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Content Guided attention for Underwater Image Enhancement

Minal Tandekar

ABSTRACT

This thesis addresses the challenge of enhancing underwater image clarity using deep 

learning  techniques,  a  crucial  advancement  for  applications  in  marine  biology,

underwater  archaeology,  and  environmental  monitoring.  Traditional  enhancement 

methods typically fail to address the harsh light distortions encountered underwater,

such as discoloration and blur due to light absorption and scattering This study uses

Enhanced- . Encoder FUnIE-GAN (EEF-GAN), which is an updated version of Fast

Underwater  Image  Enhancement  comes  GAN  (FUnIEGAN),  which  is  designed  to

overcome these challenges by adding new encoder structures The modified encoder

uses  traditional  convolution  side  convolution  difference  serves  to  enhance  feature

extraction, thereby significantly improving image recognition Empirical results from

extensive  testing  on UIEB  dataset  show  that  EEF  -GN:  peak  signal  The  model

outperforms existing models is available in several metrics including -to-noise ratio

(PSNR) and structural similarity index (SSIM) giving a PSNR of 22.94 dB and a SSIM 

of 0.8926, a clear and accurate underwater image for comparison a to baseline models 

like WaterNet and UGAN Underscoring its effectiveness to create These findings not 

only  demonstrate  the  feasibility  of  using  generative  anti-nets  for  real-time  image

enhancement in complex underwater environments but also demonstrate the potential 

of  such  technologies  this  has  in  other  easily  identifiable  imaging  applications

Preferences  involve  enhancing  images  and  optimizing  the  model  This  function  by

extending  the  capabilities  of  deep  learning  models  Contributes  to  the  environment

extensive  environmental  mapping  projects,  providing  new  tools  for  research  and

conservation efforts.

Keywords:  Underwater  Image  Enhancement,  Deep  Learning,  GAN,  Image  Quality

Metrics,  CNN,  Feature  Extraction,  Image  Clarity  and  Quality,  Convolution,  Real-

Time Image Processing.
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CHAPTER 1 

INTRODUCTION

1.1 OVERVIEW

Underwater  image  enhancement  refers  to  the  process  of  improving  the  visual

appearance  of  images  taken  underwater.  This  is  an important  area  of  study

because of the variety of optical challenges encountered underwater

The environment.  When light passes through water,  it  behaves differently than

air, mainly because of absorption and scattering. This often results in dull blue or

green images, little contrast. developing these

Thematic  images  are  important.  For  example,  marine  biologists  rely  on  vivid 

imagery  to  study  marine  life  and  ecology,  archaeologists  need  a  detailed 

perspective to explore water features under, and used by environmental scientists 

Refined  images  for underwater  habitat  monitoring. Additionally,  clear  diagrams 

are essential to ensure safe and efficient use in underwater guidance and robotics.

1.2 WHY NECESSARY

The  importance  of  underwater  reflectivity  is  due  to  the  fundamental  optical 

properties  of  water  that  affect  image  quality.  Water  absorbs  light,  and  this

absorption  depends  on  wavelength,  with  red  light  being  the  most  absorbed,

followed  by  green  and  blue.  This  often  results  in  the  underwater  area  lacking

natural  colors  such  as  blue  or  green.  Additionally,  the  presence  of  floating

particles scatters light, resulting in image blurring, further reducing image clarity

and contrast These optical challenges make it difficult to obtain in-depth images

clear and accurate,  which is  important for a variety of  underwater applications.

Enhanced images can provide highly accurate colors, visibility, and identification 

of  underwater  features  and  objects,  facilitating  more  accurate  analysis  and

decision-making in scientific investigations, surveys, and in business matters.
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1.3 PROBLEM STATEMENT

