n

√
ϱn(x)


∞∑
j=0

n2(1+ j)

j!Γ ( j + 2)

 √
ϱn (x)

n +
√
ϱn (x)

 j+1 ∞∫
0

e−uu jdu + 1


= e−n

√
ϱn(x)

1 +
∞∑
j=0

n2(1+ j)

( j + 1)!

 √
ϱn (x)

n +
√
ϱn (x)

 j+1


= e−n
√
ϱn(x)

 ∞∑
j=0

1
j!

 n2
√
ϱn (x)

n +
√
ϱn (x)

 j
= e

−nϱn(x)
n+
√
ϱn(x) .

Taking into account Tn
(
e−t; x

)
= e−x, then we can find without hesitation

ϱn (x) =
x3/2
√

4n2 + x + 2n2x + x2

2n2 . (2.34)

For x ∈ [0,∞), we consider the following modified form of operators (2.33)

T̈n ( f ; x) = e−n
√
ϱn(x)

 f (0) + n

∞∫
0

e−nt/
√
ϱn(x)t−1/2I1

(
2n
√

t
)

f (t) dt

 , (2.35)

where ϱn (x) is given as above.

2.2.3 Preliminaries

After simple calculations, the mgf of the operators (2.35) may be given as

T̈n

(
eϕt; x

)
= e

nϕϱn(x)
n−ϕ
√
ϱn(x) . (2.36)

Since the moments are related with the mgf, the m-th moment T̈n (em; x) , em(t) =

tm (m ∈ N ∪ {0}) may be obtained by the following relation:

T̈n (em; x) =
[
∂m

∂ϕm T̈n

(
eϕt; x

)]
ϕ=0
=

[
∂m

∂ϕm

(
e

nϕϱn(x)
n−ϕ
√
ϱn(x)

)]
ϕ=0
.
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Employing Mathematica, the expansion of above expression in powers of ϕ may be given

as:

T̈n

(
eϕt; x

)
= e

nϕϱn(x)
n−ϕ
√
ϱn(x)

= 1 + ϕϱn (x) + ϕ2
(
ϱn (x)3/2

n
+
ϱn (x)2

2

)
+ ϕ3

(
ϱn (x)2

n2 +
ϱn (x)5/2

n
+
ϱn (x)3

6

)
+
ϕ4

(
n3ϱn (x)4 + 12n2ϱn (x)7/2 + 36nϱn (x)3 + 24ϱn (x)5/2

)
24n3 + O

(
ϕ5

)
.

Also, by change of scale property of mgf, if we expand e−ϕxT̈n
(
eϕt; x

)
in powers of ϕ, the

central moment of m-th order νm (x) = T̈n ((t − x)m; x) can be obtained by collecting the

coefficient of ϕm

m! .

e−ϕxT̈n

(
eϕt; x

)
= e

−ϕx+ nϕϱn(x)
n−ϕ
√
ϱn(x)

= 1 + ϕ(ϱn (x) − x) + ϕ2
(
ϱn (x)3/2

n
+

x2

2
− xϱn (x) +

ϱn (x)2

2

)
+ ϕ3

(
ϱn (x)2

n2 −
xϱn (x)3/2

n
+
ϱn (x)5/2

n
−

x3

6
+

x2ϱn (x)
2

−
xϱn (x)2

2
+
ϱn (x)3

6

)

+ ϕ4

 n3x4 − 4n3x3ϱn (x) + 6n3x2ϱn(x)2
− 4n3xϱn(x)3 + n3ϱn(x)4 + 12n2x2ϱn(x)3/2

−24n2xϱn(x)5/2 + 12n2ϱn(x)7/2
− 24nxϱn(x)2 + 36nϱn(x)3 + 24ϱn(x)5/2


24n3

+ O
(
ϕ5

)
. (2.37)

Lemma 2.2.1 Following the above argument, we can find the first four moments as fol-

lows:

T̈n (e0; x) = 1;

T̈n (e1; x) = ϱn (x) ;

T̈n (e2; x) = (ϱn (x))2 +
2(ϱn (x))3/2

n
;

T̈n (e3; x) = (ϱn (x))3 +
6(ϱn (x))5/2

n
+

6(ϱn (x))2

n2 ;

T̈n (e4; x) = (ϱn (x))4 +
12(ϱn (x))7/2

n
+

36(ϱn (x))3

n2 +
24(ϱn (x))5/2

n3 .
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Lemma 2.2.2 Using (2.37), we have the central moments of the modified operator (2.35)

as:

ν1 (x) = ϱn (x) − x;

ν2 (x) = (ϱn (x) − x)2 +
2(ϱn (x))3/2

n
;

ν3 (x) = (ϱn (x))3 +
6(ϱn (x))5/2

n
+

(
6
n2 − 3x

)
(ϱn (x))2

−
6x(ϱn (x))3/2

n
+ 3x2ϱn (x) − x3;

ν4 (x) = (ϱn (x))4 +
12(ϱn (x))7/2

n
+

(
36
n2 − 4x

)
(ϱn (x))3 +

(
24
n3 −

24x
n

)
(ϱn (x))5/2

+

(
6
n2 + 6x2

)
(ϱn (x))2 +

12x2(ϱn (x))3/2

n
− 4x3ϱn (x) + x4.

Also,

lim
n→∞

nν1 (x) = lim
n→∞

n
[
ϱn (x) − x

]
= x3/2

and

lim
n→∞

nν2 (x) = lim
n→∞

n
[
(ϱn (x) − x)2 +

2(ϱn (x))3/2

n

]
= 2x3/2.

2.2.4 Main Results

Let us represent the subspace of real-valued continuous functions having finite limit

at infinity equipped with uniform norm by C∗[0,∞). In 1970, Boyanov [44] conducted a

study on the approximation properties of a function defined on an infinite interval. Later,

Holhoş [100] verified the next theorem in order to quantify the rate of convergence of a

function.

Theorem 2.2.3 Let Ln : C∗[0,∞) → C∗[0,∞) be the sequence of positive linear opera-

tors and

∥Ln (e0) − 1∥[0,∞) = βn,∥∥∥Ln
(
e−t) − e−x

∥∥∥
[0,∞)
= γn,∥∥∥∥Ln

(
e−2t

)
− e−2x

∥∥∥∥
[0,∞)
= δn.

Then

∥Ln f − f ∥[0,∞) ≤ βn∥ f ∥[0,∞) + (2 + βn)ω∗( f ;
√
βn + 2γn + δn).

The modulus of continuity is defined as:

ω∗(ℏ; δ) = sup
|e−t−e−x|≤δ

x,t>0

|ℏ (t) − ℏ (x)|
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with the property

|ℏ (t) − ℏ (x)| ≤
1 + (

e−t − e−x)2

δ2

ω∗ (ℏ; δ) , δ > 0. (2.38)

In next theorem we give quantitative estimate for proposed operators as an application of

above mentioned theorem.

Theorem 2.2.4 For f ∈ C∗[0,∞), we have∥∥∥T̈n f − f
∥∥∥

[0,∞)
≤ 2ω∗

(
f ;

√
δn

)
.

Here T̈n f converges to f uniformly and δn → 0 as n→ ∞.

Proof: The operators preserve e−x as well as constant functions so βn = γn = 0. we only

have to evaluate δn. From (2.36), we have

T̈n

(
e−2t; x

)
= e

−2nϱn(x)
n+2
√
ϱn(x)

where

ϱn (x) =
2n2x + x2 + x3/2

√
4n2 + x

2n2 .

Using mathematica, we will get

T̈n

(
e−2t; x

)
= e−2x +

(
2e−2x

)
x3/2

n
+

(
e−2xx2

)
(2x − 3)

n2 + O
(1

n

)3 .
Since

sup
x∈[0,∞)

x3/2e−2x =
3
√

3
8e3/2 , sup

x∈[0,∞)
x2e−2x =

1
e2

and

sup
x∈[0,∞)

x3e−2x =
27
8e3 .

So, we get

δn =
∥∥∥∥T̈n

(
e−2t

)
− e−2x

∥∥∥∥
[0,∞)

= sup
x∈[0,∞)

∣∣∣∣T̈n

(
e−2t

)
− e−2x

∣∣∣∣
≤

1
n

3
√

3
4e3/2

 + 1
n2

(
3
e2 +

27
4e3

)
+ O

(1
n

)3
≤ O

(
1
n

)
→ 0 as n→ ∞.
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Remark 2.2.5 Using Mathematica and Lemma 2.2.2, we have

lim
n→∞

n2ν4 (x) = lim
n→∞

n2
[
(ϱn (x))4 +

12(ϱn (x))7/2

n
+

(
36
n2 − 4x

)
(ϱn (x))3

+

(
24
n3 −

24x
n

)
(ϱn (x))5/2 +

(
6
n2 + 6x2

)
(ϱn (x))2 +

12x2(ϱn (x))3/2

n
− 4x3ϱn (x) + x4

]
= 12x3

and

lim
n→∞

n2T̈n

((
e−x − e−t)4; x

)
= lim

n→∞
n2T̈n

 4∑
j=0

 4

j

 (e−x) j(e−t)4− j


= lim

n→∞
n2

4∑
j=0

 4

j

 e− jxT̈n

(
e−(4− j)t; x

)
= lim

n→∞
n2

4∑
j=0

 4

j

 e− jxe
−(4− j)nϱn(x)

(n+(4− j)
√
ϱn(x))

= 12e−4xx3.

Theorem 2.2.6 For x ∈ [0,∞), and f , f ′′ ∈ C∗[0,∞) we have∣∣∣∣n [
T̈n ( f ; x) − f (x)

]
− x3/2 [

f ′ (x) + f ′′ (x)
]∣∣∣∣

≤ |an (x)| | f ′ (x)| + |bn (x)| | f ′′ (x)| + 2ω∗
(
f ′′; δ

) ((
2bn (x) + x3/2

)
+ cn (x)

)
.

Proof: By Taylor’s expansion we have

f (t) = f (x) + (t − x) f ′ (x) +
1
2

(t − x)2 f ′′ (x) + r̈ (t, x) (t − x)2

where

r̈ (t, x) =
f ′′ (µ) − f ′′ (x)

2
, x < µ < t.

From Lemma 2.2.2 and applying T̈n to both sides of the above expression, we have∣∣∣∣∣T̈n ( f ; x) − f (x) − ν1 (x) f ′ (x) −
1
2
ν2 (x) f ′′ (x)

∣∣∣∣∣ ≤ ∣∣∣∣T̈n

(
r̈ (t, x) (t − x)2; x

)∣∣∣∣ .
Using Lemma 2.2.2∣∣∣∣∣n [

T̈n ( f ; x) − f (x)
]
−

(
x3/2

)
f ′ (x) −

1
2

(
2x3/2

)
f ′′ (x)

∣∣∣∣∣
≤

∣∣∣∣n (ν1 (x)) −
(
x3/2

)∣∣∣∣ | f ′ (x)| +
1
2

∣∣∣∣n (ν2 (x)) −
(
2x3/2

)∣∣∣∣ | f ′′ (x)|

+
∣∣∣∣nT̈n

(
r̈ (t, x) (t − x)2; x

)∣∣∣∣ .
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Taking an (x) = n (ν1 (x)) −
(
x3/2

)
and bn (x) = 1

2

∣∣∣∣n (ν2 (x)) −
(
2x3/2

)∣∣∣∣ , we get∣∣∣∣n [
T̈n ( f ; x) − f (x)

]
−

(
x3/2

) [
f ′ (x) + f ′′ (x)

]∣∣∣∣
≤ |an (x)| | f ′ (x)| + |bn (x)| | f ′′ (x)| +

∣∣∣∣nT̈n

(
r̈ (t, x) (t − x)2; x

)∣∣∣∣ .
For completion of the proof, we need to evaluate

∣∣∣∣nT̈n

(
r̈ (t, x) (t − x)2; x

)∣∣∣∣ . Applying in-

equality (2.38), we get

|r̈ (t, x)| ≤
1 + (

e−t − e−x)2

δ2

ω∗ ( f ′′; δ
)
.

Two inequality |r̈ (t, x)| ≤ 2ω∗ ( f ′′; δ) and |r̈ (t, x)| ≤ 2(e−t−e−x)2

δ2 ω∗ ( f ′′; δ) holds for the case∣∣∣e−t − e−x
∣∣∣ ≤ δ and

∣∣∣e−t − e−x
∣∣∣ > δ respectively.

Thus

|r̈ (t, x)| ≤ 2
1 + (

e−t − e−x)2

δ2 ω∗
(
f ′′; δ

) .
Using above argument and Cauchy Schwarz inequality, we get

nT̈n

(
r̈ (t, x) (t − x)2; x

)
≤ nT̈n

2 1 + (
e−t − e−x)2

δ2 ω∗
(
f ′′; δ

) (t − x)2; x


= 2n (ν2 (x))ω∗
(
f ′′; δ

)
+

2n
δ2 ω

∗ ( f ′′; δ
)
T̈n

((
e−t − e−x)2(t − x)2; x

)
= 2ω∗

(
f ′′; δ

) [
n (ν2 (x)) +

(
n2ν4 (x)

)1/2(
n2T̈n

((
e−t − e−x)2; x

))1/2
]
.

We complete the proof by choosing δ = 1
√

n and

cn (x) =
(
n2ν4 (x)

)1/2(
n2T̈n

((
e−t − e−x)2; x

))1/2
.

Theorem 2.2.7 Let x ∈ [0,∞) and f , f ′′ ∈ C∗[0,∞). Then we have

lim
n→∞

n
[
T̈n ( f ; x) − f (x)

]
= x3/2 [

f ′ (x) + f ′′ (x)
]
. (2.39)

Proof: By the Taylor’s expansion of f , we have

f (t) = f (x) + (t − x) f ′ (x) +
1
2

(t − x)2 f ′′ (x) + r̈ (t, x) (t − x)2 (2.40)

where

lim
t→x

r̈ (t, x) = 0.

From Lemma 2.2.2 and applying T̈n to (2.40), we get

T̈n ( f ; x) − f (x) = ν1 (x) f ′ (x) +
1
2
ν2 (x) f ′′ (x) + T̈n

(
r̈ (t, x) (t − x)2; x

)
.
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Making use of Cauchy Schwarz inequality, we have

T̈n

(
r̈ (t, x) (t − x)2; x

)
≤

√
T̈n

(
r̈2 (t, x) ; x

)
T̈n

(
(t − x)4; x

)
. (2.41)

Also, we have

lim
n→∞
T̈n

(
r̈2 (t, x) ; x

)
= 0. (2.42)

From (2.41) and (2.42), we get

lim
n→∞

nT̈n

(
r̈ (t, x) (t − x)2; x

)
= 0.

Thus, we get

lim
n→∞

n
[
T̈n ( f ; x) − f (x)

]
= lim

n→∞
n
[
ν1 (x) f ′ (x) +

1
2
ν2 (x) f ′′ (x) + T̈n

(
r̈ (t, x) (t − x)2; x

)]
= x3/2 [

f ′ (x) + f ′′ (x)
]
.

Let us represent the class of bounded and uniform continuous functions on [0,∞)

equipped with sup norm by CB[0,∞). Our subsequent theorems determine the degree of

approximation for our proposed operators T̈n in terms of usual and second order modulus

of continuity.

Theorem 2.2.8 Let f ∈ CB[0,∞). Then, for all x ∈ [0,∞), there exists a positive constant

M such that

∣∣∣T̈n ( f ; x) − f (x)
∣∣∣ ≤ Mω2

 f ;
1
2

√
ν2 (x) +

(ϱn (x) − x)2

2

 + ω ( f ; (ϱn (x) − x)) .

Proof: We construct the auxiliary operators Tn : CB[0,∞)→ CB[0,∞)

Tn ( f ; x) = T̈n ( f ; x) + f (x) − f (ϱn (x)) ,

where ϱn(x) is given in 2.34.

For the operators 2.35, we have ∥∥∥T̈n ( f ; x)
∥∥∥ ≤ ∥ f ∥

implies

∥Tn ( f ; x)∥ ≤
∥∥∥T̈n ( f ; x)

∥∥∥ + 2 ∥ f ∥ ≤ 3 ∥ f ∥ . (2.43)
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Also the Taylor expansion for ℏ ∈ C2
B[0,∞), is given as

ℏ (t) = ℏ (x) + (t − x) ℏ′ (x) +

t∫
x

(t − µ)ℏ′′ (µ) dµ, x ∈ [0,∞).

Applying Cauchy schwarz inequality and Tn to both sides of the above equation, we get

|Tn (ℏ; x) − ℏ (x)| =

∣∣∣∣∣∣∣∣Tn


t∫

x

(t − µ)ℏ′′ (µ) dµ; x


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣T̈n


t∫

x

(t − µ)ℏ′′ (µ) dµ; x


∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
ϱn(x)∫
x

(ϱn (x) − µ) ℏ′′ (µ) dµ

∣∣∣∣∣∣∣∣∣
≤ ∥ℏ′′∥

(
ν2 (x) +

(ϱn (x) − x)2

2

)
. (2.44)

Using the estimates from equation (2.43) and (2.44), we get∣∣∣T̈n ( f ; x) − f (x)
∣∣∣ ≤ |Tn ( f − ℏ; x) − ( f − ℏ) (x)| + | f (ϱn (x)) − f (x)| + |Tn (ℏ; x) − ℏ (x)|

≤ 4 ∥ f − ℏ∥ +
(
ν2 (x) +

(ϱn (x) − x)2

2

)
∥ℏ′′∥ + | f (ϱn (x)) − f (x)|

≤ 4K2

(
f ;

1
4

(
ν2 (x) +

(ϱn (x) − x)2

2

))
+ | f (ϱn (x)) − f (x)|

≤ Mω2

 f ;
1
2

√(
ν2 (x) +

(ϱn (x) − x)2

2

) + ω ( f ; (ϱn (x) − x)) .

2.2.5 Comparison with Tn

In the following theorem, we demonstrate that the newly constructed operators T̈n

provide improved approximation compared to the original operators Tn for a particular

class of functions. This is achieved by utilizing the asymptotic formulae satisfied by Tn

and T̈n.

Theorem 2.2.9 Let f ∈ C2[0,∞). Assume that there exist n0 ∈ N, such that

f (x) ≤ T̈n ( f ; x) ≤ T ( f ; x) ∀n ≥ n0, x ∈ (0,∞) (2.45)

then

f ′′ (x) ≥ − f ′ (x) ≥ 0, x ∈ (0,∞) . (2.46)

In particular f ′′ (x) ≥ 0.
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Contrarily, if (2.46) holds with strict inequalities for a given x ∈ (0,∞) , there exist n0 ∈ N,

such that for n ≥ n0

f (x) < T̈n ( f ; x) < T ( f ; x) . (2.47)

Proof: From (2.45) we have

0 ≤ n(T̈n ( f ; x) − f (x)) ≤ n(T ( f ; x) − f (x)) ∀n ≥ n0, x ∈ (0,∞) .

Considering an asymptotic formula which is held by operators Tn defined in [85].

lim
n→∞

n(T ( f ; x) − f (x)) = x3/2 f ′′ (x) .

Now considering (2.39) and above equation, we get

0 ≤ − f ′ (x) ≤ f ′′ (x) .

Contrarily, if (2.46) holds with strict inequality for a given x ∈ (0,∞) , then

0 < x3/2 (
f ′′ (x) + f ′ (x)

)
< x3/2 f ′′ (x)

⇒ 0 < lim
n→∞

n(T̈n ( f ; x) − f (x)) < x lim
n→∞

n(T ( f ; x) − f (x))

⇒ f (x) < T̈n ( f ; x) < T ( f ; x) .

This is the required result.

Example 2.2.10 This illustration graphically demonstrates that if a function f satisfies

equation (2.46), then the newly constructed operators T̈n have better convergence than

the original operators Tn. We can check that for the function f (x) = e−5x, (2.46) holds

with strict inequalities. In the following Figure, we have drawn the graph of f (Gray),

T̈n (Green), Tn (Orange) and in the following Table we have estimated the error for the

operators T̈n and Tn. One can easily see from Figure 2.3 and Table 2.2 that T̈n converges

better than Tn for the class of functions which satisfies (2.46).

Table 2.2: Evaluation of error for the operators T̈n and Tn

x→ 0.5 1 1.5 2∣∣∣T̈n ( f ; x) − f (x)
∣∣∣ 0.0819647 0.0607227 0.0322153 0.0154151

|Tn ( f ; x) − f (x)| 0.125698 0.103568 0.0636199 0.0364577
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Figure 2.3: Comparison of modified operators T̈n with original operators Tn

2.2.6 Convergence Graphs and Error Estimation Table

Example 2.2.11 The function f (x) = 5cos (x)− xe
x

20 is approximated using the operators

T̈n for n = 10, 20, 100. The resulting approximations are shown in Fig 2.4. We also

estimated the absolute error Ën =
∣∣∣T̈n ( f ; x) − f (x)

∣∣∣ for different values of n in Table 2.3

and presented the corresponding graph in Fig 2.5. From the figures and the Table, it is

evident that the proposed operators (2.35) converges to f (x) as the value of n increases.

2 4 6 8

-20

-15

-10

-5

5

T
..

20(f;x) T
..

50(f;x)

T
..

100(f;x) f

Figure 2.4: The convergence of operators T̈n to the function f (x) = 5cos (x) − xe
x

20 for

n = 20, 50, 100
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2 4 6 8
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6
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E
..

10(f;x) E
..

20(f;x)

E
..

50(f;x) E
..

100(f;x)

Figure 2.5: Graphical representation of absolute error of operators T̈n to the function

f (x) = 5cos (x) − xe
x

20 for n = 10, 20, 50, 100.

Table 2.3: Evaluation of error for f (x) = 5cos (x) − xe
x

20 for n = 10, 20, 50, 100.

x Ë10 Ë20 Ë50 Ë100

π/10 0.140182 0.0670473 0.0264392 0.0131557

2π/10 0.416172 0.205997 0.0817337 0.0407404

3π/10 0.730007 0.371476 0.149512 0.074855

4π/10 0.954686 0.507173 0.208961 0.10539

5π/10 0.977187 0.555486 0.237572 0.121236

6π/10 0.731075 0.472088 0.216107 0.112624

7π/10 0.219531 0.238647 0.133384 0.0734303

8π/10 0.479217 0.129237 0.0100886 0.00302205

9π/10 1.22514 0.58074 0.200355 0.0927286

π 1.84462 1.0357 0.410562 0.201475





Chapter 3

Approximation properties of modified
Gamma operators preserving tϑ

Researchers have spent the last few decades studying a large array of approximation op-

erators due to the development of theory of gamma function. This chapter focuses mainly

on the investigation of a modification of certain Gamma-type operators. These operators

preserve the test functions eϑ = tϑ, ϑ ∈ N and it can be observed that the best approx-

imation is attained while preservation of the test function e3. We have investigated the

approximation properties of these operators in the sense of the usual modulus of continu-

ity and Peetre’s K-functional. Further, the degree of approximation is also established for

the function of bounded variation. The results are validated with some figures and error

table.

3.1 Introduction

A remarkable and well-known result in mathematical analysis is the Weierstrass approxi-

mation theorem, which states that every continuous function defined on a closed interval

[a, b] can be approximated uniformly as closely as possible by a polynomial function.

Bohmann-Korovkin theorem is an important approach that guarantees for the positive lin-

ear operators to converge to the desired continuous function uniformly on the compact

interval [a, b]. Gadijev [81] extended the Korovkin theorem on the unbounded interval

[0,∞). Korovkin theorems are one of the most powerful criteria to determine the approx-

imation process of positive linear operators. In continuation of the idea of constructing

new approximation processes, King [117] considered an effective technique to modify

53
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Bernstein operators that preserve the test function t2 and showed that the order of ap-

proximation of these King type Bernstein operators is at least as good as the order of

approximation by the Bernstein polynomial whenever 0 ≤ x < 1/3. This technique was

later used to modify several operators. We mention important papers in this direction due

to Acar et al. [5], Acar et al. [6], Acar et al. [10], Acar et al. [11], Agratini-Tarabie

[20], Bodur et al. [40], Deo-Bhardwaj [63], Deo-Dhamija [58], Duman-Özarslan [76],

Gupta-Aral [87], Gupta-Holhoş [90], Lipi-Deo [122], Mishra-Deo [135], Nur Deveci et

al. [138], Ozsarac-Acar [141].

In 1967, Lupas and Müller [127] introduced the sequence of positive linear operators

on the interval (0,∞), called Gamma operators, defined by

Gn ( f ; x) =
∫ ∞

0
gn (x, z) f

(n
z

)
dz, (3.1)

where gn (x, z) = e−zx xn+1zn

Γ(n+1) .

A detailed study of approximation of functions by these operators was done by

authors of the following articles [55; 127; 130; 132; 173]. Over the next few years, a

widespread research had been carried out to refine these operators to obtain new op-

erators. Some of these new operators possessed similar approximation properties (see

[105; 128; 133]) while others produced modifications of their classical counterparts (see

[12; 120; 168]). Mazhar [130] introduced operators based upon the basis function of

operators (3.1) and defined it in the following way:

Fn ( f ; x) =

∞∫
0

gn (x, z) dz

∞∫
0

gn−1 (z, t) f (t) dt (3.2)

for n > 1, x ∈ (0,∞) and the condition that the integral on the right side converges to

some function f . Karsli [115] introduced another form of operators (3.2) that preserves

constants and the test functions f (t) = t2. The author estimated the approximation rate for

functions having derivatives of bounded variation on the interval (0,∞). These operators

are defined as:

Fn ( f ; x) =

∞∫
0

gn+2 (x, z) dz

∞∫
0

gn (z, t) f (t) dt

=
(2n + 3)!xn+3

n! (n + 2)!

∞∫
0

tn

(x + t)2n+4 f (t) dt. (3.3)

Motivated by the above mentioned researches, we aim to construct a modification

of operators (3.3), which preserve the test functions tϑ, ϑ ∈ N. Let β(ϑ)
n ∈ [0,∞), then we

consider the operators:
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G(ϑ)
n ( f ; x) =

(2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

∞∫
0

tn(
β(ϑ)

n (x) + t
)2n+4 f (t)dt, (3.4)

such that

G(ϑ)
n ( f ; x) = F

(
f ; β(ϑ)

n (x)
)

and β(ϑ)
n (x) will be defined later on.

If the above operators preserve the function tϑ, for fixed ϑ ∈ N, then

G(ϑ)
n

(
tϑ; x

)
= xϑ =

(2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

∞∫
0

tn+ϑdt(
β(ϑ)

n (x) + t
)2n+4

=
(
β(ϑ)

n (x)
)ϑ (n + ϑ)! (n + 2 − ϑ)!

n! (n + 2)!

=
(
β(ϑ)

n (x)
)ϑ (n + 1)ϑ

(n − ϑ + 3)ϑ

implying

β(ϑ)
n (x) =

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ
x, (3.5)

where Pochhammer polynomial (sometime called rising factorial or ascending factorial)

is given as (n)ϑ = n (n + 1) ... (n + ϑ − 1) , (n)0 = 1. Thus modified operators G(ϑ)
n , ϑ ∈ N

becomes

G(ϑ)
n ( f ; x) =

(2n + 3)!xn+3

n! (n + 2)!

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)n+3/ϑ ∞∫
0

tn((
(n−ϑ+3)ϑ

(n+1)ϑ

)1/ϑ
x + t

)2n+4 f (t) dt.

The modified operators G(ϑ)
n preserve constant function along with the function tϑ, ϑ ∈ N.

In particular, modified operators (3.4) reduce to original operators (3.3) for ϑ = 2.

3.2 Preliminaries

Lemma 3.2.1 Let the µ-th order moment G(ϑ)
n (tµ; x) with µ ∈ {0}

⋃
N satisfies the follow-

ing relation

G(ϑ)
n (tµ; x) =

(n + 1)µ
(n − µ + 3)µ

(
β(ϑ)

n (x)
)µ
=

(n + 1)µ
(n − µ + 3)µ

[
(n − ϑ + 3)ϑ

(n + 1)ϑ

]µ/ϑ
xµ.

Some initial moments are

G(ϑ)
n (1; x) = 1;
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G(ϑ)
n (t; x) = (n+1)

(n+2)β
(ϑ)
n (x) = (n+1)

(n+2)

[
(n−ϑ+3)ϑ

(n+1)ϑ

]1/ϑ
x;

G(ϑ)
n

(
t2; x

)
=

(
β(ϑ)

n (x)
)2
=

[
(n−ϑ+3)ϑ

(n+1)ϑ

]2/ϑ
x2;

G(ϑ)
n

(
t3; x

)
=

(
β(ϑ)

n (x)
)3
+ 3

n

(
β(ϑ)

n (x)
)3
=

(n+1)3
(n)3

[
(n−ϑ+3)ϑ

(n+1)ϑ

]3/ϑ
x3;

G(ϑ)
n

(
t4; x

)
=

(
β(ϑ)

n (x)
)4
+

4(2n+3)
n(n−1)

(
β(ϑ)

n (x)
)4
=

(n+1)4
(n−1)4

[
(n−ϑ+3)ϑ

(n+1)ϑ

]4/ϑ
x4.

It is clear enough from here that operators G(ϑ)
n preserve constant and linear functions

when ϑ = 1 and these operators preserve constant and x2 when ϑ = 2.

Proof: By (3.4) we can write

G(ϑ)
n (tµ; x) =

(2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

∞∫
0

tn+µdt(
β(ϑ)

n (x) + t
)2n+4

=
(n + µ)! (n + 2 − µ)!

n! (n + 2)!

(
β(ϑ)

n (x)
)µ

=
(n + 1)µ

(n − µ + 3)µ

(
β(ϑ)

n (x)
)µ

=
(n + 1)µ

(n − µ + 3)µ

( (n − ϑ + 3)ϑ
(n + 1)ϑ

)µ/ϑ
xµ

 .
We can get the value of initial moment by substituting µ = 0, 1, 2, 3, and 4.

Lemma 3.2.2 For the central moment cG
(ϑ)
n

µ (x) = G(ϑ)
n ((t − x)µ; x) , µ ∈ {0}

⋃
N of pro-

posed operators (3.4) the following recursion holds:

(n − µ + 2) cG
(ϑ)
n

µ+1 (x) =
[
nβ(ϑ)

n (x) − x (n + 4) + (µ + 1)
(
β(ϑ)

n (x) + 2x
)]

cG
(ϑ)
n

µ (x)

+ µx
(
β(ϑ)

n (x) + x
)

cG
(ϑ)
n

µ−1 (x) ,

where β(ϑ)
n (x) is defined in equation (3.5).

Proof: An alternate form of proposed operators (3.4) can be given as

G(ϑ)
n ( f ; x) =

∫ ∞

0
χ(ϑ)

n (x, t) f (t) dt,

where

χ(ϑ)
n (x, t) =

(2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

(
tn
(
β(ϑ)

n (x) + t
)−2n−4

)
.

Differentiating both side of above expression with respect to t, we get

t
(
β(ϑ)

n (x) + t
) ∂χ(ϑ)

n (x, t)
∂t

=
(
n
(
β(ϑ)

n (x) + t
)
+ t (−2n − 4)

)
χ(ϑ)

n (x, t)

=
(
nβ(ϑ)

n (x) − x (n + 4) − (t − x) (n + 4)
)
χ(ϑ)

n (x, t) .
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Multiplying both sides with (t − x)µ and then integrating with respect to t from t = 0 to

t = ∞ , we obtain

∞∫
0

t
(
β(ϑ)

n (x) + t
) ∂χ(ϑ)

n (x, t)
∂t

(t − x)µdt

=

∞∫
0

(
nβ(ϑ)

n (x) − x (n + 4) − (t − x) (n + 4)
)
(t − x)µχ(ϑ)

n (x, t) dt

=
(
nβ(ϑ)

n (x) − x (n + 4)
)

cG
(ϑ)
n

µ (x) − (n + 4) cG
(ϑ)
n

µ+1 (x) . (3.6)

Making use of

t
(
β(ϑ)

n (x) + t
)
= (t − x)2 +

(
β(ϑ)

n (x) + 2x
)

(t − x) + x
(
β(ϑ)

n (x) + x
)

in left hand side of (3.6) and integrating partially, we get

∞∫
0

t
(
β(ϑ)

n (x) + t
) ∂χ(ϑ)

n (x, t)
∂t

(t − x)µdt

= − (µ + 2)

∞∫
0

χ(ϑ)
n (x, t)(t − x)µ+1dt −

(
β(ϑ)

n (x) + 2x
)

(µ + 1)

∞∫
0

χ(ϑ)
n (x, t)(t − x)µdt

− µx
(
β(ϑ)

n (x) + x
) ∞∫

0

χ(ϑ)
n (x, t)(t − x)µ−1dt

= − (µ + 2) cG
(ϑ)
n

µ+1 (x) − (µ + 1)
(
β(ϑ)

n (x) + 2x
)

cG
(ϑ)
n

µ (x) − µx
(
β(ϑ)

n (x) + x
)

cG
(ϑ)
n

µ−1 (x) . (3.7)

As a consequence of (3.6) and (3.7), we can write(
nβ(ϑ)

n (x) − x (n + 4)
)

cG
(ϑ)
n

µ (x) − (n + 4) cG
(ϑ)
n

µ+1 (x)

= − (µ + 2) cG
(ϑ)
n

µ+1 (x) − (µ + 1)
(
β(ϑ)

n (x) + 2x
)

cG
(ϑ)
n

µ (x) − µx
(
β(ϑ)

n (x) + x
)

cG
(ϑ)
n

µ−1 (x) .

Rearranging the terms on both sides, we get the desired relation.

Some initial central moments are given below as a result of above recursion.

cG
(ϑ)
n

1 (x) =
[

(n+1)
(n+2)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)1/ϑ
− 1

]
x;

cG
(ϑ)
n

2 (x) =
[(

(n−ϑ+3)ϑ
(n+1)ϑ

)2/ϑ
−

2(n+1)
(n+2)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)1/ϑ
+ 1

]
x2;

cG
(ϑ)
n

3 (x) =
[

(n+3)
n

(
(n−ϑ+3)ϑ

(n+1)ϑ

)3/ϑ
− 3

(
(n−ϑ+3)ϑ

(n+1)ϑ

)2/ϑ

+
3(n+1)
(n+2)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)1/ϑ
− 1

]
x3;
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cG
(ϑ)
n

4 (x) =
[

(n+3)(n+4)
n(n−1)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)4/ϑ
−

4(n+3)
n

(
(n−ϑ+3)ϑ

(n+1)ϑ

)3/ϑ
+ 6

(
(n−ϑ+3)ϑ

(n+1)ϑ

)2/ϑ

−
4(n+1)
(n+2)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)1/ϑ
+ 1

]
x4.

cG
(ϑ)
n

6 (x) =
[

(n+3)(n+4)(n+5)(n+6)
n(n−1)(n−2)(n−3)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)6/ϑ

−
6(n+3)(n+4)(n+5)

n(n−1)(n−2)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)5/ϑ
+

15(n+3)(n+4)
n(n−1)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)4/ϑ

−
20(n+3)

n

(
(n−ϑ+3)ϑ

(n+1)ϑ

)3/ϑ
+ 15

(
(n−ϑ+3)ϑ

(n+1)ϑ

)2/ϑ
−

6(n+1)
(n+2)

(
(n−ϑ+3)ϑ

(n+1)ϑ

)1/ϑ
+ 1

]
x6.

Generally we have cG
(ϑ)
n

µ (x) = O
(

1
n[(µ+1)/2]

)
for µ ∈ {0}

⋃
N.

3.3 Main Results

In the next result, we estimate the rate of convergence of the proposed operators (3.4) in

terms of the modulus of continuity and using this result we prove both numerically and

graphically that our modified operators provide best approximation than the correspond-

ing classical one while the test function t3 is preserved.

Theorem 3.3.1 For proposed operators G(ϑ)
n defined in (3.4) and f ∈ CB[0,∞), we have∣∣∣G(ϑ)

n ( f ; x) − f (x)
∣∣∣ ≤ Cω ( f ; E (ϑ)) ,

where C is a positive constant and E(ϑ) is the error function of ϑ ∈ {0}
⋃
N defined by

E (ϑ) =
√

cG
(ϑ)
n

2 (x).

Proof: We begin our proof by mentioning the following property of modulus of continu-

ity:

| f (t) − f (x)| ⩽
[
1 +
|t − x|
δ

]
ω ( f ; δ) . (3.8)

For all f ∈ CB[0,∞), considering the linearity condition of the operators (3.4) with the

fact G(ϑ)
n (1; x) = 1 and the property (3.8), we get

∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ ≤ (2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

∞∫
0

tn(
β(ϑ)

n (x) + t
)2n+4 | f (t) − f (x)| dt

≤ ω ( f ; δ)
(2n + 3)!

(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

∞∫
0

tn(
β(ϑ)

n (x) + t
)2n+4

(
1 +
|t − x|
δ

)
dt.
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Making use of Cauchy-Schwarz inequality with δ =

√
cG

(ϑ)
n

2 (x) and in view of Lemma

3.2.2, we can conclude that

∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ ≤ ω ( f ; δ)

1 +
√

cG
(ϑ)
n

2 (x)

δ


≤ Cω

(
f ;

√
cG

(ϑ)
n

2 (x)
)
.

Specifically, for ϑ = 1, 2, 3, we have

∣∣∣G(1)
n ( f ; x) − f (x)

∣∣∣ ≤ C1ω

(
f ; x
√

(2n + 3)
(n + 1)

)
,

∣∣∣G(2)
n ( f ; x) − f (x)

∣∣∣ ≤ C2ω

 f ; x

√
2

(n + 2)

 ,
∣∣∣G(3)

n ( f ; x) − f (x)
∣∣∣ ≤ C3ω

 f ; x

√( n
n + 3

)2/3
−

2 (n + 1)
(n + 2)

( n
n + 3

)1/3
+ 1

 ,
where C1, C2 and C3 are constants.

Further, we have√( n
n + 3

)2/3
−

2 (n + 1)
(n + 2)

( n
n + 3

)2/3
+ 1 ≤

√
2

(n + 2)
≤

√
(2n + 3)
(n + 1)

.

In view of the above theorem, we can observe that the error becomes smaller and de-

creases monotonically for x ∈ (0,∞) and n ∈ N until the preservation of test function t3.

For higher order test functions the error starts to increase.

Remark 3.3.2 As we can see in Table 3.1, the error decreases till ϑ = 3 and gradually

begins to increase. Therefore we can draw the conclusion that even though the conver-

gence of the proposed operators takes place in all cases for adequately large n, better

approximation is obtained only till the test function t3 is preserved. For preservation of

test functions of higher order we cannot conclude a better approximation.

3.3.1 Numerical Analysis

Remark 3.3.3 From the figures below, we can deduce that operators G(ϑ)
n gives better

approximation with ϑ = 3 i.e. we get better approximation if these operators preserve t3.
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Figure 3.1: Approximation behaviour of G(ϑ)
n for the function f (x) = 3x3 + 2x2

5 + 7.

(a) Approximation behaviour of G(1)
n (Orange)

for the function f (x) (Green).

(b) Approximation behaviour of G(2)
n (Magenta)

for the function f (x) (Green).

(c) Approximation behaviour of G(3)
n (Red)

for the function f (x) (Green).

(d) Approximation behaviour of G(4)
n (Blue)

for the function f (x) (Green).

(e) Approximation behaviour of G(5)
n (Cyan)

for the function f (x) (Green).

(f) Approximation behaviour of G(6)
n (Gray)

for the function f (x) (Green).
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Table 3.1: Error estimation table

n E(1) E(2) E(3) E(4) E(5) E(6)

2 0.881917 0.707107 0.661569 0.704273 1 1

20 0.312259 0.301511 0.298065 0.301247 0.31009 0.32351

200 0.0998749 0.0995037 0.0993805 0.0995025 0.0998653 0.100463

2000 0.0316188 0.031607 0.031603 0.031607 0.0316188 0.0316385

20000 0.00999987 0.0099995 0.00999938 0.0099995 0.00999987 0.0100005

200000 0.00316227 0.00316226 0.00316226 0.00316226 0.00316227 0.00316229

2000000 0.001 0.001 0.000999999 0.000999999 0.001 0.001

In the next result, we examine the degree of approximation in the sense of Peetre’s

K-functional and weighted approximation.