Despite  the  availability  of  advanced  imaging  technologies,  obtaining  high-quality

underwater  images  remains  problematic  due  to  limited  information  on  light

absorption  and  scattering  underwater  Several  methods  already  exist  approaches  to

development  struggle  to  deal  effectively  with  all  challenges.  For  example,  some

techniques may improve color but fail to increase contrast, while others may reduce

noise but introduce artifacts. Dynamic conditions in underwater environments, such

as different depths, water clarity, and variable lighting conditions add complexity and 

therefore,  systems there is  an urgent need for robust enhancers that can effectively

meet these challenges under different conditions The aim of this thesis is to develop

and  evaluate  new  methods  for  underwater  image  enhancement.  These  techniques

should  be  able  to  improve  image  quality  by  addressing  color  correction,  contrast

enhancement,  and  noise  reduction,  ultimately  contributing  to  reliable  underwater

imaging and it was perfectDespite the availability of advanced imaging technologies, 

obtaining  high-quality  underwater  images  remains  problematic  due  to  limited

information on light absorption and scattering underwater Several existing methods a 

the  approach  to  development  struggles  to  deal  effectively  with  all  challenges.  For

example,  some  techniques  may  improve  color  but  fail  to  increase  contrast,  while

others  may reduce noise but  introduce artifacts.  Dynamic conditions in underwater

environments, such as different depths, water clarity, and variable lighting conditions 

add complexity and therefore, systems there is an urgent need for robust enhancers

that can effectively meet these challenges under different conditions The aim of this

thesis  is  to  develop  and  evaluate  alternative  methods  for  underwater  image

enhancement.  These  techniques  should  be  able  to  improve  image  quality  by

addressing color correction, contrast enhancement, and noise reduction.
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1.4 MODEL ARCHITECTURE

In this thesis, advanced models are used to solve the challenging task of underwater

image enhancement. The construction of these models is briefly described below:

Fig.1.1. Underwater Image Enhancement Techniques

1.4.1 WaterNet:

WaterNet  [1],  a  deep  learning  system  specifically  designed  to  enhance  the

underwater  image  quality.  It  aims  to  solve  common  challenges  in  underwater

imaging,  like  high  color  distortion,  low  contrast  and  blur,  with  a  dedicated  CNN

technique

Core Structure: WaterNet [1], adopts a CNN-based architecture, which is known for

its  high performance and visual  data  analysis.  Network algorithms are  designed to

process  image  data  sequentially  through  different  stages,  each  consisting  of

convolutional  operations,  followed  by  nonlinear  activation  functions,  pooling

operations  and  help  these  algorithms  to  extract  and  identify  rich  feature

representations  at  different  abstract  levels.  Feature  Extraction:  At  the  heart  of

WaterNet’s  effectiveness  is  its  multi-scale  feature  extraction  capabilities.  The mesh
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captures  a  wide  range  of  features  from  very  fine  detail  to  detailed  textures  using 

convolutional  layers  with  different  ear  sizes  This  is  important  in  underwater 

environments where light absorption and scattering can obscure the details of the ice 

Skip  Connections:  Inspired  by the success  of  ResNet  and other  architectures, 

WaterNet [1], adds skip connections to its layers. This connection helps to reduce the 

problem of stray lines,  a common issue in deep network infrastructure that  can flow 

to  other  channels  if  the  line  reextends,  jumping  connections  helps  save  resources 

importance  across  the  network,  ensuring  that  high-level  semantic  information  and 

low-level information is preserved in final enhanced models is a deep learning 

process  designed.  It aims  to solve  common  challenges  in underwater  imaging,  such 

as  high  color  distortion,  low  contrast,  and  blur,  with  a  dedicated  CNN  approach. 

Depth  and complexity:  The architecture  is well  designed  with  a depth  that  balances 

the need  to learn  complexity  with  computational  effort.  This  ensures  that  WaterNet 

[1], can be trained efficiently without the need for extensive computational resources, 

which is essential for providing useful usage data.

Fig.1.2. WaterNet [2] Architecture
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1.4.2. UGAN

UGAN  [2]  is  a  model  specifically  designed  to  improve  underwater  image  quality

through  adversarial  training  techniques  involving  the  use  of  GAN  [9]  to  address

underwater  image  degradation  challenges  peculiarities  such  as  opacity,  color

distortion and loss of detail due to light scattering and absorption It is stable.