Theorem 3.3.4 Let f ∈ CB[0,∞), then there exists a constant C > 0 such that∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ ≤ Cω2

(
f ;

√
δ(ϑ)

n (x)
)
+ ω

(
f ;

∣∣∣∣∣ (n + 1)
(n + 2)

β(ϑ)
n (x) − 1

∣∣∣∣∣ x
)
,

where

δ(ϑ)
n (x) =

cG(ϑ)
n

2 (x) +
(
(n + 1)
(n + 2)

β(ϑ)
n (x) − x

)2 .
Proof: We begin by defining an auxiliary sequence of operators

Ĝ(ϑ)
n ( f ; x) = G(ϑ)

n ( f ; x) − f
(
(n + 1)
(n + 2)

β(ϑ)
n (x)

)
+ f (x), (3.9)

In view of Lemma 3.2.1, one can observe that above defined operators preserve both

constant and linear functions.

Using Taylor’s expansion for x, t ∈ (0,∞) and g ∈ C2
B[0,∞), where

C2
B[0,∞) = {g ∈ CB[0,∞) : g′, g′′ ∈ CB(0,∞)}

we have

g(t) = g(x) + (t − x)g′(x) +

t∫
x

(t − w)g′′(w)dw.
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Applying Ĝ(ϑ)
n on both sides and using Ĝ(ϑ)

n ((t − x); x) = 0 , we have∣∣∣∣Ĝ(ϑ)
n (g; x) − g(x)

∣∣∣∣ = ∣∣∣∣∣∣Ĝ(ϑ)
n

(∫ t

x
(t − w)g′′(w)dw; x

)∣∣∣∣∣∣
⩽

∣∣∣∣∣∣G(ϑ)
n

(∫ t

x
(t − w)g′′(w)dw; x

)∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫ (n+1)

(n+2)β
(ϑ)
n (x)

x

(
(n + 1)
(n + 2)

β(ϑ)
n (x) − w

)
g′′(w)dw

∣∣∣∣∣∣∣
⩽

cG(ϑ)
n

2 (x) +
(
(n + 1)
(n + 2)

β(ϑ)
n (x) − x

)2 ∥∥∥g′′
∥∥∥

= δ(ϑ)
n (x)

∥∥∥g′′
∥∥∥ . (3.10)

Also in view of Lemma (3.2.1) we have

∣∣∣G(ϑ)
n ( f ; x)

∣∣∣ ⩽ (2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!

∞∫
0

tn(
β(ϑ)

n (x) + t
)2n+4 | f (t)| dt ⩽ ∥ f ∥ .

Above inequality along with equation (3.9) implies∣∣∣∣Ĝ(ϑ)
n

(
g; x

)∣∣∣∣ ⩽ 3
∥∥∥g

∥∥∥ . (3.11)

Combining equations (3.9), (3.10) and (3.11), we get∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ ⩽ ∣∣∣∣Ĝ(ϑ)
n (( f − g); x) − ( f − g)(x)

∣∣∣∣ + ∣∣∣∣Ĝ(ϑ)
n (g; x) − g(x)

∣∣∣∣
+

∣∣∣∣∣∣ f (x) − f
(
(n + 1)
(n + 2)

β(ϑ)
n (x)

)∣∣∣∣∣∣
⩽ 4

∥∥∥ f − g
∥∥∥ + δ(ϑ)

n (x)
∥∥∥g′′

∥∥∥ + ω (
f ;

∣∣∣∣∣ (n + 1)
(n + 2)

β(ϑ)
n (x) − x

∣∣∣∣∣) .
Taking infimum over all g ∈ C2

B[0,∞) and using Peetre’s K-functional defined by

K2 ( f ; δ) = inf
g∈C2

B[0,∞)

{∥∥∥ f − g
∥∥∥ + δ ∥∥∥g′′

∥∥∥ , δ > 0
}
,

we have∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ ≤ C
{∥∥∥ f − g

∥∥∥ + δ(ϑ)
n (x)

∥∥∥g′′
∥∥∥} + ω (

f ;
∣∣∣∣∣ (n + 1)
(n + 2)

β(ϑ)
n (x) − x

∣∣∣∣∣)
≤ K2

(
f ; δ(ϑ)

n (x)
)
+ ω

(
f ;

∣∣∣∣∣ (n + 1)
(n + 2)

β(ϑ)
n (x) − x

∣∣∣∣∣) .
Finally using the relation given by Devore and Lorentz in [69], we obtain the required

outcome.
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3.3.2 Weighted Approximation

We now give the following quantitative Voronovskaja theorem for functions which

belongs to weighted space as described in subsection 1.1.5.

Theorem 3.3.5 If f ′′ ∈ C∗ρ[0,∞), then the following holds true∣∣∣∣∣∣∣G(ϑ)
n ( f ; x) − f (x) −

 (n + 1)
(n + 2)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ

− 1
 x f ′ (x)

−
1
2

( (n − ϑ + 3)ϑ
(n + 1)ϑ

)2/ϑ

−
2 (n + 1)
(n + 2)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ

− 1
 x2 f ′′ (x)

∣∣∣∣∣∣∣
≤

8
(
1 + x2

)
n

Ω
(

f ′′; n−1/2
)
.

Proof: By Taylor’s expansion, we have

G(ϑ)
n ( f ; x) − f (x) = G(ϑ)

n ((t − x) ; x) f ′ (x) +
1
2
G(ϑ)

n

(
(t − x)2; x

)
f ′′ (x)

+ G(ϑ)
n

(
g (t, x) (t − x)2; x

)
,

where g is a continuous function which vanishes at 0 as t tends to x and is given as

g (t, x) = ( f ′′ (y) − f ′′ (x)) /2 with x < y < t. Using Lemma 3.2.2, we get∣∣∣∣∣∣∣G(ϑ)
n ( f ; x) − f (x) −

 (n + 1)
(n + 2)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ

− 1
 x f ′ (x)

−
1
2

( (n − ϑ + 3)ϑ
(n + 1)ϑ

)2/ϑ

−
2 (n + 1)
(n + 2)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ

+ 1
 x2 f ′′ (x)

∣∣∣∣∣∣∣
≤ G(ϑ)

n

(
g (t, x) (t − x)2; x

)
.

Making use of inequality |y − x| ≤ |t − x|, we can have

∣∣∣g (t, x)
∣∣∣ ≤ 8

(
1 + x2

) (
1 +

(t − x)4

δ4

)
Ω

(
f ′′; δ

)
.
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Then we conclude by Lemma 3.2.2 that

G(ϑ)
n

(
g (t, x) (t − x)2; x

)
= 8

(
1 + x2

)
Ω

(
f ′′; δ

) {
cG

(ϑ)
n

2 (x) +
1
δ4 cG

(ϑ)
n

6 (x)
}

= 8
(
1 + x2

)
Ω

(
f ′′; δ

) 
( (n − ϑ + 3)ϑ

(n + 1)ϑ

)2/ϑ

−
2 (n + 1)
(n + 2)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ

− 1
 x2

+
1
δ4

 (n + 3) (n + 4) (n + 5) (n + 6)
n (n − 1) (n − 2) (n − 3)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)6/ϑ

−
6 (n + 3) (n + 4) (n + 5)

n (n − 1) (n − 2)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)5/ϑ

+
15 (n + 3) (n + 4)

n (n − 1)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)4/ϑ

−
20 (n + 3)

n

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)3/ϑ

+ 15
(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)2/ϑ

−
6 (n + 1)
(n + 2)

(
(n − ϑ + 3)ϑ

(n + 1)ϑ

)1/ϑ

+ 1
 x6

 .
Hence the result follows by substituting δ = n−1/2.

3.3.3 Functions of Bounded Variation

Next, we provide an estimate of the rate of pointwise convergence of the proposed

operators (3.4) on a Lebesgue point of f which are of bounded variation on (0,∞) and

study the behaviour of operators (3.4) for functions of bounded variation in the interval

(0,∞). For the proof of this theorem, we begin by considering the equivalent form of the

operators (3.4) given as:

G(ϑ)
n ( f ; x) =

∞∫
0

χ(ϑ)
n (x, t) f (t)dt, (3.12)

where

χ(ϑ)
n (x, t) =

(2n + 3)!
(
β(ϑ)

n (x)
)n+3

n! (n + 2)!
tn(

β(ϑ)
n (x) + t

)2n+4 .

Lemma 3.3.6 For all x ∈ [0,∞), if 0 ≤ y < x, we have

Υ(ϑ)
n (x, y) =

∫ y

0
χ(ϑ)

n (x, t)dt ≤
2x2

n(x − y)2 ,

and if x < z < ∞,

1 − Υ(ϑ)
n (x, z) =

∫ ∞

z
χ(ϑ)

n (x, t)dt ≤
2x2

n(z − x)2

for sufficiently large n.
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Definition 3.3.7 [47] A Lebesgue point of the function f is a point x ∈ R that holds the

following condition:

lim
j→0+

1
j

∫ j

0
| f (x + u) − f (x)|du = 0.

Theorem 3.3.8 Let f be a function of bounded variation on every finite subinterval of

(0,∞) which satisfies the growth condition given as

| f (t)| ≤ Rtα,

for some constant R and α > 0. Then for s ∈ N (2s ≥ α), x ∈ (0,∞), ϵ > 0 and sufficiently

large n, we have∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ ≤ 4
n

n∑
i=1

x+ x√
i
∨

x− x√
i

( f ) + ε
∫ x+δ

x−δ
χ(ϑ)

n (x, t) dt + R22sA (s)
x2s

ns , x ∈ (0,∞)

where δ := x
√

n and
b
∨
a

( f ) represents the total variation of f on [a, b].

Proof: We can write∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ = ∣∣∣∣∣∣∣
∫ x− x√

n

0
+

∫ x

x− x√
n

+

∫ x+ x√
n

x
+

∫ ∞

x+ x√
n

 χ(ϑ)
n (x, t) ( f (t) − f (x)) dt

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ x− x√

n

0
χ(ϑ)

n (x, t) ( f (t) − f (x)) dt

∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
∫ x

x− x√
n

χ(ϑ)
n (x, t) ( f (t) − f (x)) dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ x+ x√

n

x
χ(ϑ)

n (x, t) ( f (t) − f (x)) dt

∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
∫ ∞

x+ x√
n

χ(ϑ)
n (x, t) ( f (t) − f (x)) dt

∣∣∣∣∣∣∣
=

∣∣∣I(ϑ,1)
n (x)

∣∣∣ + ∣∣∣I(ϑ,2)
n (x)

∣∣∣ + ∣∣∣I(ϑ,3)
n (x)

∣∣∣ + ∣∣∣I(ϑ,4)
n (x)

∣∣∣ . (3.13)

We begin by computing the integrals I(ϑ,2)
n (x) and I(ϑ,3)

n (x) respectively.

Setting

F (t) :=
∫ x

t
| f (y) − f (x)| dy,

then by recalling the definition (3.3.7) of Lebesgue point, for any ε > 0 there exists δ > 0

such that for all 0 < x − t ≤ δ,

F (t) ≤ ε (x − t) . (3.14)

Let us assume that δ := x
√

n . Now integrating I(ϑ,2)
n (x) by parts and using (3.14) we obtain:∣∣∣I(ϑ,2)

n (x)
∣∣∣ = ∣∣∣∣∣−F (x − δ) χ(ϑ)

n (x, x − δ) +
∫ x

x−δ
F (t)

∂

∂t
χ(ϑ)

n (x, t) dt
∣∣∣∣∣

≤ |−F (x − δ)| χ(ϑ)
n (x, x − δ) +

∫ x

x−δ
|F (t)|

∂

∂t
χ(ϑ)

n (x, t) dt

≤ εδχ(ϑ)
n (x, x − δ) + ε

∫ x

x−δ
(x − t)

∂

∂t
χ(ϑ)

n (x, t) dt.
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Again using integration by parts∣∣∣I(ϑ,2)
n (x)

∣∣∣ ≤ εδχ(ϑ)
n (x, x − δ) + ε

{
−δχ(ϑ)

n (x, x − δ) +
∫ x

x−δ
χ(ϑ)

n (x, t) dt
}

= ε

∫ x

x−δ
χ(ϑ)

n (x, t) dt. (3.15)

Using analogous approach for I(ϑ,3)
n (x) we obtain the inequality∣∣∣I(ϑ,3)

n (x)
∣∣∣ ≤ ε∫ x+δ

x
χ(ϑ)

n (x, t) dt. (3.16)

Next we shall use Lebesgue–Stieltjes integral to estimate the integrals I(ϑ,1)
n (x) and

I(ϑ,4)
n (x) respectively. We begin by estimating I(ϑ,1)

n (x) using the following Lebesgue–

Stieltjes representation:

I(ϑ,1)
n (x) =

∫ x− x√
n

0
( f (t) − f (x)) dt

(
Υ(ϑ)

n (x, t)
)

=

(
f
(
x −

x
√

n

)
− f (x)

)
Υ(ϑ)

n

(
x, x −

x
√

n

)
− ( f (0) − f (x))Υ(ϑ)

n (x, 0)

−

∫ x− x√
n

0
Υ(ϑ)

n (x, t) dt ( f (t) − f (x)).

Since
(

f
(
x − x

√
n

)
− f (x)

)
≤

x
∨

x− x√
n

( f ), it follows that

∣∣∣I(ϑ,1)
n (x)

∣∣∣ ≤ x
∨

x− x√
n

( f )

∣∣∣∣∣∣Υ(ϑ)
n

(
x, x −

x
√

n

)∣∣∣∣∣∣ +
∫ x− x√

n

0

∣∣∣Υ(ϑ)
n (x, t)

∣∣∣ dt

(
−

x
∨
t

( f )
)
.

From Lemma (3.3.6), we see that

Υ(ϑ)
n

(
x, x −

x
√

n

)
≤

2x2

n
(

x
√

n

)2 .

Accordingly,∣∣∣I(ϑ,1)
n (x)

∣∣∣ ≤ 2x2

n
1(
x
√

n

)2

x
∨

x− x√
n

( f ) +
2x2

n

∫ x− x√
n

0

1
(x − t)2 dt

(
−

x
∨
t

( f )
)
.

Using integration by parts in the last integral, we have∫ x− x√
n

0

1
(x − t)2 dt

(
−

x
∨
t

( f )
)
= −

1
(x − t)2

x
∨
t

( f )
∣∣∣∣∣x− x√

n

0
+

∫ x− x√
n

0

2
(x − t)3

x
∨
t

( f ) dt

= −
n
x2

x
∨

x− x√
n

( f ) +
1
x2

x
∨
0

( f ) +
∫ x− x√

n

0

2
(x − t)3

x
∨
t

( f ) dt.

Substituting t = x − x
√
λ

in the last integral, we have∫ x− x√
n

0

2
(x − t)3

x
∨
t

( f ) dt =
1
x2

∫ n

1

x
∨

x− x√
λ

( f ) dλ =
1
x2

n∑
i=1

x
∨

x− x√
i

( f ).
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As a result, we have

∣∣∣I(ϑ,1)
n (x)

∣∣∣ ≤ 2x2

n
1(
x
√

n

)2

x
∨

x− x√
n

( f ) +
2x2

n

− n
x2

x
∨

x− x√
n

( f ) +
1
x2

x
∨
0

( f ) +
1
x2

n∑
i=1

x
∨

x− x√
i

( f )


=

2
n

 x
∨
0

( f ) +
n∑

i=1

x
∨

x− x√
i

( f )

 . (3.17)

Finally to estimate I(ϑ,4)
n (x), we introduce the following function:

ψx (t) =

 f (t) 0 ≤ t ≤ 2x

f (2x) 2x < t < ∞

We rewrite I(ϑ,4)
n (x) as:∣∣∣I(ϑ,4)

n (x)
∣∣∣ = ∫ ∞

x+ x√
n

ψx (t) dt

(
Υ(ϑ)

n (x, t)
)
+

∫ ∞

2x
( f (t) − f (2x))dt

(
Υ(ϑ)

n (x, t)
)

=: I(ϑ,4′)
n (x) + I(ϑ,4′′)

n (x) .

Next we evaluate the integral I(ϑ,4′)
n (x) as follows:

I(ϑ,4′)
n (x) = lim

a→∞

{
f
(
x +

x
√

n

) (
1 − Υ(ϑ)

n

(
x, x +

x
√

n

))
+ψx (a)

(
Υ(ϑ)

n (x, a) − 1
)
+

∫ a

2x
f (t) dt

(
Υ(ϑ)

n (x, t)
)}
.

According to Lemma 3.3.6, we obtain

I(ϑ,4′)
n (x) =

2x2

n
lim
a→∞

 n
x2

x+ x√
n

∨
x

( f ) +
ψx (a)

(a − x)2 +

∫ x

0

1
(t − x)2 dt

(
t
∨
x

(ψx)
)

=
2x2

n

 n
x2

x+ x√
n

∨
x

( f ) +
∫ 2x

x+ x√
n

1
(t − x)2 dt

(
t
∨
x

( f )
) . (3.18)

Integrating by parts the last integral, we have∫ 2x

x+ x√
n

1
(t − x)2 dt

(
t
∨
x

( f )
)
=

1
(t − x)2

t
∨
x

( f )
∣∣∣∣∣2x

x+ x√
n

+

∫ 2x

x+ x√
n

2
(x − t)3

t
∨
x

( f ) dt

=
1
x2

2x
∨
x

( f ) −
n
x2

x+ x√
n

∨
x

( f ) +
∫ 2x

x+ x√
n

2
(x − t)3

t
∨
x

( f ) dt. (3.19)

Substituting t = x + x
√
λ

in (3.19), we get

∫ 2x

x+ x√
n

2
(x − t)3

t
∨
x

( f ) dt =
1
x2

∫ n

1

x+ x√
n

∨
x

( f ) dλ =
1
x2

n∑
i=1

x+ x√
i
∨
x

( f ). (3.20)
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Finally combining (3.18), (3.19), (3.20), we get

I(ϑ,4′)
n (x) ≤

4
n

2x
∨
x

( f ) +
n−1∑
i=1

x+ x√
i
∨
x

( fx)


=

4
n

n∑
i=1

x+ x√
i
∨
x

( f ).

This is the required estimate of
∣∣∣I(ϑ,4′)

n (x)
∣∣∣. Next we proceed to estimate I(ϑ,4′′)

n (x). It is

noteworthy that for every t > 0, there exists an integer s (2s > α) such that

f (t) = O
(
t2s

)
.

Also for some α > 0,R > 0, f satisfies the growth condition | f (t)| ≤ Rtα as t −→ ∞.

Therefore whenever t ≥ 2x ⇒ 2(t − x) ≥ t, we get

I(ϑ,4′′)
n (x) ≤ R22sA (s)

x2s

ns .

Combining I(ϑ,4′)
n (x) and I(ϑ,4′′)

n (x), we get

∣∣∣I(ϑ,4)
n (x))

∣∣∣ ≤ 4
n

n∑
i=1

x+ x√
i
∨
x

( f ) + R22sA (s)
x2s

ns . (3.21)

Lastly using equations (3.15), (3.16), (3.17) and (3.21) in equation (3.13), we have∣∣∣G(ϑ)
n ( f ; x) − f (x)

∣∣∣ = ∣∣∣I(ϑ,1)
n (x)

∣∣∣ + ∣∣∣I(ϑ,2)
n (x)

∣∣∣ + ∣∣∣I(ϑ,3)
n (x)

∣∣∣ + ∣∣∣I(ϑ,4)
n (x)

∣∣∣
≤

2
n

 x
∨
0

( f ) +
n∑

i=1

x
∨

x− x√
i

( f )

 + ε∫ x+δ

x−δ
χ(ϑ)

n (x, t) dt

+
4
n

n∑
i=1

x+ x√
i
∨
x

( f ) + R22sA (s)
x2s

ns

≤
4
n

n∑
i=1

x+ x√
i
∨

x− x√
i

( f ) + ε
∫ x+δ

x−δ
χ(ϑ)

n (x, t) dt + R22sA (s)
x2s

ns ,

which is the required result and the proof is done.



Chapter 4

On generalization of Bernstein
operators

Bernstein polynomials, with their helpful structure and applications in various areas

(computer technologies, engineering sciences, physics, etc.), have been the subject of in-

tense research for more than a century. A variety of modifications and generalizations of

Bernstein polynomials have also been investigated in the literature. This chapter is con-

cerned with the generalization of Bernstein operators. In first section, we propose a Pólya

distribution-based generalization of λ-Bernstein operators. We establish some basic re-

sults that are relevant for establishing key theorems. We present a theorem and graphical

illustrations in support of the proposed operator’s interpolation behaviour. In order to

illustrate the convergence of proposed operators as well as the effect of changing the pa-

rameter ”µ”, we provide a variety of results and graphs. Second section of this chapter

is based on the generalization of Bernstein operators which was defined by Usta in 2020.

We begin this section with a fundamental theorem demonstrating the convergence of our

newly constructed operators. Also, we derive a theorem determining the degree of ap-

proximation in the sense of Peetre’s K-functional. We provide a weighted approximation

theorem and use the Voronovskaja and Grüss Voronovskaja type theorems to analyse the

asymptotic behaviour of our newly constructed operators. We end this chapter by pro-

viding a graph and table to validate the convergence and demonstrate the approximation

error.

69
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4.1 λ-Bernstein operators based on Pólya distribution

4.1.1 Introduction

The original Pólya-Eggenberger urn model, often known as the Pólya urn, was cre-

ated in 1923 by Eggenberger and Pólya [78] to explore phenomena like the transmission

of infectious diseases. The Pólya-Eggenberger urn model consists of M white balls and

N black balls in one of its most basic forms. A ball is picked at random and then re-

placed with O other balls of the same colour. This process is carried out n times, then the

probability of drawing s (s = 1, 2, ..., n) white ball is:

Pr [X = s] =

 n

s

 M (M + O) ... [M + (s − 1) O] N (N + O) ... [N + (n − s − 1) O]
(M + N) (M + N + O) ... [M + N + (n − 1) O]

.

(4.1)

The distribution described above is referred to as the Pólya-Eggenberger distribution with

parameters (n; M; N; O) and includes hypergeometric and binomial distribution as special

cases.

Stancu [159] constructed a sequence of positive linear operators using the Pólya-

Eggenberger distribution as:

S ⟨µ⟩n ( f ; x) =
n∑

k=0

p⟨µ⟩n,k (x) f
(

k
n

)
, (4.2)

where

p⟨µ⟩n,k (x) =

 n

k


k−1∏
i=0

(x + iµ)
n−k−1∏

i=0
(1 − x + iµ)

n−1∏
i=0

(1 + iµ)

and µ is a non-negative parameter that may only be dependent on the natural number n.

When µ = 0, operators (4.2) reduce into the classical Bernstein operators [39].

The distribution of the number P of drawings required to obtain n white balls from an

urn containing M white balls and N black balls is known as the inverse Pólya-Eggenberger

distribution, and it is defined as:

Pr(P = n + s) =

 n + s − 1

s

 M (M + O) ... [M + (n − 1) O] N (N + O) ... [N + (s − 1) O]
(M + N) (M + N + O) ... [M + N + (n + s − 1) O]

,

(4.3)

for s ∈ N ∪ {0}. We direct the readers to [107] in order to provide additional information

regarding distributions (4.1) and (4.3).

For a real valued bounded function on [0,∞) with 0 ⩽ µ = µ (n) → 0 as n → ∞,
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Stancu [160] provided the generalization of the Baskakov operators using the inverse

Pólya-Eggenberger distribution. For the case µ = 0, these operators reduce into the clas-

sical Baskakov operators [35].

Razi [147] developed Bernstein Kantorovich operators based on the Pólya- Eggen-

berger distribution in 1989 and investigated the rate of convergence and degree of approx-

imation for these operators. Ibrahim [48] introduced Chlodowsky type generalization

of Stancu polynomials (also known as Stancu Chlodowsky polynomials) and presented

theorems on weighted approximation of functions on the interval [0,∞) . Agrawal et al.

[23] introduced the Pólya and Bernstein basis function-based Bézier variant of summa-

tion integral type operators. Deo et al. [59] introduced inverse Pólya based Baskakov

Kantorovich operators along with its asymptotic formula. The reader is directed to

[29; 53; 68; 71; 72; 73] for additional research in this area.

Depending on the parameter λ, Cai et al. [50] proposed and took into consideration

a new generalization of Bernstein polynomials known as λ-Bernstein operators. When

λ = 0, these λ-Bernstein operators reduce into the well-known Bernstein operators [39].

Acu et al. [17] defined a Kantorovich form of λ-Bernstein operators and demonstrated

how this generalization enhances convergence rate over the classical Kantorovich opera-

tors. In order to approximate a function on [0, 1] as well as on its subinterval, Rahman et

al. [145] introduced the Kantorovich form of λ-Bernstein operators with shifted knots and

demonstrated that these operators approximate the function more accurately than classi-

cal Bernstein Kantorovich operators and λ-Bernstein Kantorovich operators. Cai [49]

provided the Bézier form of λ-Bernstein Kantorovich operators and derived asymptotic

estimate for absolutely continuous function by combining the Bojanic-Cheng decompo-

sition method with a few analysis techniques. Cai and Zhou [51] considered the GBS

of the bivariate tensor product of λ -Bernstein Kantorovich operators and established

approximation properties of these operators for both B-continuous and B-differentiable

functions. Acu et al. [14] considered and investigated a generalization of Uρ
n operators

based on λ-Bernstein operators. The reader is instructed to read [45; 109; 110; 112] for

further information on this topic.

In this paper, the generalization of λ-Bernstein operators [50] based on Pólya distri-

bution is presented in the following manner:

P⟨λ,µ⟩n ( f ; x) =
n∑

k=0

p̂⟨λ,µ⟩n,k (x) f
(

k
n

)
, (4.4)
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where f ∈ C [0, 1], λ ∈ [−1, 1] , µ = µ(n) → 0 as n → ∞ and p̂⟨λ,µ⟩n,k (x), k = 0, 1, ..., n are

defined below:
p̂⟨λ,µ⟩n,0 (x) = p⟨µ⟩n,0 (x) − λ

n+1 p⟨µ⟩n+1,1 (x) ,

p̂⟨λ,µ⟩n,k (x) = p⟨µ⟩n,k (x) + λ
(

n−2k+1
n2−1 p⟨µ⟩n+1,k (x) − n−2k−1

n2−1 p⟨µ⟩n+1,k+1 (x)
)
, 1 ⩽ k ⩽ n − 1,

p̂⟨λ,µ⟩n,n (x) = p⟨µ⟩n,n (x) − λ
n+1 p⟨µ⟩n+1,n (x) .

Special Cases:

1. For λ = 0 and µ = 0, proposed operators P⟨λ,µ⟩n transform itno well known Bernstein

operators [39].

2. For λ = 0 and µ , 0, these operators P⟨λ,µ⟩n reduces to operators (4.2).

3. For λ , 0 and µ = 0, operators P⟨λ,µ⟩n includes λ-Bernstein operators [50].

4.1.2 Preliminaries

Lemma 4.1.1 The following equalities hold for the proposed operators P⟨λ,µ⟩n described

by equation (4.4):

P
⟨λ,µ⟩
n (1; x) = 1;

P
⟨λ,µ⟩
n (t; x) = x + λ

 1−2x
n(n−1) +

n∏
i=0

(x+iµ)−
n∏

i=0
(1−x+iµ)

n(n−1)
n∏

i=0
(1+iµ)

 ;

P
⟨λ,µ⟩
n

(
t2; x

)
= x2

µ+1 +
x(1+µn−x)

(µ+1)n + λ

 2(1−µ)x−4x2

(µ+1)n(n−1) −
1

n2(n−1) +
(1+2n)

n∏
i=0

(x+iµ)+
n∏

i=0
(1−x+iµ)

n2(n−1)
n∏

i=0
(1+iµ)

 .
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Proof: Form (4.4), it is easy to prove P⟨λ,µ⟩n (1; x) = 1. Next,

P⟨λ,µ⟩n (t; x)

=

n∑
k=0

p̂⟨λ,µ⟩n,k (x)
k
n

=

n−1∑
k=1

{
p⟨µ⟩n,k (x) + λ

[
n − 2k + 1

n2 − 1
p⟨µ⟩n+1,k (x) −

n − 2k − 1
n2 − 1

p⟨µ⟩n+1,k+1 (x)
]}

k
n

+ p⟨µ⟩n,n (x) −
λ

n + 1
p⟨µ⟩n+1,n (x)

=

n∑
k=0

p⟨µ⟩n,k (x)
k
n
+ λ

 n∑
k=0

p⟨µ⟩n+1,k (x)
n − 2k + 1

n2 − 1
k
n
−

n−1∑
k=1

p⟨µ⟩n+1,k+1 (x)
n − 2k − 1

n2 − 1
k
n


=

n∑
k=0

p⟨µ⟩n,k (x)
k
n
+ λ

 1
n − 1

n∑
k=0

p⟨µ⟩n+1,k (x)
k
n
−

2
n2 − 1

n∑
k=0

p⟨µ⟩n+1,k (x)
k2

n

−
1

n + 1

n−1∑
k=1

p⟨µ⟩n+1,k+1 (x)
k
n
+

2
n2 − 1

n−1∑
k=1

p⟨µ⟩n+1,k+1 (x)
k2

n


=

n∑
k=0

p⟨µ⟩n,k (x)
k
n
+ λ

 1
n (n + 1)

n∑
k=0

p⟨µ⟩n+1,k (x)k −
2

n
(
n2 − 1

) n∑
k=0

p⟨µ⟩n+1,k (x) k (k − 1)

−
1

n (n − 1)

 n−1∑
k=1

p⟨µ⟩n+1,k+1 (x) (k + 1) −
n−1∑
k=1

p⟨µ⟩n+1,k+1 (x)


+

2
n
(
n2 − 1

) n−1∑
k=1

p⟨µ⟩n+1,k+1 (x) k (k + 1)

 . (4.5)
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It is easy to derive the following equalities:

n∑
k=0

p⟨µ⟩n+1,k (x)k = (n + 1)

x −

n∏
i=0

(x + µi)

n∏
i=0

(1 + µi)

 ;

n∑
k=0

p⟨µ⟩n+1,k (x)k (k − 1) = n (n + 1)

 x (x + µ)
1 + µ

−

n∏
i=0

(x + µi)

n∏
i=0

(1 + µi)

 ;

n−1∑
k=1

p⟨µ⟩n+1,k+1 (x) = 1 −

n∏
i=0

(1 − x + µi)

n∏
i=0

(1 + µi)
−

(n + 1) x
n−1∏
i=0

(1 − x + µi)

n∏
i=0

(1 + µi)
−

n∏
i=0

(x + µi)

n∏
i=0

(1 + µi)
;

n−1∑
k=1

p⟨µ⟩n+1,k+1 (x) (k + 1) = (n + 1)

x −
x

n−1∏
i=0

(1 − x + µi)

n∏
i=0

(1 + µi)
−

n∏
i=0

(x + µi)

n∏
i=0

(1 + µi)

 ;

n−1∑
k=1

p⟨µ⟩n+1,k+1 (x) (k + 1) k = n (n + 1)

 x (x + µ)
1 + µ

−

n∏
i=0

(x + µi)

n∏
i=0

(1 + µi)

 .
Using these equalities in equation (4.5), we get the value of P⟨λ,µ⟩n (t; x) . We can also

determine the value of P⟨λ,µ⟩n

(
t2; x

)
in a similar manner.

Lemma 4.1.2 For x ∈ [0, 1] , λ ∈ [−1, 1] , µ = µ(n) → 0 as n → ∞ and lim
n→∞

nµ (n) = l ∈

R, we have

P
⟨λ,µ⟩
n ((t − x); x) = λ

 1−2x
n(n−1) +

n∏
i=0

(x+iµ)−
n∏

i=0
(1−x+iµ)

n(n−1)
n∏

i=0
(1+iµ)

 ;

P
⟨λ,µ⟩
n

(
(t − x)2; x

)
=

(1+µn)(1−x)x
(µ+1)n +λ

 4µx(x−1)
(µ+1)n(n−1) −

1
n2(n−1) +

(1+2n(1−x))
n∏

i=0
(x+iµ)+(1+2nx)

n∏
i=0

(1−x+iµ)

n2(n−1)
n∏

i=0
(1+iµ)

 .
Furthermore,

lim
n→∞
P
⟨λ,µ⟩
n ((t − x) ; x) = 0;

lim
n→∞

nP⟨λ,µ⟩n

(
(t − x)2; x

)
= (l + 1) (1 − x) x.

Proof: By substituting the values from Lemma 4.1.1, we can easily prove this Lemma.

Throughout the paper, let us define φ⟨
λ,µ⟩

n,1 (x) = P⟨λ,µ⟩n (t; x) , φ⟨λ,µ⟩n,2 (x) = P⟨λ,µ⟩n

(
t2; x

)
,

δ⟨
λ,µ⟩

n,1 (x) = P⟨λ,µ⟩n ((t − x); x) and δ⟨λ,µ⟩n,2 (x) = P⟨λ,µ⟩n

(
(t − x)2; x

)
.
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4.1.3 Interpolation Property

Remark 4.1.3 For λ ∈ [−1, 1] , µ = µ(n) → 0 as n → ∞ and x ∈ [0, 1], the proposed

operators P⟨λ,µ⟩n possess the endpoint interpolation property, that is,

P⟨λ,µ⟩n ( f ; 0) = f (0) ,P⟨λ,µ⟩n ( f ; 1) = f (1) .

We can establish the proof using the definition of P⟨λ,µ⟩n and the fact that

p̂⟨λ,µ⟩n,k (x) =
{

0 , (k,0)
1 , (k=0) p̂⟨λ,µ⟩n,k (x) =

{
0 , (k,n)
1 , (k=n).

Example 4.1.4 Figure 4.1 displays the graphs of p̂⟨λ,µ⟩3,k (x) for the values of λ = 1, 0, and

−1. Figure 4.2 displays the corresponding P⟨λ,µ⟩3 when f (x) =
(
x − 1

4

)
sin

(
5πx

2

)
+ 2

5 with

µ = µ(n) = 1
√

2πn

(
e
n

)n
. The graphs make it evident that P⟨λ,µ⟩n interpolates the end points of

the interval [0, 1], which is based on the interpolation property of p̂⟨λ,µ⟩n,k (x).

λ=1

λ=0

λ=-1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: The graph of p̂⟨λ,µ⟩n,k (x) with different value of λ.
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λ=1

λ=0

λ=-1

f(x)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4.2: Convergence ofP⟨−1,µ⟩
3 (magenta),P⟨0,µ⟩3 (red) andP⟨1,µ⟩3 (blue) with µ = µ(n) =

1
√

2πn

(
e
n

)n
to f (x) =

(
x − 1

4

)
sin

(
5πx

2

)
+ 2

5 (black).

4.1.4 Main Results

The smoothness characteristics of the function determine the degree of approxima-

tion of positive linear operators, and suitable tools for determining the smoothness of

functions are represented by the moduli of continuity of various types. Our subsequent

theorems determine the degree of approximation for our proposed operatorsP⟨λ,µ⟩n in terms

of usual and second order modulus of continuity.

Theorem 4.1.5 Let λ ∈ [−1, 1] and µ = µ(n)→ 0 as n→ ∞., then the inequality∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ δ⟨λ,µ⟩n,1 (x) | f ′ (x)| + 2

√
δ⟨
λ,µ⟩

n,2 (x)ω
(

f ′;
√
δ⟨
λ,µ⟩

n,2 (x)
)

holds for f ∈ C1 [0, 1] .

Proof: For f ∈ C1 [0, 1] and x, t ∈ [0, 1], we have

f (t) − f (x) = (t − x) f ′(x) +

t∫
x

( f ′ (y) − f ′ (x))dy.

Applying P⟨λ,µ⟩n on both sides of above mentioned relation, we get

P⟨λ,µ⟩n ( f (t) − f (x); x) = P⟨λ,µ⟩n ((t − x); x) f ′(x) + P⟨λ,µ⟩n


t∫

x

( f ′ (y) − f ′ (x))dy; x

 .
We know that, ω ( f ; δ) meets the following characteristics:

1. | f (y) − f (x)| ⩽ ω ( f ; |y − x|) , for any x , y ∈ [0, 1] ,
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2. ω ( f ; λδ) ⩽ (1 + λ)ω ( f ; δ) , for any λ > 0.

Using these properties of modulus of continuity, with a few manipulations, we have the

relation

| f (t) − f (x)| ⩽
(
1 +
|t − x|
δ

)
ω ( f ; δ) , δ > 0,

this implies ∣∣∣∣∣∣∣∣
t∫

x

( f ′ (y) − f ′ (x))dy

∣∣∣∣∣∣∣∣ ⩽
|t − x| +

∣∣∣(t − x)2
∣∣∣

δ

ω (
f ′; δ

)
.

Therefore,∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ ∣∣∣P⟨λ,µ⟩n ((t − x); x)

∣∣∣ | f ′ (x)|+
{

1
δ
P⟨λ,µ⟩n

(
(t − x)2; x

)
+ P⟨λ,µ⟩n (|t − x| ; x)

}
ω

(
f ′; δ

)
.

Using the Cauchy-Schwarz inequality, we obtain∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ ∣∣∣P⟨λ,µ⟩n ((t − x); x)

∣∣∣ | f ′ (x)|

+

√
P
⟨λ,µ⟩
n

(
(t − x)2; x

) {1
δ

√
P
⟨λ,µ⟩
n

(
(t − x)2; x

)
+ 1

}
ω

(
f ′; δ

)
⩽ δ⟨λ,µ⟩n,1 (x) | f ′ (x)| +

√
δ⟨
λ,µ⟩

n,2 (x)
{

1
δ

√
δ⟨
λ,µ⟩

n,2 (x) + 1
}
ω

(
f ′; δ

)
.

Choosing δ =
√
δ⟨
λ,µ⟩

n,2 (x), we find the desired inequality.

Theorem 4.1.6 Let λ ∈ [−1, 1] and µ = µ(n)→ 0 as n→ ∞, then the inequality∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ 2ω

(
f ;

√
δ⟨
λ,µ⟩

n,2 (x)
)

holds for f ∈ C [0, 1] .

Proof: For any t, x ∈ [a, b], using the following property of modulus of continuity, we get

| f (t) − f (x)| ⩽
(
1 +

(t − x)2

δ2

)
ω ( f ; δ) .

Applying P⟨λ,µ⟩n on both sides of above relation, we get∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ P⟨λ,µ⟩n (| f (t) − f (x)| ; x)

⩽

1 + P⟨λ,µ⟩n

(
(t − x)2; x

)
δ2

ω ( f ; δ) .

Choosing δ2 = δ⟨
λ,µ⟩

n,2 (x) = P⟨λ,µ⟩n

(
(t − x)2; x

)
, we obtain the desired result.
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Theorem 4.1.7 For λ ∈ [−1, 1] and µ = µ(n)→ 0 as n→ ∞, then the inequality∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ≤ Cω2

(
f ;

1
2

√
Υ
⟨λ,µ⟩
n (x)

)
+ ω

(
f ; δ⟨λ,µ⟩n,1 (x)

)
holds for f ∈ C [0, 1] , Υ⟨λ,µ⟩n (x) = δ⟨λ,µ⟩n,2 (x) +

(
δ⟨
λ,µ⟩

n,1 (x)
)2

and absolute constant C.

Proof: Consider the operators P(λ,µ)
n defined by

P⟨λ,µ⟩n ( f ; x) = P⟨λ,µ⟩n ( f ; x) − f
(
φ⟨
λ,µ⟩

n,1 (x)
)
+ f (x) . (4.6)

Due to Lemma 4.1.1 and the fact that these operators are linear in nature, it is obvious that

P⟨λ,µ⟩n (1; x) = P⟨λ,µ⟩n (1; x) = 1,

P⟨λ,µ⟩n (t; x) = φ⟨λ,µ⟩n,1 (x) + x − φ⟨λ,µ⟩n,1 (x) = x.

For g ∈ C2 [0, 1] = { f ∈ C [0, 1] : f ′′ ∈ C [0, 1]} , consider the Taylor’s formula

g(t) = g(x) + (t − x)g′(x) +

t∫
x

(t − w)g′′(w)dw.