UGAN  [2]  uses  a  GAN  [9]  architecture  consisting  of  two  main  components:  a 

generator and a differentiator. The task of the generator is to generate an improved

underwater  image  from  the  fouled  input,  while  the  discriminator  evaluates  these

images with a dataset of real underwater quality images

Generator Structure: The generator in UGAN [2] typically uses a CNN with multiple

convolution layers, nonlinear activations, and up-sampling operations The goal is to

reconstruct  or  reconstruct  a  clear,  typical  image  beauty  visible  from  the  damaged

painting.  To  facilitate  this  process,  the  generator  often  includes  residual  blocks  or

similar devices to better identify and extend higher-level features in the network

Discrimination Scheme: The classifier also uses a CNN but is configured to classify

images  as  either  high  realistic  images  or  compressed  images  generated  by  a

generator.  It  makes  a  difference  UGAN  [2]  is  a  state-of-the-art  model  specifically

designed  to  enhance  underwater  images  by  using  GAN  [9]s  to  address  the  unique

challenges  of  underwater  image  degradation  such  as  impossibility  deal  with

invisibility,  color  distortion  and  loss  of  information  due  to  light  scattering  and

absorption it is stable.

1.4.2. U-Shape Transformer

U-Shape Transformer is a new design that uses transformer technology known for its 

breakthroughs  in  natural  language  processing  especially  in  image enhancement  for

complex  underwater  environments  This  model  is  designed  to  combat  complex

underwater image hearing as blurring, color distortion and loss of detail

Hybrid  Structure:  U-shaped  transformer  mares  robust  local  feature  extraction

capability  of  CNNs  with  the  transformer's  global  receptive  field  This  hybrid
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approach ensures detailed local feature processing, while maintaining the concept of

image of the whole, to control heterogeneous underwater distortion It is important

U-Net  Framework:  The  architecture  adopts  a  U-shaped  framework,  similar  to  the

popular  U-Net  used  in  medical  image  classification.  This  configuration  includes 

encoder and decoder configurations with very deep bottlenecks. The encoder reduces 

the  spatial  dimensions  by  complicating  the  feature,  and  the  decoder  does  the

opposite, reconstructing the image from the encoded features.

Transformer Blocks: In the U-shaped transformer, traditional convolutional layers in

the bottleneck and parts of the decoder are replaced with transformer blocks. These

blocks  consist  of  feed-forward  neural  networks  and  multi-head  self-attention

mechanisms.  The  self-focusing  tool  enables  the  model  to  weigh  the  importance  of

different objects regardless of their location in the image, giving the model the ability 

to focus on relevant objects at the overall picture is great.

Skip  Connections:  Like  U-Net,  U-Shape  Transformer  uses  skip  connections  that

connect  feature maps from encoder to decoder directly to the corresponding layers

These  connections  help  to  recover  lost  spatial  information  when  down  -sampling,

which  enables  up-sampling.  is  important  for  detailed  and  accurate  phase  size

recovery.

Fig.1.3. U-shape Transformer [3]
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1.4.3. FUnIE-GAN

FUnIE-GAN [5] is designed to address the challenges of real-time underwater image

enhancement. It combines the power of GAN [9] with a flexible framework for fast

and  efficient  development,  suitable  for  dynamic  underwater  environments  where

immediate  imaging  is  required.  Real-time  performance  improvement:  Particular

attention  is  paid  to  reducing  the  computational  complexity  of  the  generator  and

differentiator.  Techniques  such  as  parameter  sharing,  more  efficient  activation

functions,  and  optimized  layer  design  are  used  to  reduce  execution  time  without

significantly compromising development quality Optimized GAN [9] design: FUnIE- 

GAN  [5]  uses  a  generative  adversary  network  framework  but  offers  traditional

algorithms that are hard for advanced speed which was lightened for ease of quick

handling.  Generator  Structure:  The  generator  in  FUnIE-GAN  [5]  uses  a  reduced

convolutional  architecture,  focusing  on  important  feature  extraction  and

transformation  processes  It  usually  has  down-sampling  and  up-sampling  layers  to

encode and then decode image data, between image storage and quality enhancement 

without  significant  computational  overhead.  Discrimination  scheme:  Equally  well

discriminated for speed, using shallower bands compared to traditional GAN [9]. Its

main function is to ensure the accuracy of the input image, providing feedback to the

generator  on  accuracy  and  quality  The  simplified  system  ensures  that  the 

discriminator  can  evaluate  the  image  quickly,  and  helps  to  all  the  curtains  are

carriedReal-time performance improvement: Particular attention is paid to reducing

the computational complexity of the generator and differentiator. Techniques such as

parameter sharing, efficient activation functions, and optimized layer design are used 

to reduce processing time without significantly compromising enhancement quality.