Applying P(λ,µ)
n on both sides of above equality and using P⟨λ,µ⟩n (1; x) = 1, we get

P⟨λ,µ⟩n (g; x) = g(x) + P⟨λ,µ⟩n ((t − x); x) g′(x) + P⟨λ,µ⟩n


t∫

x

(t − w)g′′(w)dw; x


= g(x) + P⟨λ,µ⟩n


t∫

x

(t − w)g′′(w)dw; x

 −
φ
⟨λ,µ⟩
n,1 (x)∫
x

(
φ⟨
λ,µ⟩

n,1 (x) − w
)
g′′(w)dw

and hence

∣∣∣P⟨λ,µ⟩n (g; x) − g(x)
∣∣∣ ⩽ P⟨λ,µ⟩n


∣∣∣∣∣∣∣∣

t∫
x

(t − w)g′′(w)dw; x

∣∣∣∣∣∣∣∣
 +

∣∣∣∣∣∣∣∣∣∣∣
φ
⟨λ,µ⟩
n,1 (x)∫
x

∣∣∣∣(φ⟨λ,µ⟩n,1 (x) − w
)∣∣∣∣ |g′′(w)|dw

∣∣∣∣∣∣∣∣∣∣∣
⩽ δ⟨λ,µ⟩n,2 (x) ∥g′′∥ +

(
φ⟨
λ,µ⟩

n,1 (x) − x
)2
∥g′′∥

=

{
δ⟨
λ,µ⟩

n,2 (x) +
(
δ⟨
λ,µ⟩

n,1 (x)
)2
}
∥g′′∥

= Υ⟨λ,µ⟩n (x) ∥g′′ ∥. (4.7)

From relation (4.6), we have∣∣∣P⟨λ,µ⟩n ( f ; x)
∣∣∣ ⩽ ∣∣∣P⟨λ,µ⟩n ( f ; x)

∣∣∣ + | f (x)| +
∣∣∣∣ f (

φ⟨
λ,µ⟩

n,1 (x)
)∣∣∣∣

⩽ ∥ f ∥ P⟨λ,µ⟩n (1; x) + 2 ∥ f ∥ = 3 ∥ f ∥ . (4.8)
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Now,∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ = ∣∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x) + f

(
φ⟨
λ,µ⟩

n,1 (x)
)
− f (x)

∣∣∣∣
≤

∣∣∣P⟨λ,µ⟩n ( f − g; x)
∣∣∣ + ∣∣∣P⟨λ,µ⟩n (g; x) − g(x)

∣∣∣ + | f (x) − g(x)| +
∣∣∣∣ f (

φ⟨
λ,µ⟩

n,1 (x)
)
− f (x)

∣∣∣∣ .
Using relation (4.7) and (4.8) and definition of modulus of continuity, we have∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)

∣∣∣ ⩽ 4 ∥ f − g∥ + Υ⟨λ,µ⟩n (x) ∥g′′∥ + ω
(

f ;φ⟨λ,µ⟩n,1 (x) − x
)
.

Applying infimum to all of g ∈ C2 [0, 1] , we get∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ 4K

(
f ;

1
4
Υ⟨λ,µ⟩n (x)

)
+ ω

(
f ; δ⟨λ,µ⟩n,1 (x)

)
.

This concludes the proof in view of relation (1.2).

Our following theorem determines the rate of convergence of the operators P⟨λ,µ⟩n for

functions belonging to Lipschitz class LipC (γ) defined in subsection 1.1.7 for the interval

[0, 1].

Theorem 4.1.8 Let λ ∈ [−1, 1] , µ = µ(n) → 0 as n → ∞ and x ∈ [0, 1] , then the

inequality ∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ≤ C

[
δ⟨
λ,µ⟩

n,2

] γ
2
,

holds for f ∈ LipC (γ) .

Proof: Since P⟨λ,µ⟩n are positive and linear in nature and f ∈ LipC (γ) , we have∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ P⟨λ,µ⟩n (| f (t) − f (x)| ; x)

=

n∑
k=0

p̂⟨λ,µ⟩n,k (x)

∣∣∣∣∣∣ f
(

k
n

)
− f (x)

∣∣∣∣∣∣
⩽ C

n∑
k=0

p̂⟨λ,µ⟩n,k (x)
∣∣∣∣∣kn − x

∣∣∣∣∣γ
⩽ C

n∑
k=0

 p̂⟨λ,µ⟩n,k (x)
(

k
n
− x

)2
γ
2 [

p̂⟨λ,µ⟩n,k (x)
] 2−γ

2
.

Applying Hölder’s inequality for sums, we obtain

∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)
∣∣∣ ⩽ C

 n∑
k=0

p̂⟨λ,µ⟩n,k (x)
(

k
n
− x

)2
γ
2
 n∑

k=0

p̂⟨λ,µ⟩n,k (x)


2−γ

2

= C
[
P⟨λ,µ⟩n

(
(t − x)2; x

)] γ
2
.

This proves theorem 4.1.8.

Finally, we give a Voronovskaja asymptotic formula for P⟨λ,µ⟩n .
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Theorem 4.1.9 Let λ ∈ [−1, 1] , µ = µ(n)→ 0 as n→ ∞ and f (x) be bounded on [0, 1].

Then, for any x ∈ (0, 1) at which f ′′ (x) exists, we have

lim
n→∞

n
[
P⟨λ,µ⟩n ( f ; x) − f (x)

]
=

1
2

(l + 1) (1 − x) x f ′′ (x) .

Proof: By the Taylor formula, we may write

f (t) = f (x) + (t − x) f ′(x) +
1
2

(t − x)2 f ′′ (x) + (t − x)2r (t, x) , (4.9)

where r (t, x) ∈ C [0, 1] is the Peano form of the remainder. Using L’Hopital’s rule, we

have

lim
t→x

r (t, x) = 0.

Applying P⟨λ,µ⟩n to (4.9), we obtain

lim
n→∞

n
[
P⟨λ,µ⟩n ( f ; x) − f (x)

]
= lim

n→∞
nP⟨λ,µ⟩n ((t − x); x) f ′(x) +

1
2

lim
n→∞

nP⟨λ,µ⟩n

(
(t − x)2; x

)
f ′′ (x)

+ lim
n→∞

nP⟨λ,µ⟩n

(
(t − x)2r (t, x) ; x

)
. (4.10)

By the Cauchy-Schwarz inequality, we have

P⟨λ,µ⟩n

(
(t − x)2r (t, x) ; x

)
⩽

√
P
⟨λ,µ⟩
n

(
(t − x)4; x

)√
P
⟨λ,µ⟩
n

(
r2 (t, x) ; x

)
. (4.11)

Since r2 (x, x) = 0, then using (4.11), we can obtain

lim
n→∞

nP⟨λ,µ⟩n

(
(t − x)2r (t, x) ; x

)
= 0. (4.12)

Finally, using (4.10), (4.12) and Lemma 4.1.2, we get

lim
n→∞

n
[
P⟨λ,µ⟩n ( f ; x) − f (x)

]
=

1
2

(l + 1) (1 − x) x f ′′ (x) .

Hence, we get the proof.

4.1.5 Numerical Results

Example 4.1.10 The convergence of P⟨λ,µ⟩15 (magenta), P⟨λ,µ⟩25 (red) and

P
⟨λ,µ⟩

45 (blue) to f (x) = sin (3 sin (3x)) (black) is illustrated in Figure 4.3 for fixed

λ = −0.5 and µ = µ(n) = 1
n5+2log(n) . Table 4.1 computes the absolute error E⟨λ,µ⟩n (x) =∣∣∣P⟨λ,µ⟩n ( f ; x) − f (x)

∣∣∣ of the function f for various values of x in the interval [0, 1], and

Figure 4.4 displays this error graphically. When n rises from 15 to 45, we notice that the

approximation of f by P⟨λ,µ⟩n gets better and error also continues to decrease.
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n=15 n=25 n=45 fn=15 n=25 n=

Figure 4.3: Convergence of P⟨λ,µ⟩15 (magenta), P⟨λ,µ⟩25 (red) and P⟨λ,µ⟩45 (blue) for fixed λ =

−0.5 and µ = µ(n) = 1
n5+2log(n) to f (x) = sin (3 sin (3x)) (black).

0.2 0.4 0.6 0.8 1.0

0.05
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Figure 4.4: Graph of E⟨λ,µ⟩15 (x) (magenta), E⟨λ,µ⟩25 (x) (red), E⟨λ,µ⟩45 (x) (blue) and E⟨λ,µ⟩75 (x)

(black) with λ = −0.5 and µ = µ(n) = 1
n5+2log(n) for f (x) = sin (3 sin (3x)) .

Table 4.1: Estimation of error for various value of x in the interval [0, 1]

x E
⟨λ,µ⟩

15 E
⟨λ,µ⟩

25 E
⟨λ,µ⟩

45 E
⟨λ,µ⟩

75

0.1 0.175061 0.108151 0.0610693 0.0369243

0.2 0.226676 0.146409 0.0861958 0.0534319

0.3 0.0650047 0.0373058 0.0196547 0.0113319

0.4 0.111161 0.0768502 0.0470771 0.0297085

0.5 0.187009 0.121607 0.0707124 0.0432592

0.6 0.159335 0.104776 0.0616742 0.038047

0.7 0.03193 0.0248162 0.0164783 0.0108634

0.8 0.140273 0.0895243 0.0521938 0.0321723

0.9 0.17437 0.110194 0.0634311 0.0387883
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Example 4.1.11 Figure 4.5 shows the graph for the operators P⟨λ,µ⟩n for two different

sequences µ = µ(n) = 1
n! (red) and µ = µ(n) = 1

n log(n) , (magenta) while keeping n = 30

and λ = 0.5 fixed for the function f (x) = x4 − 12x3

5 +
193x2

100 −
57x
100 +

3
50 (black). Figure

4.6 shows the graph for the operators P⟨λ,µ⟩n for the function f (x) = 10x + 2 cos(10x)

(black) with fixed n = 20 and λ = 0.1 for two different sequences µ = µ(n) = 1
n2 (red) and

µ = µ(n) = 1
n , (magenta). For these two cases, the graphs make it evident that convergence

of the operators towards the function occurs best for the sequence with higher rate of

convergence.

α= 1

n*Log[n] α= 1

n! f

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

Figure 4.5: Convergence of P
〈
0.5, 1

n log(n)

〉
30 (magenta) and P⟨

0.5, 1
n!⟩

30 (red) to f (x) = x4 − 12x3

5 +

193x2

100 −
57x
100 +

3
50 (black).

α=
1

n
α=

1

n2 f

0.2 0.4 0.6 0.8 1.0

2
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Figure 4.6: Convergence of P⟨
0.1, 1

n⟩
20 (magenta) and P

〈
0.1, 1

n2

〉
20 (red) to f (x) = 10x +

2 cos(10x) (black).
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4.2 Approximation by means of modified Bernstein

operators with shifted knot

4.2.1 Introduction

The major goal of approximation theory is to define how to express any function

in terms of simpler, more practical functions. Bernstein [39] provided the following def-

inition for the demonstration of the Weierstrass approximation theorem in 1912, which

was referred to by his name. For every bounded function on [0, 1] , n ≥ 1 and x ∈ [0, 1] ,

Bernstein polynomials are further defined as:

Bn ( f ; x) =
n∑

k=0

nk
 xk(1 − x)n−k f

(
k
n

)
,

A variety of modifications and generalizations of Bernstein polynomials have also

been investigated in the literature. One of the main goals of these modifications is to im-

prove approximation speed and reduce the absolute error that occur as a natural outcome

of the approximation process. Gadjiev and Ghorbanalizadeh [82] carried out one of these

research and defined Bernstein-Stancu type polynomials with shifted knots as follows:

G⟨ai,bi⟩
n ( f ; x) =

(
n + b2

n

)n n∑
k=0

nk

(
x −

a2

n + b2

)k(n + a2

n + b2
− x

)n−k

f
(

k + a1

n + b1

)
, (4.13)

where a2
n+b2
⩽ x ⩽ n+a2

n+b2
, and ap, bp, p = 1, 2 are positive reals satisfying the condition

0 ⩽ a2 ⩽ a1 ⩽ b1 ⩽ b2. It is evident that for the case where a1 = a2 = b1 = b2 = 0,

we have Bernstein polynomials and if a2 = b2 = 0, the Bernstein-Stancu polynomials are

produced.

Numerous authors have constructed operators with moving intervals of convergence

in response to this Gadjiev’s research. İçöz [101] introduced Bernstein-Stancu Kan-

torovich type operators with shifted knot and gave r-th order generalization of these op-

erators. An entirely new class of Bernstein-Durrmeyer operators on movable interval was

defined by Acar et al. [7]. They modelled these operators as hypergeometric series and

investigated their approximation properties. They used a King type technique to give im-

proved error estimation for these operators. Jiang and Yu [106] explored convergence

properties for analytical functions in the movable compact disc and developed two types

of complex Kantorovich-Stancu operators and complex Bernstein-Stancu operators. Rah-

man et al. [145] introduced λ-Bernstein Kantorovich operators with shifted knots and

provided graphics and error estimation tables for comparison. A bivariate generalization
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of the operators discussed in [145] was defined by Agrawal et al. [21]. Q-analogue of Lu-

paş Bernstein operators [136] and Bernstein operators [137] with shifted knots were also

introduced. Rahman [146] established a Kantorovich variant of Lupaş operators based

on the Pólya distribution with shifted knots, as well as a bivariate generalization of these

operators. Bawa [37] continued the research of these operators and investigated statistical

convergence.

Usta [167] proposed a new modification of Bernstein operators which fix constant

and preserve Korovkin’s other test functions in limit case by

Fn ( f ; x) =
1
n

n∑
k=0

nk
 (k − nx)2xk−1(1 − x)n−k−1 f

(
k
n

)
, (4.14)

where f ∈ C(0, 1), n ∈ N and x ∈ (0, 1).

In our research, we generalize the operators defined by Usta in (4.14) with shifted

knots as follows:

O⟨ai,bi⟩
n ( f ; x) =

n∑
k=0

o⟨ai,bi⟩
n (x) f

(
k + a1

n + b1

)
, (4.15)

where

o⟨ai,bi⟩
n (x) = (n + b2)

(
n + b2

n

)n−1(k + a2

n + b2
− x

)2(
x −

a2

n + b2

)k−1(n + a2

n + b2
− x

)n−k−1

,

x ∈ Jn =
(

a2
n+b2

, n+a2
n+b2

)
, and ap, bp, p = 1, 2 are positive real numbers with the condition

0 ⩽ a2 ⩽ a1 ⩽ b1 ⩽ b2. The convergence properties of these operators in a moving

interval that expands to (0, 1) were the main focus of this article. It is worth noting that

for n, the variable x is placed in the interval Jn, and as n approaches infinity, the interval

Jn turns out to be interval (0, 1). These operators clearly include operators (4.14) for

a1 = a2 = b1 = b2 = 0.

4.2.2 Preliminaries

Lemma 4.2.1 The following equalities hold for the proposed operators O⟨ai,bi⟩
n described

by equation (4.15):

O⟨ai,bi⟩
n (1; x) = 1;

O⟨ai,bi⟩
n (t; x) =

(
1 − 2

n

) (
n+b2
n+b1

)
x + (a1−a2+1)n+2a2

n(n+b1) ;
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O⟨ai,bi⟩
n

(
t2; x

)
=

(
1 −

6
n

) (
1 −

1
n

) (
n + b2

n + b1

)2

x2

+

(
2a1n2 − 2a2n2 − 4a1n + 14a2n − 12a2 + 5n2 − 6n

)
(n + b2)

n2(n + b1)2 x

+
a2

1n2 + a2
2n2 + 2a1n2 − 2a1a2n2 − 5a2n2 − 7a2

2n + 4a1a2n + 6a2n + 6a2
2 + n2

n2(n + b1)2 .

Lemma 4.2.2 For the operators O⟨ai,bi⟩
n , we have

lim
n→∞

nO⟨ai,bi⟩
n ((t − x) ; x) = 1 − 2x + (a1 − a2) − x (b1 − b2) ;

lim
n→∞

nO⟨ai,bi⟩
n

(
(t − x)2; x

)
= 3 (1 − x) x;

lim
n→∞

n2O⟨ai,bi⟩
n

(
(t − x)4; x

)
= 15(1 − x)2x2.

4.2.3 Convergence Properties of O⟨ai,bi⟩
n

The following theorem is a fundamental result on convergence of O⟨ai,bi⟩
n to f (x) :

Theorem 4.2.3 For a continuous function on (0, 1), the equivalence

lim
n→∞

max
a2

n+b2
<x< n+a2

n+b2

∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣ = 0,

is valid.

Proof: Consider the sequence of operators

O⟨ai,bi⟩
n ( f ; x) =


O⟨ai,bi⟩

n ( f ; x) , i f
a2

n + b2
< x <

n + a2

n + b2
,

f (x) , i f x ∈
(
0,

a2

n + b2

]
∪

[
n + a2

n + b2
, 1

)
.

Then, ∥∥∥O⟨ai,bi⟩
n ( f ; x) − f (x)

∥∥∥ = max
a2

n+b2
<x< n+a2

n+b2

∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣ . (4.16)

In view of Lemma 4.2.1, for p = 0, 1, 2, we can write

lim
n→∞

max
a2

n+b2
<x< n+a2

n+b2

∣∣∣O⟨ai,bi⟩
n (tp; x) − xp

∣∣∣ = 0.

Using above relation, we get

lim
n→∞

∥∥∥O⟨ai,bi⟩
n (tp; x) − xp

∥∥∥ = 0, p = 0, 1, 2.
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It is clear from applying Korovkin’s theorem [118] to the sequence of positive linear

operators O⟨ai,bi⟩
n , that

lim
n→∞

∥∥∥O⟨ai,bi⟩
n ( f ; x) − f (x)

∥∥∥ = 0,

for every f ∈ C(0, 1). Hence equation (4.16) gives

lim
n→∞

max
a2

n+b2
<x< n+a2

n+b2

∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣ = 0,

which is the required result.

Moduli of continuity of various forms are crucial tools in approximation theory for

measuring the degree of approximation. The convergence rate of the sequence O⟨ai,bi⟩
n to

the function f (x) by modulus of continuity is given in the next theorem:

Theorem 4.2.4 For a function f ∈ C(0, 1) and x ∈
(

a2
n+b2

, n+a2
n+b2

)
, the inequality

∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣ ⩽ 2ω
(

f ;
√

C⟨ai,bi⟩

n,2 (x)
)

holds true.

Proof: As a result of positivty and linearity of the operators and utilizing property

| f (t) − f (x)| ⩽
(
1 + (t−x)2

δ2

)
ω ( f ; δ) of modulus of continuity, we have∣∣∣O⟨ai,bi⟩

n ( f ; x) − f (x)
∣∣∣ ⩽ O⟨ai,bi⟩

n (| f (t) − f (x)| ; x)

⩽

1 + O⟨ai,bi⟩
n

(
(t − x)2; x

)
δ2

ω ( f ; δ) .

Choosing δ2 = C⟨ai,bi⟩

n,2 (x) = O⟨ai,bi⟩
n

(
(t − x)2; x

)
, the desired result is simply achieved.

Theorem 4.2.5 For every x ∈
(

a2
n+b2

, n+a2
n+b2

)
and f ∈ C(0, 1) there exists a positive constant

C, such that the inequality∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣ ⩽ Cω2

(
f ;

1
2

√
Υ
⟨ai,bi⟩
n (x)

)
+ ω ( f ; |(ϕ (n) − 1) x + ψ (n)|) ,

holds true. Where Υ⟨ai,bi⟩
n (x) = C⟨ai,bi⟩

n,2 (x) + ((ϕ (n) − 1) x + ψ (n))2, ϕ (n) =
(
1 − 2

n

) (
n+b2
n+b1

)
and ψ (n) = (a1−a2+1)n+2a2

n(n+b1) .