Fig.1.4. FUnIE-GAN [5]
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1.4.4. RAUE-Net

RAUNE-NET  [4]  is  a  sophisticated  model  designed  to  address  underwater  image

development challenges by integrating remaining disciplines and focusing on the U-

Net framework The structure provides two-dimensional robustness Usually used for

high-resolution images The network is mainly based on the U-Net system It is well

known that. The U-Net is characterized by a comprehensive structure, with a sliding

channel  capturing  reference  and  a  comprehensive  expansion  channel  that  provides

spatial  accuracy RAUNE-NET [4]  exchange image enhancement by modifying the

mesh  to  remove  distortions  commonly  found  in  underwater  images  is  eliminated.

Remaining  learning:  The  RAUNE-NET  [4]  includes  the  remaining  parts  of  the

encoder  and  decoder  channels.  These  features  help  propagate  objects  through  the

mesh  without  destroying  them,  and  allow  the  formula  to  learn  identity  functions

wherever  necessary,  which  is  important  for  preserving  and  making  available  the

original quality of undisturbed image regions development.  Focus: The model uses

the  focus  to  highlight  specific  areas  of  the  image  that  require  more  magnification.

RAUNE-NET  [4]  is  a  sophisticated  model  designed  to  address  underwater  image

development challenges by integrating remaining disciplines and focusing on the U-

Net framework The structure provides two-dimensional robustness Usually used for

high-resolution images The network is mainly based on the U-Net system It is well

known that. The U-Net is characterized by a comprehensive structure, with a sliding

channel  capturing  reference  and  a  comprehensive  expansion  channel  that  provides

spatial  accuracy RAUNE-NET [4]  exchange image enhancement by modifying the

mesh to remove distortions commonly found in underwater images is eliminated.

Remaining  learning:  The  RAUNE-NET  [4]  includes  the  remaining  parts  of  the

encoder  and  decoder  channels.  These  features  help  propagate  objects  through  the

mesh  without  destroying  them,  and  allow  the  formula  to  learn  identity  functions

wherever  necessary,  which  is  important  for  preserving  and  making  available  the

original quality of undisturbed image regions development



18

Focus: The model uses the focus to highlight specific areas of the image that require

more magnification. This is particularly useful in underwater imaging, where certain

regions  may  be more  obscured  than  others  due  to  varying  light  absorption  and 

scattering.  The  attention  modules  dynamically  adjust  the  processing  of  features  at

different  levels  of  the  network,  emphasizing  important  features  while  suppressing 

less useful ones.

Fig.1.5. RAUNE-Net [4]
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CHAPTER 2 

LITERATURE REVIEW

In this  literature review,  we critically  examine several  prominent  models  that  have

been developed to tackle underwater image enhancement task. The primary aim is to

assess  their  methodologies,  performance,  and  overall  contributions  to  the  field.

Below are the models that we reviewed.

2.1. UGAN [2]

Methodology:  Network  Architecture:  UGAN  [2]  employs  a  GAN  [9]  framework

consisting of two main components: Generator: A deep convolutional neural network 

designed to transform underwater images into visually appealing and color-corrected

images. The generator learns to produce images that mimic the style and content of

in-air images. Discriminator: Another neural network that distinguishes between real

in-air images and the synthetic images generated by the generator. The discriminator

helps the generator improve by providing feedback on the realism of the generated

images.  Cycle-Consistency Loss:  UGAN [2] often incorporates a cycle-consistency

loss, which ensures that the transformations are reversible. This means an underwater 

image transformed into an in-air image and then back to an underwater image should

be  close  to  the  original  underwater  image.  This  loss  helps  maintain  structural  and

content integrity. Adversarial Loss: The adversarial loss is used to train the generator

and discriminator in a competitive setting. The generator aims to produce images that 

the discriminator cannot distinguish from real in-air images, while the discriminator

improves  its  ability  to  tell  apart  real  and  fake  images.  Perceptual  Loss:  Perceptual 

loss  functions  are  often  used  to  ensure  that  the  generated  images  retain  high-level

features and details from the original images. This is achieved by comparing features

extracted from a pre-trained network, such as VGG, between the generated and real

images.