Proof: We begin our proof by considering the following auxiliary operators:

Ô⟨ai,bi⟩
n ( f ; x) = O⟨ai,bi⟩

n ( f ; x) − f (ϕ (n) x + ψ (n)) + f (x) , (4.17)

where f ∈ C(0, 1), ϕ (n) =
(
1 − 2

n

) (
n+b2
n+b1

)
and ψ (n) = (a1−a2+1)n+2a2

n(n+b1) . From Lemma 4.2.1, we

find

Ô⟨ai,bi⟩
n (1; x) = 1, Ô⟨ai,bi⟩

n (t − x; x) = 0.
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For g ∈ C2(0, 1) = { f ∈ C(0, 1) : f ′′ ∈ C(0, 1)} , operating Ô⟨ai,bi⟩
n on both side of Taylor’s

expansion, we get

Ô⟨ai,bi⟩
n ( f ; x) = f (x) + Ô⟨ai,bi⟩

n ((t − x); x) g′(x) + Ô⟨ai,bi⟩
n


t∫

x

(t − z)g′′(z)dz; x


= f (x) + O⟨ai,bi⟩

n


t∫

x

(t − z)g′′(z)dz; x

 −
ϕ(n)x+ψ(n)∫

x

(ϕ (n) x + ψ (n) − z)g′′(z)dz,

which implies

∣∣∣∣Ô⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣∣ ⩽ O⟨ai,bi⟩
n


∣∣∣∣∣∣∣∣

t∫
x

(t − z)g′′(z)dz; x

∣∣∣∣∣∣∣∣


+

∣∣∣∣∣∣∣∣∣
ϕ(n)x+ψ(n)∫

x

|(ϕ (n) x + ψ (n) − z)| |g′′(z)|dz

∣∣∣∣∣∣∣∣∣
⩽ O⟨ai,bi⟩

n

(
(t − x)2; x

)
∥g′′∥ + (ϕ (n) x + ψ (n) − x)2

∥g′′∥

=
{
C⟨ai,bi⟩

n,2 (x) + (ϕ (n) x + ψ (n) − x)2
}
∥g′′∥

= Υ⟨ai,bi⟩
n (x) ∥g′′∥ . (4.18)

From equation (4.17), we have∣∣∣∣Ô⟨ai,bi⟩
n ( f ; x)

∣∣∣∣ ⩽ ∣∣∣O⟨ai,bi⟩
n ( f ; x)

∣∣∣ + | f (x)| + | f (ϕ (n) x + ψ (n))|

⩽ ∥ f ∥O⟨ai,bi⟩
n (1; x) + 2 ∥ f ∥ = 3 ∥ f ∥ . (4.19)

Based on the concept of modulus of continuity and equations (4.18), (4.19), we have∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣
=

∣∣∣∣Ô⟨ai,bi⟩
n ( f ; x) − f (x) + f (ϕ (n) x + ψ (n)) − f (x)

∣∣∣∣
⩽

∣∣∣∣Ô⟨ai,bi⟩
n ( f − g; x)

∣∣∣∣ + ∣∣∣∣Ô⟨ai,bi⟩
n (g; x) − g(x)

∣∣∣∣ + | f (x) − g(x)| + | f (ϕ (n) x + ψ (n)) − f (x)|

⩽ 4 ∥ f − g∥ + Υ⟨ai,bi⟩
n (x) ∥g′′∥ + ω ( f ; |ϕ (n) x + ψ (n) − x|) .

Taking the infimum over all g ∈ C2(0, 1) and using Peetre’s K-functional, we get∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣ ⩽ 4K
(

f ;
1
4
Υ⟨ai,bi⟩

n (x)
)
+ ω ( f ; |(ϕ (n) − 1) x + ψ (n)|) .

Hence, proof is completed by using relation (1.2).

4.2.4 Weighted Approximation

In this section, we refer to subsection 1.1.5 with the interval I = (0, 1) and offer

the theorems of the Korovkin type for the weighted approximation of newly constructed
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operators O⟨ai,bi⟩
n . In order to achieve this goal, we follow the theorems stated by Gadjiev

in [81]. For all x ∈ (0, 1), set ρ (x) = 1 + x2 as a continuous weight function on (0, 1) and

lim
|x|→∞

ρ (x) = ∞, ρ (x) ⩾ 1 . The primary theorem of this section can now be presented as

follows.

Lemma 4.2.6 For a function f ∈ Cρ(0, 1), the inequality∥∥∥O⟨ai,bi⟩
n ( f )

∥∥∥
ρ
⩽ C∥ f ∥ρ,

holds true for the operators O⟨ai,bi⟩
n .

Proof: The demonstration of this lemma clearly follows in view of the formulation of

newly constructed operators O⟨ai,bi⟩
n and the properties of preserving polynomials.

Theorem 4.2.7 Let f ∈ Cρ(0, 1). Then, for the operators O⟨ai,bi⟩
n , the equivalence

lim
n→∞

∥∥∥O⟨ai,bi⟩
n ( f ) − f

∥∥∥
ρ
= 0

holds.

Proof: In order to prove this theorem, it is sufficient to demonstrate that the following

three conditions are true:

lim
n→∞

∥∥∥O⟨ai,bi⟩
n (tr) − xr

∥∥∥
ρ
= 0, r = 0, 1, 2

The fact that O⟨ai,bi⟩
n (1; x) = 1, makes the first condition evident to hold true. By applying

the relevant consequences of Lemma 4.2.1 for the remaining ones, we get∥∥∥O⟨ai,bi⟩
n (t) − x

∥∥∥
ρ

= sup
x∈(0,1)

∣∣∣O⟨ai,bi⟩
n (t; x) − x

∣∣∣
1 + x2

⩽

∣∣∣∣∣∣
(
1 −

2
n

) (
n + b2

n + b1

)
− 1

∣∣∣∣∣∣ sup
x∈(0,1)

x
1 + x2 +

∣∣∣∣∣ (a1 − a2 + 1) n + 2a2

n (n + b1)

∣∣∣∣∣ sup
x∈(0,1)

1
1 + x2

= |A (n)| sup
x∈(0,1)

x
1 + x2 + |B (n)| sup

x∈(0,1)

1
1 + x2 .
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The second condition is supported by the fact that lim
n→∞
|A (n)| = 0 and lim

n→∞
|B (n)| = 0.

Similarly,∥∥∥∥O⟨ai,bi⟩
n

(
t2
)
− x2

∥∥∥∥
ρ

= sup
x∈(0,1)

∣∣∣∣O⟨ai,bi⟩
n

(
t2; x

)
− x2

∣∣∣∣
1 + x2

⩽

∣∣∣∣∣∣∣
(
1 −

6
n

) (
1 −

1
n

) (
n + b2

n + b1

)2

− 1

∣∣∣∣∣∣∣ sup
x∈(0,1)

x2

1 + x2

+

∣∣∣∣∣∣∣∣
(
2a1n2 − 2a2n2 − 4a1n + 14a2n − 12a2 + 5n2 − 6n

)
(n + b2)

n2(n + b1)2

∣∣∣∣∣∣∣∣ sup
x∈(0,1)

x
1 + x2

+

∣∣∣∣∣∣a2
1n2 + a2

2n2 + 2a1n2 − 2a1a2n2 − 5a2n2 − 7a2
2n + 4a1a2n + 6a2n + 6a2

2 + n2

n2(n + b1)2

∣∣∣∣∣∣ sup
x∈(0,1)

1
1 + x2

= |C (n)| sup
x∈(0,1)

x2

1 + x2 + |D (n)| sup
x∈(0,1)

x
1 + x2 + |E (n)| sup

x∈(0,1)

1
1 + x2 .

This indicates that the third condition is satisfied because lim
n→∞
|C (n)| , lim

n→∞
|D (n)| and

lim
n→∞
|E (n)| is equals to zero. Hence, the proof is completed.

4.2.5 Voronovskaja Theorem

Let C2(0, 1) be the space containing all functions f such that f ′′ ∈ C(0, 1). The fol-

lowing theorem proves a quantitative Voronovskaja type theorem for the operators O⟨ai,bi⟩
n

using the Ditzian-Totik modulus of smoothness defined in subsection 1.1.4.

Theorem 4.2.8 Let g ∈ C2(0, 1) and sufficiently large n, the following inequality∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x) − f ′(x)C⟨ai,bi⟩

n,1 (x) − f ′′(x)C⟨ai,bi⟩

n,2 (x)
∣∣∣ ⩽ 1

n
Cφ2(x)ωφ( f ′′; n−

1
2 ),

holds true. Where C⟨ai,bi⟩

n,1 (x) = O⟨ai,bi⟩
n ((t − x) ; x) , C⟨ai,bi⟩

n,2 (x) = O⟨ai,bi⟩
n

(
(t − x)2; x

)
and C is

a positive constant.

Proof: For g ∈ C2(0, 1), t, x ∈ (0, 1), by Taylor’s expansion, we have

f (t) = f (x) + f ′(x)(t − x) +

t∫
x

f ′′(y)(t − y)dy.

Hence

f (t) − f (x) − f ′(x)(t − x) −
1
2

f ′′(x)(t − x)2 =

t∫
x

f ′′(y)(t − y)dy −

t∫
x

f ′′(x)(t − y)dy

=

t∫
x

[
f ′′(y) − f ′′(x)

]
(t − y)dy.
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Applying O⟨ai,bi⟩
n to both sides of the above relation, we get∣∣∣O⟨ai,bi⟩

n ( f ; x) − f (x) − f ′(x)C⟨ai,bi⟩

n,1 (x) − f ′′(x)C⟨ai,bi⟩

n,2 (x)
∣∣∣

⩽ O⟨ai,bi⟩
n (

∣∣∣∣∣∣∣∣
t∫

x

| f ′′(y) − f ′′(x)| |t − y|dy

∣∣∣∣∣∣∣∣ ; x). (4.20)

In [79], the quantity

∣∣∣∣∣∣ t∫
x
| f ′′(y) − f ′′(x)| |t − y|dy

∣∣∣∣∣∣ was estimated as follows:

∣∣∣∣∣∣∣∣
t∫

x

| f ′′(y) − f ′′(x)| |t − y|dy

∣∣∣∣∣∣∣∣ ⩽ 2 ∥ f ′′ − h∥ (t − x)2 + 2 ∥φh′∥φ−1(x)|t − x|3, (4.21)

where f ∈ Wφ(0, 1).

Using Lemma 4.2.2, it follows that for sufficiently large n, a constant C > 0 exists, such

that

O⟨ai,bi⟩
n ((t − x)2; x) ⩽

C
n
φ2(x) and O⟨ai,bi⟩

n ((t − x)4; x) ⩽
C
n2φ

4(x). (4.22)

From (4.20)-(4.22) and applying the Cauchy-Schwarz inequality, we get∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x) − f ′(x)C⟨ai,bi⟩

n,1 (x) − f ′′(x)C⟨ai,bi⟩

n,2 (x)
∣∣∣

⩽ 2 ∥ f ′′ − h∥O⟨ai,bi⟩
n ((t − x)2; x) + 2 ∥φh′∥φ−1(x)O⟨ai,bi⟩

n

(
|t − x|3; x

)
⩽

C
n
φ2(x) ∥ f ′′ − h∥ + 2 ∥φh′∥φ−1(x)

{
O⟨ai,bi⟩

n |t − x|2; x
} 1

2
{
O⟨ai,bi⟩

n |t − x|4; x
} 1

2

⩽
C
n
φ2(x) ∥ f ′′ − h∥ + φ2(x)

C
n
√

n
∥φh′∥ ⩽

C
n
φ2(x)

(
∥ f ′′ − h∥ + n−

1
2 ∥φh′∥

)
.

The theorem is proved by taking the infimum on the right-hand side of the above relation

over f ∈ Wφ(0, 1).

Corollary 4.2.9 If g ∈ C2(0, 1), then

lim
n→∞

n
{
O⟨ai,bi⟩

n ( f ; x) − f (x) − f ′(x)C⟨ai,bi⟩

n,1 (x) − f ′′(x)C⟨ai,bi⟩

n,2 (x)
}
= 0,

where C⟨ai,bi⟩

n,1 (x) and C⟨ai,bi⟩

n,2 (x) are defined in above Theorem.

In [16], a Grüss inequality for positive linear operators was established by using

the least concave majorant of modulus of continuity. This result sparked a considerable

lot of interest after its publication. For a class of sequences of positive linear operators,

Acar et al. [9] proved a Grüss-Voronovskaja type theorem and a Grüss type approxima-

tion theorem. The following result is the Grüss-Voronovskaja type theorem for proposed

operators.
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Theorem 4.2.10 Let f , g ∈ C2(0, 1). Then, for each x ∈
(

a2
n+b2

, n+a2
n+b2

)
lim
n→∞

n
{
O⟨ai,bi⟩

n ( fg; x) − O⟨ai,bi⟩
n ( f ; x)O⟨ai,bi⟩

n (g; x)
}
= 6 f ′(x)g′(x)(1 − x)x.

Proof: We begin our proof with the following relation:

O⟨ai,bi⟩
n (( fg) ; x) − O⟨ai,bi⟩

n ( f ; x)O⟨ai,bi⟩
n (g; x)

= O⟨ai,bi⟩
n (( fg) ; x) − f (x) g (x) − ( fg)′(x)C⟨ai,bi⟩

n,1 (x) − ( fg)′′(x)C⟨ai,bi⟩

n,2 (x)

− O⟨ai,bi⟩
n ( f ; x)

{
O⟨ai,bi⟩

n (g; x) − g (x) − g′(x)C⟨ai,bi⟩

n,1 (x) − g′′(x)C⟨ai,bi⟩

n,2 (x)
}

− g(x)
{
O⟨ai,bi⟩

n ( f ; x) − f (x) − f ′(x)C⟨ai,bi⟩

n,1 (x) − f ′′(x)C⟨ai,bi⟩

n,2 (x)
}

+C⟨ai,bi⟩

n,2 (x)
{
f (x)g′′(x) + 2 f ′(x)g′(x) − g′′(x)O⟨ai,bi⟩

n ( f ; x)
}

+C⟨ai,bi⟩

n,1 (x)
{
f (x)g′(x) − g′(x)O⟨ai,bi⟩

n ( f ; x)
}
.

Now, using Corollary 4.2.9 and Lemma 4.2.2, we get

lim
n→∞

n
{
O⟨ai,bi⟩

n (( fg) ; x) − O⟨ai,bi⟩
n ( f ; x)O⟨ai,bi⟩

n (g; x)
}

= lim
n→∞

2n f ′(x)g′(x)C⟨ai,bi⟩

n,2 (x) + lim
x→∞

ng′′(x)
{
f (x) − O⟨ai,bi⟩

n ( f ; x)
}
C⟨ai,bi⟩

n,2 (x)

+ lim
n→∞

ng′(x)
{
f (x) − O⟨ai,bi⟩

n ( f ; x)
}
C⟨ai,bi⟩

n,1 (x) = 6 f ′(x)g′(x) (1 − x) x.

4.2.6 Numerical Results

Example 4.2.11 The convergence of O⟨ai,bi⟩

100 (magenta), O⟨ai,bi⟩

200 (red) and

O⟨ai,bi⟩

400 (blue) to f (x) = 2 sin
(
πx
2

)
+ cos3

(
2πx − π

2

)
(black) is illustrated in Figure 4.7

for fixed a1 = 2, a2 = 1, b1 = 3 and b2 = 4. Table 4.2 computes the absolute error

E
⟨ai,bi⟩
n (x) =

∣∣∣O⟨ai,bi⟩
n ( f ; x) − f (x)

∣∣∣ of the function f for various values of x in the interval

(0, 1), and Figure 4.8 displays this error graphically. When n rises from 100 to 400,

we notice that the approximation of f by O⟨ai,bi⟩
n gets better and error also continues to

decrease.
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n=100 n=200 n=400

Figure 4.7: Convergence of O⟨ai,bi⟩

100 (magenta), O⟨ai,bi⟩

200 (red) and O⟨ai,bi⟩

400 (blue) for fixed

a1 = 2, a2 = 1, b1 = 3 and b2 = 4 to f (x) = 2 sin
(
πx
2

)
+ cos3

(
2πx − π

2

)
(black).
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Figure 4.8: Graph of E⟨ai,bi⟩

100 (x) (magenta), E⟨ai,bi⟩

200 (x) (red), E⟨ai,bi⟩

300 (x) (blue) and E⟨ai,bi⟩

400 (x)

(black) for a1 = 2, a2 = 1, b1 = 3 and b2 = 4 to f (x) = 2 sin
(
πx
2

)
+ cos3

(
2πx − π

2

)
.
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Table 4.2: Estimation of error for various value of x in the interval (0, 1)

x E
⟨ai,bi⟩

100 (x) E
⟨ai,bi⟩

200 (x) E
⟨ai,bi⟩

300 (x) E
⟨ai,bi⟩

400 (x)

0.1 0.214722 0.115569 0.0789526 0.059939

0.2 0.0670277 0.0304526 0.0191637 0.0138667

0.3 0.196595 0.121108 0.0868044 0.0675388

0.4 0.124112 0.0767954 0.0548047 0.0425002

0.5 0.0321965 0.00647151 0.00125015 0.000373294

0.6 0.184441 0.118125 0.0855918 0.0669356

0.7 0.170772 0.0905297 0.0613788 0.0463937

0.8 0.181367 0.10707 0.0756795 0.0584801

0.9 0.0116926 0.0109919 0.00857444 0.00691517





Chapter 5

Bivariate generalization for operators
involving Appostol-Genocchi
polynomial

The late 19th century witnessed the pioneering contributions of Chebyshev to the field of

orthogonal polynomials, which were subsequently expanded upon by Markov and Steilt-

jes. This chapter is primarily concerned with the bivariate generalization of operators

involving a class of orthogonal polynomials called Apostol-Genocchi polynomials. The

rate of convergence can be determined in terms of partial and total modulus of continuity

as well as the order of approximation can be achieved by means of a Lipschitz-type func-

tion and Peetre’s K-functional. In addition, we put forth a conceptual extension known as

the "generalized boolean sum (GBS)" for these bivariate operators, which aims to estab-

lish the degree of approximation for Bögel continuous functions. In this study, we utilize

the Mathematica Software to present a series of graphical illustrations that effectively

showcase the rate of convergence for the bivariate operators. The graphs indicate that, in

the case of certain functions, the bivariate operators exhibits superior convergence when

α is less than β. Based on our analysis and comparison of the error of approximation

between the bivariate operators and the corresponding GBS operators, it can be deduced

that the GBS operators exhibit a faster convergence towards the function.

95
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5.1 Introduction

The Genocchi polynomials gk(x) are generally proposed by means of the following gen-

erating functions
2text

et + 1
=

∞∑
k=0

gk (x)
tk

k!
.

In particular, gk := gk(0) for n ≥ 0 are called Genocchi numbers with g2k+1 = 0 for k ≥ 1.

Luo [124], extended the Genocchi polynomial in x. These extended polynomials are

called Apostol-Genocchi polynomials gk(x; λ) and given by the means of the following

generating functions:

2text

λet + 1
=

∞∑
k=0

gk (x; λ)
tk

k!

(
|t| <

∣∣∣log (−λ)
∣∣∣) .

The Apostol-Genocchi polynomials [108] g(a)
k (x; λ) of order α in the variable x are

proposed using the generating function defined as:(
2t

1 + βet

)α
ext =

∞∑
k=0

gαk (x; β)
tk

k!
, (|t| < π). (5.1)

For f ∈ C[0,∞), Prakash et al. [143] considered the following operators:

Gα,β
n ( f ; x) = e−nx

(
1 + eβ

2

)α ∞∑
k=0

gαk (nx; β)
k!

f
(

k
n

)
, (5.2)

where gαk (x; β) is generalized Apostol-Genocchi polynomials with generating function

given in (5.1). The Apostol-Genocchi polynomials and their associated properties are

studied by many researchers. For further information, readers can refer (cf. [124; 125;

139; 156]).

In [125], the following explicit series representation for the Apostol-Genocchi poly-

nomials is given as:

gαk (x; β) = 2αα!
(
k
α

) k−α∑
i=0

βi

(1 + β)α+i

(
k − α

i

)(
α + i − 1

i

)

×

i∑
j=0

(−1) j

(
i
j

)
ji(x + j)k−i−α

2F1[α + i − k, i; i + 1; j/(x + j)],

where k, α ∈ N∪{0}, β ∈ R\{−1} and 2F1[a, b; c; x] indicates the Gaussian hypergeometric

function given by

2F1[a, b; c; x] = 2F1[b, a; c; x] =
∞∑
j=0

(a) j (b) j

(c) j

x j

j!
,

where (a)0 = 1, (a) j = a(a + 1) · · · (a + j − 1) = Γ( j+a)
Γ(a) .