Conclusion: Enhanced Visual Quality: UGAN [2] significantly improves the visual

quality of underwater images, making them more aesthetically pleasing and closer to

in-air images. Effective Color Correction: The model effectively corrects color
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distortions, resulting in images with more natural and accurate color representation.

Preservation of Details: By using perceptual and cycle-consistency losses, UGAN [2] 

ensures that the enhanced images retain important structural details and content from

the original underwater images. Robust Performance: UGAN [2] demonstrates robust 

performance  across  a  variety  of  underwater  conditions  and  environments.

Limitations:  Dataset  Dependency:  The  performance  of  UGAN  [2]  is  highly

dependent  on  the  quality  and  diversity  of  the  training  dataset.  Limited  or  biased

datasets  can  affect  the  network's  ability  to  generalize  to  different  underwater

conditions.  Computational  Requirements:  Training  UGAN  [2]  requires  significant

computational  resources,  particularly  for  handling  high-resolution  images  and

complex network architectures. Potential Artifacts: In some cases, the enhancement

process may introduce artifacts or lead to unnatural-looking images, especially if the

network  encounters  conditions  not  well-represented  in  the  training  data.

Generalization Issues: While UGAN [2] performs well on the training dataset, it may 

struggle  with  underwater  scenes  that  differ  significantly  from those  in  the  training

data.

2.2. WaterNet [1]

Methodology: Network Architecture: WaterNet typically utilizes a CNN architecture 

optimized for underwater image restoration. The architecture may include: Encoder-

Decoder  Structure:  To  capture  and  reconstruct  image  features  at  multiple  levels.

Residual Blocks: To improve feature propagation and prevent vanishing gradients. To 

focus  on  important  regions  of  the  image  and  enhance  relevant  features.  Image

Formation  Model:  WaterNet  often  incorporates  an underwater  image  formation

model  to  simulate  the  effects  of  underwater  light  absorption  and  scattering.  This

model helps in understanding the degradation process and improving the restoration.

Loss  Functions:  Reconstruction  Loss:  Ensures  that  the  restored  image  closely

matches the ground truth image in terms of pixel values. Color Loss: Minimizes the

difference  in  color  distribution  between  the  restored  image  and  the  ground  truth.

Perceptual Loss: Uses features from a pre-trained network (e.g., VGG) to ensure the

restored  image  retains  perceptual  details. Adversarial  Loss:  Sometimes  incorporated
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to enhance the realism of the restored images by training the network adversarially

with a discriminator.

Conclusion:  Improved  Visual  Quality:  WaterNet  significantly  enhances  the  visual

quality  of  underwater  images,  making  them  clearer  and  more  visually  appealing.

Accurate  Color  Correction:  The  network  effectively  corrects  color  distortions,

providing images with natural  and accurate color representation.  Enhanced Feature

Visibility: By improving visibility, WaterNet helps reveal features that are otherwise

obscured in underwater images, aiding in tasks such as underwater object detection

and  marine  exploration.  Robust  Performance:  WaterNet  demonstrates  robust 

performance  across  various  underwater  conditions  and  environments,  making  it  a

versatile tool for underwater image restoration.

Limitation: Dataset Dependency: The performance of WaterNet heavily relies on the 

quality and diversity of the training dataset. Limited or biased datasets can affect the

network's  ability  to  generalize  to  different  underwater  conditions.  Computational

Complexity:  Training  and  deploying  WaterNet  requires  significant  computational

resources, particularly for high-resolution images and complex architectures. Artifact 

Introduction: In some cases, the restoration process may introduce artifacts or lead to

unnatural-looking images, especially if the network encounters conditions not well-

represented  in  the  training  data.  Generalization  Issues:  While  WaterNet  performs

well  on the  training  dataset,  it  may  struggle  with  underwater  scenes  that  differ 

significantly from those in the training data.

2.3. FUnIE-GAN [5]

Methodology:  Network Architecture: FUnIE-GAN [5] employs a GAN framework

consisting  of  two  main  components:  A  CNN  designed  to  transform  underwater

images  into  visually  appealing  and  enhanced  images.  The  generator  focuses  on 

correcting color distortions, enhancing visibility, and reducing noise. Discriminator:

A neural network that distinguishes between real enhanced images real image and the 

synthetic  images generated by the generator.  The discriminator helps the generator

improve  by providing feedback on the realism of the generated images. Cycle-
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Consistency Loss: FUnIE-GAN [5] often includes a cycle-consistency loss to ensure

that transformations are reversible. This means that an underwater image transformed 

into an enhanced image and then back to an underwater image should be close to the

original underwater image. This loss helps maintain structural and content integrity.

Adversarial Loss: The adversarial loss is used to train the generator and discriminator 

in a competitive setting. The generator aims to produce images that the discriminator

cannot distinguish from real enhanced images, while the discriminator improves its

ability  to  tell  apart  real  and fake images.  Content  Loss:  Content  loss  functions  are

often used to ensure that the enhanced images retain high-level features and details

from the original  images.  This  is  achieved by comparing features extracted from a

pre-trained network, such as VGG, between the generated and real images.

Conclusion:  Enhanced Visual  Quality:  FUnIE-GAN [5]  significantly  improves the

visual  quality  of  underwater  images,  making  them  clearer  and  more  visually

appealing.  Effective  Color  Correction:  The  model  effectively  corrects  color 

distortions, resulting in images with more natural and accurate color representation.

Fast Processing: FUnIE-GAN [5] is designed for fast processing, making it suitable

for  real-time  underwater  image  enhancement  applications.  Robust  Performance:

FUnIE-GAN  [5]  demonstrates  robust  performance  across  a  variety  of  underwater

conditions and environments.

Limitations:  Dataset  Dependency:  The  performance  of  FUnIE-GAN  [5]  heavily

relies on the quality and diversity of the training dataset. Limited or biased datasets

can  affect  the  network's  ability  to  generalize  to  different  underwater  conditions. 

Computational  Requirements:  Training  FUnIE-GAN  [5]  requires  significant

computational  resources,  particularly  for  handling  high-resolution  images  and

complex network architectures. Potential Artifacts: In some cases, the enhancement

process may introduce artifacts or lead to unnatural-looking images, especially if the

network  encounters  conditions  not  well-represented  in  the  training  data.

Generalization  Issues:  While  FUnIE-GAN [5] performs well  on the training  dataset, 

it  may  struggle  with  underwater  scenes  that  differ  significantly  from  those  in  the

training data.
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2.4. RAUNE-NET [4]

Methodology:  Network  Architecture:  RAUNE-NET  [4]  employs  a  deep

convolutional  neural  network  architecture  that  includes:  Residual  Blocks:  These 

blocks  help  in  preserving  the  original  features  and  enable  efficient  feature

propagation  through  the  network,  mitigating  the  vanishing  gradient  problem.

Attention  Mechanisms:  Attention  modules  are  integrated  to  focus  on  important

regions of the image, enhancing the relevant features while suppressing the irrelevant 

ones.  Encoder-Decoder  Structure:  This  structure  helps  in  capturing  and

reconstructing  features  at  multiple  levels,  essential  for  addressing  the  complex

distortions in underwater images. Multi-Scale Feature Extraction: RAUNE-NET [4]

uses  multi-scale  feature  extraction  techniques  to  handle  variations  in  scale  and

resolution,  capturing  both  local  and  global  distortions  effectively.  Loss  Functions:

Reconstruction Loss:  Ensures  that  the  enhanced image closely  matches  the  ground

truth image in terms of pixel values. Color Loss: Minimizes the difference in color

distribution  between  the  enhanced  image  and  the  ground  truth,  correcting  color 

distortions. Perceptual Loss: Utilizes high-level features from a pre-trained network

(such as VGG) to ensure the enhanced image retains perceptual details. Adversarial

Loss:  When  used,  this  loss  helps  improve  the  realism  of  the  enhanced  images  by

training the network in an adversarial setting with a discriminator network.

Conclusion: Enhanced Image Quality: MSDR-Net significantly improves the visual

quality  of  underwater  images,  making  them  clearer  and  more  visually  appealing.

Improved  Color  Correction:  The  network  effectively  corrects  color  distortions,

providing images with more natural and accurate color representation. Better Feature

Visibility:  By  enhancing  visibility,  MSDR-Net  helps  reveal  features  that  are

otherwise obscured in underwater images, aiding in various underwater applications

like  object  detection  and  marine  research.  Effective  Multi-Scale  Processing:  The

multi-scale approach enables the network to handle a wide range of distortions and

enhance images at different levels of detail.