Deo and kumar [64] introduced Durrmeyer variant of operators (5.2) and gave ap-

proximation results. In this study, we aim to investigate the bivariate generalization of the

Apostol-Genocchi operators defined in equation (5.2).
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5.2 Construction of Bivariate Operators

Consider the interval I = [0,∞] × [0,∞]. Let C(I) represent the set of all real valued

continuous functions on interval I. For a function f ∈ C(I), the bivariate generalization

of the operators (5.2) is defined as:

Gα,β
n1,n2

( f ; x1, x2) = e−(n1 x1+n2 x2)
(
1 + eβ

2

)2α ∞∑
k1=0

∞∑
k2=0

gαk1
(n1x1; β)

k1!

gαk2
(n2x2; β)

k2!
f
(

k1

n1
,

k2

n2

)
,

(5.3)

Some preliminary concepts for the above-mentioned operators that are useful throughout

the paper are outlined below:

Lemma 5.2.1 Let ers(t1, t2) = tr
1ts

2, 0 ≤ r + s ≤ 2. For (x1, x2) ∈ I, we have

Gα,β
n1,n2

(1; x1, x2) = 1;

Gα,β
n1,n2

(t1; x1, x2) = x1 +
α

n1 (1 + eβ)
;

Gα,β
n1,n2

(t2; x1, x2) = x2 +
α

n2 (1 + eβ)
;

Gα,β
n1,n2

(
t2
1; x1, x2

)
= x2

1 +
(1 + 2α + eβ)

n1 (1 + eβ)
x1 +

α2 − 2αeβ − αe2β2

n1
2(1 + eβ)2 ;

Gα,β
n1,n2

(
t2
2; x1, x2

)
= x2

2 +
(1 + 2α + eβ)

n2 (1 + eβ)
x2 +

α2 − 2αeβ − αe2β2

n2
2(1 + eβ)2 .

Remark 5.2.2 Using lemma 5.2.1 , we have

Gα,β
n1,n2

((t1 − x1) ; x1, x2) =
α

n1 (1 + eβ)
;

Gα,β
n1,n2

((t2 − x2) ; x1, x2) =
α

n2 (1 + eβ)
;

Gα,β
n1,n2

(
(t1 − x1)2; x1, x2

)
=

x1

n1
+
α2 − 2αeβ − αe2β2

n1
2(1 + eβ)2 ;

Gα,β
n1,n2

(
(t2 − x2)2; x1, x2

)
=

x2

n2
+
α2 − 2αeβ − αe2β2

n2
2(1 + eβ)2 .

Furthermore,

lim
n1→∞

n1Gα,β
n1,n2

((t1 − x1); x1) =
α

(1 + eβ)
and lim

n2→∞
n2Gα,β

n1,n2
(t2 − x2); x2) =

α

(1 + eβ)
,

lim
n1→∞

n1(Gα,β
n1,n2

(t1 − x1)2; x1) = x1 and lim
n2→∞

n2(Gα,β
n1,n2

(t2 − x2)2; x2) = x2.
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5.3 Main Results

We determine the order of approximation of operators (5.3) in the space of continuous

functions on the set Iµκ = [0, µ] × [0, κ] in terms of total modulus of continuity and partial

modulus of continuity defined in subsection 1.1.8.

Theorem 5.3.1 If f ∈ C(I), then

lim
(n1,n2)→∞

Gα,β
n1,n2

( f ; x1, x2) = f (x1, x2) .

the above convergence is uniform in each compact Iµκ.

Proof: The proof follows from the Volkov Theorem [169].

Theorem 5.3.2 Let f ∈ C(I), then for all (x1, x2) ∈ I, the inequality

(i)
∣∣∣Gα,β

n1,n2 ( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ 2

(
ω1( f ; δn1) + ω

2 (
f ; δn2

))
,

(ii)
∣∣∣Gα,β

n1,n2 ( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ 4ω

(
f ; δn1 , δn2

)
,

holds true. Where δn1(x1) =
√

Gα,β
n1

(
(t1 − x1)2; x1

)
and δn2(x2) =

√
Gα,β

n2

(
(t2 − x2)2; x2

)
.

Proof:

(i) Taking into consideration the partial modulus of continuity of f (x1, x2) and applying

Cauchy-Schwarz inequality, we get∣∣∣Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ Gα,β

n1,n2
(| f (t1, t2) − f (x1, x2)| ; x1, x2)

≤ Gα,β
n1,n2

(| f (t1, t2) − f (x1, t2)| ; x1, x2)

+Gα,β
n1,n2

(| f (x1, t2) − f (x1, x2)| ; x1, x2)

≤ Gα,β
n1,n2

(
ω1 ( f ; |t1 − x1|) ; x1, x2

)
+Gα,β

n1,n2

(
ω2 ( f ; |t2 − x2|) ; x1, x2

)
≤ ω1 (

f ; δn1

) (
1 +

1
δn1

Gα,β
n1

(|t1 − x1| ; x1)
)

+ ω2 (
f ; δn2

) (
1 +

1
δn2

Gα,β
n2

(|t2 − x2| ; x2)
)

≤ ω1 (
f ; δn1

) (
1 +

1
δn1

Gα,β
n1

(
(t1 − x1)2; x1

) 1
2

)
+ ω2 (

f ; δn2

) (
1 +

1
δn2

Gα,β
n2

(
(t2 − x2)2; x2

) 1
2

)
≤ 2

(
ω1( f ; δn1) + ω

2 (
f ; δn2

))
.
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(ii) Taking into consideration the linearity of Gα,β
n1 and Gα,β

n2 , as well as the monotonicity

of ω, we can write:∣∣∣Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ Gα,β

n1,n2
(| f (t1, t2) − f (x1, x2)| ; x1, x2)

≤ ω
(
f ; δn1 , δn2

) (
Gα,β

n1
(1; x1) +

1
δn1

Gα,β
n1

(|t1 − x1| ; x1)
)

×

(
Gα,β

n2
(1; x2) +

1
δn2

Gα,β
n2

(|t2 − x2| ; x2)
)
.

Applying Cauchy Schwarz inequality, we have

∣∣∣Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ ω (

f ; δn1 , δn2

) (
Gα,β

n1
(1; x1) +

1
δn1

Gα,β
n1

(
(t1 − x1)2; x1

) 1
2

)
×

(
Gα,β

n2
(1; x2) +

1
δn2

Gα,β
n2

(
(t2 − x2)2; x2

) 1
2

)
.

Therefore, the desired result is achieved by selecting δn1(x1) and δn2(x2) as men-

tioned in the statement.

Now we determine the order of approximation of bivariate operators (5.3) with the help of

Lipschitz class functions. We define Lipschitz class LipM( f ; ζ1, ζ2) for bivariate functions

for 0 < ζ1 ≤ 1 and 0 < ζ2 ≤ 1 as follows:

LipM ( f ; ζ1, ζ2) =
{
f : | f (t1, t2) − f (x1, x2)| ≤ M|t1 − x1|

ζ1 |t2 − x2|
ζ2
}
.

Theorem 5.3.3 If f ∈ LipM( f ; ζ1, ζ2), then for ζ1, ζ2 ∈ (0, 1]

∣∣∣Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ Mδζ1

n1
δζ2

n2
.

Proof: For f ∈ LipM( f ; ζ1, ζ2) and making use of Hölder’s inequality, we have∣∣∣Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2)
∣∣∣

≤ Gα,β
n1,n2

(| f (t1, t2) − f (x1, x2)| ; x1, x2)

≤ MGα,β
n1

(
|t1 − x1|

ζ1; x1, x2

)
Gα,β

n2

(
|t2 − x2|

ζ2; x1, x2

)
≤ M

(
Gα,β

n1

(
(t1 − x1)2; x1, x2

)) ζ1
2
(
Gα,β

n1
(1; x1, x2)

) 2−ζ1
2

×
(
Gα,β

n2

(
(t2 − x2)2; x1, x2

)) ζ2
2
(
Gα,β

n2
(1; x1, x2)

) 2−ζ2
2

≤ Mδζ1
n1
δζ2

n2
.

Theorem 5.3.4 Let f ∈ C1(Iµκ). Then, for any (x1, x2) ∈ Iµκ, we have the inequality∣∣∣Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ δn1 (x1)

∥∥∥ f
′

x1

∥∥∥
C(Iµκ) + δn2 (x2)

∥∥∥ f
′

x2

∥∥∥
C(Iµκ).
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Proof: For f ∈ C1(Iµκ), and (x1, x2) ∈ Iµκ, we have

f (t1, t2) − f (x1, x2) =

t1∫
x1

f
′

u (u, t2) du +

t2∫
x2

f
′

v (x1, v) dv for (t1, t2) ∈ Iµκ.

Applying Gα,β
n1,n2 to both sides, we obtain

Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2) ≤ Gα,β
n1,n2


t1∫

x1

f
′

u (u, t2) du; x1, x2

 +Gα,β
n1,n2


t2∫

x2

f
′

v (x1, v) dv

 .
Now, using the sup norm on Iµκ, we get∣∣∣∣∣∣∣∣∣

t1∫
x1

f
′

u (u, t2) du

∣∣∣∣∣∣∣∣∣ ≤ |t1 − x1|
∥∥∥ f

′

x1

∥∥∥
C(Iµκ)

and ∣∣∣∣∣∣∣∣∣
t2∫

x2

f
′

v (x1, v) dv

∣∣∣∣∣∣∣∣∣ ≤ |t2 − x2|
∥∥∥ f

′

x2

∥∥∥
C(Iµκ).

By using these inequalities, we have

∣∣∣Gα,β
n1,n2

( f ; x1, x2) − f (x1, x2)
∣∣∣ ≤ Gα,β

n1,n2


∣∣∣∣∣∣∣∣∣

t1∫
x1

f
′

u (u, t2)du

∣∣∣∣∣∣∣∣∣ ; x1, x2

 +Gα,β
n1,n2


∣∣∣∣∣∣∣∣∣

t2∫
x2

f
′

v (x1, v)dv

∣∣∣∣∣∣∣∣∣ ; x1, x2


≤ Gα,β

n1,n2
(|t1 − x1| ; x1, x2)

∥∥∥ f
′

x1

∥∥∥
C(Iµκ) +Gα,β

n1,n2
(|t2 − x2| ; x1, x2)

∥∥∥ f
′

x2

∥∥∥
C(Iµκ).

Using Cauchy Schwarz inequality, we get required result.

Next result is a Voronovoskaya type estimate for the operators (5.3).

Theorem 5.3.5 For a function f , which is differentiable two times on the interval I, we

have

lim
n→∞

n
(
Gα,β

n,n ( f ; x1, x2) − f (x1, x2)
)
=

α

(1 + eβ)
(
fx1(x1, x2) + fx2(x1, x2)

)
+ x1 fx1 x1(x1, x2) + x2 fx2 x2(x1, x2).

Proof: Let (x1, x2) ∈ I be arbitrary. Then by Taylor’s theorem we have

f (t1, t2) = f (x1, x2) + fx1(x1, x2)(t1 − x1) + fx2(x1, x2)(t2 − x2)

+
1
2
{ fx1 x1(x1, x2)(t1 − x1)2 + 2 fx1 x2(x1, x2)(t1 − x1)(t2 − x2)

+ fx2 x2(x1, x2)(t2 − x2)2} + ψ(t1, t2; x1, x2)
√

(t1 − x1)4 + (t2 − x2)4, (5.4)
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where ψ(t1, t2; x1, x2) ∈ C(Iµκ) and ψ(t1, t2; x1, x2)→ 0 as (t1, t2)→ (x1, x2).

Applying Gα,β
n,n ( f ; x1, x2) on both sides of (5.4), we get

Gα,β
n,n ( f ; x1, x2) = f (x1, x2) + fx1(x1, x2)Gα,β

n ((t1 − x1); x1) + fx2(x1, x2)Gα,β
n ((t2 − x2); x1)

+
1
2
{ fx1 x1(x1, x2)Gα,β

n ((t1 − x1)2; x1) + fx2 x2(x1, x2)Gα,β
n ((t2 − x2)2; x2)

+ 2 fx1 x2(x1, x2)Gα,β
n,n ((t1 − x1)(t2 − x2); x1, x2)}

+Gα,β
n,n

(
ψ(t1, t2; x1, x2)

√
(t1 − x1)4 + (t2 − x2)4; x1, x2

)
. (5.5)

Now, using Hölder’s Inequality, we have∣∣∣∣∣∣Gα,β
n,n

(
ψ(t1, t2; x1, x2)

√
(t1 − x1)4 + (t2 − x2)4; x1, x2

)∣∣∣∣∣∣
≤

{
Gα,β

n,n (ψ2(t1, t2; x1, x2); x1, x2)
}1/2{

Gα,β
n,n ((t1 − x1)4 + (t2 − x2)4); x1, x2)

}1/2

≤
{
Gα,β

n,n (ψ2(t1, t2; x1, x2); x1, x2)
}1/2{

Gα,β
n ((t1 − x1)4; x1) +Gα,β

n ((t2 − x2)4; x2)
}1/2

.

In view of Theorem 5.3.1, Gα,β
n,n (ψ2(t1, t2; x1, x2); x1, x2)→ 0 as n→ ∞ uniformly on I and

since Gα,β
n ((t1 − x1)4; x1) = O

(
1
n2

)
, Gα,β

n ((t2 − x2)4; x1) = O
(

1
n2

)
, therefore we have

lim
n→∞

nGα,β
n1,n2

(
ψ(t1, t2; x1, x2)

√
(t1 − x1)4 + (t2 − x2)4; x1, x2

)
= 0

uniformly on I. Also using Remark 5.2.2

lim
n→∞

nGα,β
n ((t1 − x1); x1) =

α

(1 + eβ)
, lim

n2→∞
n(Gα,β

n (t2 − x2); x2) =
α

(1 + eβ)
,

lim
n→∞

n(Gα,β
n (t1 − x1)2; x1) = x1, lim

n→∞
n(Gα,β

n (t2 − x2)2; x2) = x2

and

lim
n→∞

nGα,β
n ((t1 − x1); x1)Gα,β

n ((t2 − x2); x2) = 0.

Above estimate together with (5.5) gives the desired result.

In the next result, we use Peetre’s K- functional defined in subsection 1.1.9 to deter-

mine the rate of convergence of bivariate operators (5.3).

Theorem 5.3.6 For f ∈ C(Iµκ), the following inequality∣∣∣G̃α,β
n1,n2

(g; x1, x2) − g(x1, x2)
∣∣∣ ≤ 4K( f ;σn1,n2(x1, x2)) +ϖ2

(
f ;

√
ρn1,n2(x1, x2)

)
,

where ρn1,n2(x1, x2) =
(

α
n1(1+eβ)

)2
+

(
α

n2(1+eβ)

)2
,

and σn1,n2(x1, x2) = δ2
n1

(x1) + δ2
n2

(x2) + ρn1,n2(x1, x2) holds true.
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Proof: Before initiating the proof, we define the following modified operators:

G̃α,β
n1,n2

(g; x1, x2) = Gα,β
n1,n2

(g; x1, x2)−g
(
x1 +

α

n1 (1 + eβ)
, x2 +

α

n2 (1 + eβ)

)
+g(x1, x2). (5.6)

Then using Remark (5.2.2), we have

G̃α,β
n1,n2

((t1 − x1); x1, x2) = 0, G̃α,β
n1,n2

((t2 − x2); x1, x2) = 0. (5.7)

Let h ∈ C2(Iµκ), using Taylor’s theorem, we can write

h(t1, t2) − h(x1, x2) =h(t1, x2) − h(x1, x2) + h(t1, t2) − h(t1, x2)

=
∂h(x1, x2)
∂x1

(t1 − x1) +
∫ t1

x1

(t1 − u)
∂2h(u, x2)
∂u2 du

+
∂h(x1, x2)
∂x2

(t2 − x2) +
∫ t2

x2

(t2 − v)
∂2h(x1, v)
∂v2 dv. (5.8)

Applying operators G̃α,β
n1,n2 on both sides of (5.8) and using (5.7), we get

G̃α,β
n1,n2

(h; x1, x2) − h(x1, x2) =G̃α,β
n1,n2

(∫ t1

x1

(t1 − u)
∂2h(u, x2)
∂u2 du; x1, x2

)
+ G̃α,β

n1,n2
(
∫ t2

x2

(t2 − v)
∂2h(x1, v)
∂v2 dv; x1, x2).

Hence∣∣∣G̃α,β
n1,n2

(h; x1, x2) − h(x1, x2)
∣∣∣ ≤Gα,β

n1,n2

(∫ t1

x1

|t1 − u|

∣∣∣∣∣∣∂2h(u, x2)
∂u2

∣∣∣∣∣∣ du; x1, x2

)
+

∫ x1+
α

n1(1+eβ)

x1

∣∣∣∣∣x1 +
α

n1 (1 + eβ)
− u

∣∣∣∣∣
∣∣∣∣∣∣∂2h(u, x2)

∂u2

∣∣∣∣∣∣ du

+Gα,β
n1,n2

(
∫ t2

x2

|t2 − v|

∣∣∣∣∣∣∂2h(x1, v)
∂v2

∣∣∣∣∣∣ dv; x1, x2)

+

∫ x2+
α

n2(1+eβ)

x2

∣∣∣∣∣x2 +
α

n2 (1 + eβ)
− v

∣∣∣∣∣
∣∣∣∣∣∣∂2h(x1, v)

∂v2

∣∣∣∣∣∣ dv
≤

Gα,β
n1,n2

((t1 − x1)2; x1, x2) +
(

α

n1 (1 + eβ)

)2
 ||h||C2(Iµκ)

+

{
Gα,β

n1,n2
((t2 − x2)2; x1, x2) +

(
α

n2 (1 + eβ)

)2}
||h||C2(Iµκ)

≤

δ2
n1

(x1) + δ2
n2

(x2) +
(

α

n1 (1 + eβ)

)2

+

(
α

n2 (1 + eβ)

)2
 ∥h∥C2(Iµκ).

Also ∣∣∣G̃α,β
n1,n2

(g; x1, x2)
∣∣∣ ≤ 3||g||C(Iµκ). (5.9)
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In view of (5.9), we can write∣∣∣G̃α,β
n1,n2

(g; x1, x2) − g(x1, x2)
∣∣∣ ≤ ∣∣∣G̃α,β

n1,n2
(g − h; x1, x2)

∣∣∣
+

∣∣∣G̃α,β
n1,n2

(h; x1, x2) − h(x1, x2)
∣∣∣ + |h(x1, x2) − g(x1, x2)|

+

∣∣∣∣∣∣g
(
x1 +

α

n1 (1 + eβ)
, x2 +

α

n2 (1 + eβ)

)
− g(x1, x2)

∣∣∣∣∣∣
≤

(
4||g − h||C(Iµκ) + σn1,n2(x1, x2)||h||C2(Iµκ)

)
+ϖ2

(
f ;

√
ρn1,n2(x1, x2)

)
.

Taking the infimum on the right hand side over all h ∈ C2(Iµκ), we get∣∣∣G̃α,β
n1,n2

(g; x1, x2) − g(x1, x2)
∣∣∣ ≤ 4K( f ;σn1,n2(x1, x2)) +ϖ2

(
f ;

√
ρn1,n2(x1, x2)

)
,

which completes the proof.

5.4 Associated GBS Operators

Let A = I × J where I and J be compact intervals. For any f : A → R and

any(t1, t2) (x1, x2) ∈ A, let △(t1,t2) f (x1, x2) be the bivariate mixed difference operators de-

fined as:

△(t1,t2) f (x1, x2) = f (t1, t2) − f (t1, x2) − f (x1, t2) + f (x1, x2) .

The function f : A → R is B−bounded on D if there exists K > 0 such that∣∣∣△(t1,t2) f (x1, x2)
∣∣∣ ≤ K for any (t1, t2), (x1, x2) ∈ A. We denote by Bb(A), the space of all

B−bounded functions on A equipped with the norm:

∥ f ∥B = sup
(x1,x2),(t1,t2)∈A

∣∣∣△(t1,t2) f (x1, x2)
∣∣∣ .

Further let Cb (A) be the subspace consisting of the functions from Bb (A) and is defined

by

Cb (A) =
{

f | lim
(t1,t2)→(x1,x2)

△(t1,t2) f (x1, x2) = 0∀ (x1, x2) ∈ A
}
.

Here, for a compact subset A, every B−continuous function is a B-bounded function.

We denote the space of all B−differentiable functions on A by

Db (A) =
{

f | f : A→ R, and lim
(t1,t2)→(x1,x2)

△(t1,t2) f (x1, x2)
(t1 − x1) (t2 − x2)

= DB f (x1, x2) < ∞∀ (x1, x2) ∈ A
}
.

The mixed modulus of continuity of f ∈ Bb
(
Iµκ

)
, where Iµκ =

[
0, µ

]
× [0, κ] , is the compact

subset of A, is the function ωB : [0,∞) × [0,∞)→ R, defined by

ωB ( f ; δ1, δ2) := sup {|∆ f [(t, s); (x1, x2)]| : |x1 − t1| < δ1, |x2 − t2| < δ2} ,
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for any (t1, t2), (x1, x2) ∈ A.

We define the GBS of the operators Gα,β
n1,n2 given by (5.3), for any f ∈ Cb

(
Iµκ

)
and n,m ∈ N, by

Ĝα,β
n1,n2 ( f (t1, t2); x1, x2) = Gα,β

n1,n2 ( f (t1, x2) + f (x1, t2) − f (t1, t2); x1, x2) , (5.10)

that is

Ĝα,β
n1,n2 ( f ; x1, x2) = e−(n1 x1+n2 x2)

(
1 + eβ

2

)2α ∞∑
k1=0

∞∑
k2=0

gαk1
(n1x1; β)

k1!

gαk2
(n2x2; β)

k2!

(
f
(

k1

n1
, x2

)
+ f

(
x1,

k2

n2

)
− f

(
k1

n1
,

k2

n2

))
.

Theorem 5.4.1 For every f ∈ Cb(Iµκ), at each point (x1, x2) ∈ Iµκ, the operators (5.10) verifies

the following inequality

∣∣∣∣Ĝα,β
n1,n2 ( f ; x1, x2) − f (x1, x2)

∣∣∣∣ ≤ 4ωB
(
f ; δn1 , δn2

)
.

Proof: By using the property of ωB
(
f ; δn1 , δn2

)
, we have∣∣∣∆(t1,t2) f (x1, x2)

∣∣∣ ≤ ωB ( f ; |t1 − x1| , |t2 − x2|) ≤
(
1 +
|t1 − x1|

δn1

) (
1 +
|t2 − x2|

δn2

)
ωB

(
f ; δn1 , δn2

)
.

Now ∣∣∣∣Ĝα,β
n1,n2 ( f ; x1, x2) − f (x1, x2)

∣∣∣∣ ≤ Gα,β
n1,n2

(∣∣∣∆(t1,t2) f (x1, x2)
∣∣∣ ; x1, x2

)
≤

(
Gα,β

n1,n2 (1; x1, x2) +
1
δn1

(
Gα,β

n1,n2

(
(t1 − x1)2; x1, x2

))1/2

+
1
δn2

(
Gα,β

n1,n2

(
(t2 − x2)2; x1, x2

))1/2

+
1
δn1

(
Gα,β

n1,n2

(
(t1 − x1)2; x1, x2

))1/2

1
δn2

(
Gα,β

n1,n2

(
(t2 − x2)2; x1, x2

))1/2
)
ωB

(
f ; δn1 , δn2

)
≤ 4ωB

(
f ; δn1 , δn2

)
.

Next, let us define the Lipschitz class for B−continuous functions. For f ∈ Cb
(
Iµκ

)
the

Lipschitz class LipM (ζ1, ζ2) with ζ1, ζ2 ∈ (0, 1] is defined by

LipM (ζ1, ζ2) =
{
f ∈ Cb

(
Iµκ

)
:
∣∣∣∆ f(t1,t2)(x1, x2)

∣∣∣ ≤ M |t1 − x1|
ζ1 |t2 − x2|

ζ2 , for (t1, t2) , (x1, x2) ∈ Iµκ
}
.

In our next result, we determine the order of approximation for the operators Ĝα,β
n1,n2 by means of

the class LipM(ζ1, ζ2).

Theorem 5.4.2 For f ∈ LipM (ζ1, ζ2), we have

|Ĝα,β
n1,n2( f ; x1, x2) − f (x1, x2)| ≤ M(δn1(x1))ζ1(δn2(x2))ζ2,

forM > 0, ζ1, ζ2 ∈ (0, 1].
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Theorem 5.4.3 If f ∈ Db
(
Iµκ

)
and DB f ∈ B

(
Iµκ

)
, then for each (x1, x2) ∈ Iµκ, we get∣∣∣∣Ĝα,β

n1,n2 ( f ; x1, x2) − f (x1, x2)
∣∣∣∣ ≤ M

n1/2
1 n1/2

2

(
∥DB f ∥∞ + ωB

(
DB f ; n−1/2

1 , n−1/2
2

))
.

Proof: Since f ∈ Db
(
Iµκ

)
, we have the identity

△ f [(t1, t2) ; (x1, x2)] = (t1 − x1) (t2 − x2) DB (ε, n) , with x1 < ε < t1; x2 < n < t2.

Eventually,

DB f (ε, n) = △DB f (ε, n) + DB f (ε, x2) + DB f (x1, n) − DB f (x1, x2) .

Since DB f ∈ B
(
Iµκ

)
, by above relation, we can write∣∣∣∣Gα,β

n1,n2 (△ f [(t1, t2) ; (x1, x2)] ; x1, x2)
∣∣∣∣ = ∣∣∣∣Gα,β

n1,n2 ((t1 − x1) (t2 − x2) DB (ε, n) ; x1, x2)
∣∣∣∣

≤ Gα,β
n1,n2 (|t1 − x1| |t2 − x2| △ DB f (ε, n) ; x1, x2)

+Gα,β
n1,n2 (|t1 − x1| |t2 − x2| (|DB f (ε, x2)|

+ |DB f (x1, n)| + |DB f (x1, x2)|) ; x1, x2)

≤ Gα,β
n1,n2 (|t1 − x1| |t2 − x2|ωB (DB f ; |ε − x1| , |n − x2|) ; x1, x2)

+ 3∥DB f ∥∞Gα,β
n1,n2 (|t1 − x1| |t2 − x2| ; x1, x2) .

Using above inequality along with linearity of Gα,β
n1,n2 and Cauchy-Schwarz inequality, we get∣∣∣∣Ĝα,β

n1,n2 ( f ; x1, x2) − f (x1, x2)
∣∣∣∣ = ∣∣∣∣Gα,β

n1,n2 ( f [(t1, t2) ; (x1, x2)] ; x1, x2)
∣∣∣∣

≤ 3∥DB f ∥∞
√

Gα,β
n1,n2

(
(t1 − x1)2(t2 − x2)2; x1, x2

)
+

(
Gα,β

n1,n2 (|t1 − x1| |t2 − x2| ; x1, x2)

+ δ−1
n1

Gα,β
n1,n2

(
(t1 − x1)2 |t2 − x2| ; x1, x2

)
+ δ−1

n2
Gα,β

n1,n2

(
|t1 − x1| (t2 − x2)2; x1, x2

)
+ δ−1

n1
δ−1

n2
Gα,β

n1,n2

(
(t1 − x1)2(t2 − x2)2; x1, x2

)
ωB

(
DB f ; δn1 , δn2

)
≤ 3∥DB f ∥∞

√
Gα,β

n1,n2

(
(t1 − x1)2(t2 − x2)2; x1, x2

)
+

(√
Gα,β

n1,n2

(
(t1 − x1)2(t2 − x2)2; x1, x2

)
+ δ−1

n1

√
Gα,β

n1,n2

(
(t1 − x1)4(t2 − x2)2; x1, x2

)
+ δ−1

n2

√
Gα,β

n1,n2

(
(t1 − x1)2(t2 − x2)4; x1, x2

)
+δ−1

n1
δ−1

n2
Gα,β

n1,n2

(
(t1 − x1)2(t2 − x2)2; x1, x2

))
ωB

(
DB f ; δn1 , δn2

)
.

(5.11)

In view of Remark 5.2.2, for (t1, t2) ∈ Iµκ, (x1, x2) ∈ Iµκ and i, j = 1, 2

Gα,β
n1,n2

(
(t1 − x1)2i(t2 − x2)2 j; x1, x2

)
= Gα,β

n1,n2

(
(t1 − x1)2i; x1, x2

)
Gα,β

n1,n2

(
(t2 − x2)2 j; x1, x2

)
≤

M1

ni
1

M2

n j
2

, (5.12)
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for some constant M1,M2 > 0.

Choosing δn1 = n−1/2
1 , and δn2 = n−1/2

2 and combining (5.11) and (5.12), we get the desired result.

Example 5.4.4 Figure 5.1 illustrates the convergence of operators Gα,β
n1,n2 to f (x1, x2) = (x1 − 1)2−

(x2 − 1)2 for α = β = 2

Figure 5.1: The Convergence of operators Gα,β
n1,n2 to the function f (x1, x2) (Red f , Green G2,2

50,50,

Blue G2,2
20,20, Yellow G2,2

5,5)

Example 5.4.5 In Table 5.1, we estimate the absolute error Eα,β
n1,n2( f ; x1, x2) =∣∣∣∣Gα,β

n1,n2( f ; x1, x2) − f (x1, x2)
∣∣∣∣ for functions f1(x1, x2) = (x2 − 2)2 − (x1 − 2)2 and f2(x1, x2) = x1 −

2x1x2 + 1. Further, the convergence of the operators Gα,β
n1,n2 to the function f1(x1, x2) is illustrated

in Figure 5.2. Both table and figure show a very interesting fact that the convergence of operators

Gα,β
n1,n2 is faster when α < β and slower when β < α.
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Table 5.1: Error estimation of operators Gα,β
n1,n2 to the functions f1(x1, x2) and f2(x1, x2) (for cases

α > β, β > α)

(x1, x2) E5,4
15,15 E4,5

15,15

(1,1) 0.0858002 0.0554948

(2,2) 0.198099 0.128597

(3, 3) 0.310397 0.2017

(4,4) 0.422695 0.274802

(5,5) 0.534994 0.347904

(x1, x2) E6,2
5,5 E2,6

5,5

(0,4) 2.29148 0.984868

(0.5, 3.5) 1.71861 0.738651

(1, 3) 1.14574 0.492434

(1.5, 2.5) 0.57287 0.246217

(2, 2) 0 0

Figure 5.2: Convergence of operators Gα,β
n1,n2 to the function f1(x1, x2) (Green f1, yellow G2,6

5,5, (β >

α), Blue G6,2
5,5, (α > β))

Example 5.4.6 Define Êα,β
n1,n2 =

∣∣∣∣Ĝα,β
n1,n2( f ; x1, x2) − f (x1, x2)

∣∣∣∣. In Table 5.2, we estimate the error

between the operators Gα,β
n1,n2 and its corresponding GBS Ĝα,β

n1,n2 . We observe that GBS operators

converge to the function parallely and the convergence is faster as well.
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Table 5.2: Comparison between bivariate and its corresponding GBS for the function f2(x1, x2)

(a) Considering equal values of n1 and n2

(x1, x2) E1,10
1,1 Ê1,10

1,1

(0.4,0.4) 0.0238076 0.00251803

(0.8,0.8) 0.0805798 0.00251803

(1.2,1.2) 0.137352 0.00251803

(1.6,1.6) 0.194124 0.00251803

(2,2) 0.250896 0.00251803

(b) Considering different values of n1 and n2

(x1, x2) E1,10
8,15 Ê1,10

8,15

(2,2) 0.022789 0.0000209836

(4,4) 0.0499923 0.0000209836

(6,6) 0.0771957 0.0000209836

(8,8) 0.104399 0.0000209836

(10,10) 0.131602 0.0000209836



Conclusion and Future scope

Conclusion
The aim of this chapter is to present a concluding remarks to our thesis and illustrate some of the

prospects that define our current and future endeavours in scientific research.

This thesis is mainly a study of convergence estimates of various approximation operators.

The introductory chapter consists of definitions and literature survey of concepts used throughout

this thesis. In the second chapter, we discuss approximation operators of exponential type. The

first section of this chapter presents the study of convergence estimates of Bézier variant of Ismail-

May operators. Further we also propose a two variable generalization of these operators. In the

second section, we present a modification of Ismail-May exponential operators which preserve

exponential functions.

Chapter three presents a conceptual theoretical framework based on the modification of cer-

tain Gamma type operators that preserve the test functions tϑ, ϑ = {0}
⋃
N. We deduce numeri-

cally as well as graphically that the modified operators approximate best while they preserve the

test function t3. We further examine the rate of convergence of the modified operators in terms

of first and second order modulus of continuity and in the sense of Peetre’s K-functional. Finally,

we conclude with a theorem establishing the degree of approximation for functions of bounded

variation.

The study of chapter four is concerned with generalization of Bernstein operators. In section

one, we propose a Pólya distribution-based generalization of λ-Bernstein operators. We establish

some fundamental results for convergence as well as order of approximation of the proposed op-

erators. We present theoretical result and graph to demonstrate the proposed operator’s intriguing

ability to interpolate the interval’s end point. In order to illustrate the convergence of proposed

operators as well as the impact of changing the parameter ”µ”, we provide a variety of graphs as

our paper’s conclusion.

Usta provided a modification of Bernstein operators in 2020 that was suited for approxima-

tion on (0, 1). We define generalized Bernstein operators with shifted knots in this study. Shifted

knots have the benefit of allowing approximation on interval (0, 1) and its subinterval. It also

increases the flexibility of operators for approximation. Certain theorems are derived to verify

the convergence of our newly constructed operators. In addition, we provide weighted approxi-

109
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mation theorem, Voronovskaja and Grüss Voronovskaja type theorems to demonstrate asymptotic

behaviour. Graphs and tables validate the convergence and show the approximation error.

In chapter five, we propose the bivariate generalization of operators involving Apostol-

Genocchi polynomial. We obtain the rate of convergence in terms of partial and total modulus

of continuity and order of approximation by means of a Lipschitz type function and the Peetre’s

K-functional. Also we propose a generalization called "generalized boolean sum (GBS)" of these

bivariate operators to determine the order of approximation for Bögel continuous functions. Em-

ploying Mathematica Software, we show a few graphical examples to demonstrate the rate of con-

vergence for the bivariate operators. It gets known through those graphs that for some particular

functions the bivariate operators converges better when α < β. After analyzing and comparing the

error of approximation of the bivariate operators and the associated GBS operators we conclude

that the GBS operators converges parallel and faster to the function.

Academic future plans
I plan to carry out more study in the field of approximation by positive linear operators and hope-

fully share my results with the mathematical community. Two decades ago it was observed that if

we modify the original operators, we can have a better approximation. Another interesting prob-

lem in the theory of approximation is to present parametric generalizations of existing operators

which enables us to approximate a wider space of functions also it increases the flexibility of op-

erators for approximation. This thesis includes some modifications and parametric generalization

of the existing operators. In addition to work on existing operators in this area, I shall strive to

study and contribute towards developing new operators.

In this thesis, we have worked on the modification of operators which preserves exponential

function. We have given several fundamental theorems to show uniform convergence of these

modified operators and analyzed their aymptotic behavior through the Voronovskaya-type theo-

rem. In future, I intend to investigate their iterates, invariant measures, Kantorovich modifications,

eigenstructure, and global smoothness preservation properties.

In this thesis, we have also studied the modifications of certain exponential operators. The

exponential-type operators were introduced four decades ago and since then no new exponential-

type operators were introduced although several generalizations of existing exponential-type op-

erators were proposed and studied. In [102], it was established that corresponding to each poly-

nomial p(x), a unique approximation operator can be obtained which satisfies the differential

equation (1.11) and normalization condition (1.12). Operators corresponding to constant, linear,

quadratic and cubic polynomials were obtained using the method of bilateral Laplace transform. In

future, I shall attempt to seek the methods that can determine the exponential operators associated

with higher order polynomials.

Very recently, Tyliba and Wachnicki [166] extended the work of Ismail-May [102] with a

more general family of operators by introducing a new parameter β. These operators were termed
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as semi-exponential operators and studied by Herzog [99]. The corresponding semi-exponential

operators for Bernstein, Baskakov and Ismail-May operators were obtained by Abel et al. [3].

Since the area of semi exponential operators is not much explored, I intend to study the approx-

imation properties of these operators such as the complete asymptotic expansion, behaviour of

their derivatives through simultaneous approximation and other convergence estimates.





References

[1] Abel, U., Gupta, V.: Rate of convergence of exponential type operators related to p (x) =

2x3/2 for functions of bounded variation. RACSAM. 114, 188 (2020).

[2] Abel, U., Gupta, V.: A complete asymptotic expansion for operators of exponential type with

p(x) = x(1 + x)2. Positivity. 25(3), 1013-1025 (2021).

[3] Abel, U., Gupta, V., Sisodia, M.: Some new semi-exponential operators. RACSAM. 116, 87

(2022).

[4] Acar, T., Acu, A.M., Manav, N.: Approximation of functions by genuine Bernstein-

Durrmeyer type operators. J. Math. Inequal. 12(4), 975-987 (2018).

[5] Acar, T., Aral, A., Cárdenas-Morales, D., Garrancho, P.: Szász-Mirakyan type operators

which fix exponentials. Results Math. 72(3), 1393-1404 (2017).

[6] Acar, T., Aral, A., Gonska., H.: On Szász-Mirakyan Operators Preserving e2ax, a > 0.

Mediterr. J. Math. 14(1), 1-14 (2017).

[7] Acar, T., Aral, A., Gupta, V.: On approximation properties of a new type of Bernstein-

Durrmeyer operators. Math. Slovaca. 65(5), 1107-1122 (2015).

[8] Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate (p, q)-Bernstein-

Kantorovich operators. Iran. J. Sci. Technol. Trans. A Sci. 42(2), 655-662 (2018).

[9] Acar, T., Aral, A., Rasa, I.: The new forms of Voronovskaya’s theorem in weighted spaces.

Positivity. 20(1), 25-40 (2016).

[10] Acar, T., Montano, M.C., Garrancho, P., Leonessa, V.: On Bernstein-Chlodovsky operators

preserving e−2x. Bull. Belg. Math. Soc. Simon Stevin. 26(5), 681-698 ( 2019).

[11] Acar, T., Montano, M.C., Garrancho, P., Leonessa, V.: Voronovskaya type results for

Bernstein-Chlodovsky operators preserving e−2x. J. Math. Anal. Appl. 491(1), 124307

(2020).

[12] Acar, T., Mursaleen, M., Deveci, S.N.: Gamma operators reproducing exponential functions.

Adv Differ Equ. 2020(1), 1-13 (2020).

113



114 References

[13] Acu, A.M., Acar, T., Muraru, C.V., Radu, V.A.: Some approximation properties by a class

of bivariate operators. Math. Methods Appl. Sci. 42, 1-15 (2019).

[14] Acu, A.M., Acar, T., Radu, V.A.: Approximation by modified Uρ
n operators. RACSAM. 113,

2715-2729 (2019).

[15] Acu, A.M., Gonska, H.: Classical kantorovich operators revisited. Ukrainian Math. J. 71(6),

(2019).

[16] Acu, A.M., Gonska, H., Rasa, I.: Grüss-type and Ostrowski-type inequalities in approxima-

tion theory. Ukrainian Math. J. 63(6), 843-864 (2011).

[17] Acu, A.M., Manav, N., Sofonea, D.F.: Approximation properties of λ-Kantorovich operators.

J Inequal. Appl. 2018, Article No. 202 (2018).

[18] Acu, A.M., Radu, V.A.: Approximation by Certain Operators Linking the α-Bernstein and

the Genuine α-Bernstein-Durrmeyer Operators. In: Deo, N., Gupta, V., Acu, A., Agrawal, P.

(eds) Mathematical Analysis I: Approximation Theory: Springer Proceedings in Mathemat-

ics & Statistics. 306, 77-88 (2020).

[19] Agratini, O.: On a class of linear positive bivariate operators of King type. Stud. Univ. Babeş-

Bolyai Math. 51(4), 13-22 (2006).

[20] Agratini, O., Tarabie, S.: On approximating operators preserving certain polynomials. Au-

tom. Comput. Appl. Math. 17(2), 191-199 (2008).

[21] Agrawal, P.N., Baxhaku, B., Shukla, R.: A new kind of bivariate λ-Bernstein-Kantorovich

type operator with shifted knots and its associated GBS form. Math. Found. Comput. 5(3),

157-172 (2022).

[22] Agrawal, P.N., Ispir, N.: Degree of approximation for bivariate Chlodowsky-Szász-Charlier

type operators. Results Math. 69, 369-385 (2016).

[23] Agrawal, P.N., Ispir, N., Kajla, A.: Approximation properties of Bézier-summation-integral

type operators based on Polya-Bernstein functions. Appl. Math. Comput. 259, 533-539

(2015).

[24] Agrawal, P.N., Ispir, N., Kajla, A.: Approximation properties of Lupaş-Kantorovich opera-
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