Limitation: Dataset Dependency: The performance of MSDR-Net heavily relies on

the quality and diversity of the training dataset. Limited or biased datasets can affect
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the  generalization  capability  of  the  network.  Computational  Complexity:  Training 

and deploying MSDR-Net requires significant computational resources, particularly

for high-resolution images and complex architectures. Artifact Introduction: In some

cases,  the  enhancement  process  may  introduce  artifacts  or  exaggerate  certain

features,  leading  to  unnatural-looking  images.  Generalization:  While  MSDR-Net 

performs well on the training dataset, it may struggle with underwater conditions that 

are significantly different from those seen during training.

2.5. U-shaped Transformer

Methodology:  The  U-shaped  Transformer  architecture  builds  on  the  standard

Transformer model, enhancing it with a U-shaped structure designed to handle multi- 

scale  data  processing.  The  key  components  of  this  methodology  are:  Data

Preprocessing:  The  input  data,  which  can  be  in  the  form  of  images,  text,  or  other

types  of  data,  is  preprocessed  to  create  an  initial  representation  suitable  for  the

model.  Encoding  Stage:  The  preprocessed  data  is  passed  through  an  initial  set  of

layers  that  encode  the  input  into  a  feature-rich  representation.  This  stage  typically

includes several convolutional layers (for image data) or embedding layers (for text

data).  Downsampling:  As  the  data  moves  through  the  encoding  stage,  it  is

progressively  downsampled  to  reduce  its  spatial  or  sequential  resolution  while

increasing  the  feature  dimensionality.  This  is  achieved  using  techniques  like  max

pooling or strided convolutions. Bottleneck: At the bottom of the U-shape, the data

reaches  the  bottleneck  layer,  which  captures  the  most  abstract  and  high-level

features.  This  layer  plays  a  crucial  role  in  distilling  essential  information from the

input  data.  Decoding  Stage:  The  data  is  then  upsampled  through  a  series  of  layers 

that  increase  its  spatial  or  sequential  resolution  while  reducing  the  feature

dimensionality. Techniques such as transposed convolutions or upsampling layers are 

used here. Skip Connections: Skip connections are integrated between corresponding 

layers in the encoding and decoding stages. These connections help preserve spatial

information  and  facilitate  the  flow  of  gradients,  improving  the  model’s  ability  to 

learn  and generalize.  Output  Layer:  The  upsampled  data  is  processed  through  final
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layers  to  produce  the  output,  which  could  be  a  segmentation  map,  a  reconstructed

image, or another type of result, depending on the task.

Conclusion:  The  U-shaped  Transformer  architecture  demonstrates  significant 

advantages  in  handling  tasks  that  require  multi-scale  processing,  such  as  image 

segmentation  and  hierarchical  data  analysis.  The  use  of  skip  connections  and

progressive downsampling/upsampling allows the model to effectively combine high

-level  semantic  information  with  fine-grained  details,  leading  to  improved

performance in complex tasks.

Limitation:  The  U-shaped  Transformer,  with  its  multiple  layers  and  skip

connections,  can  be  computationally  intensive,  requiring  significant  processing

power and memory, particularly for high-resolution data. Training Time: Due to its

complexity, training a U-shaped Transformer can be time-consuming, often requiring 

extensive computational resources and longer training periods compared to simpler

models.  Data Requirements:  The model typically requires large amounts of data to

achieve optimal performance, which may not be available for all tasks or domains.

Overfitting: With its high capacity, the U-shaped Transformer is prone to overfitting,

especially  if  the  training  data  is  limited  or  not  sufficiently  diverse.  Regularization

techniques  and  careful  model  tuning  are  necessary  to  mitigate  this  issue.

Interpretability: Like many deep learning models, the U-shaped Transformer can be

difficult to interpret, making it challenging to  understand how the model is making

its decisions

2.6. DATASETS

Three datasets were employed to provide a comprehensive testing ground:

2.6.1. UIEB

There are some underwater models that simulate underwater conditions with varying

degrees of visibility. The UIEB dataset is specifically designed to test and benchmark 

underwater  image  enhancement  algorithms.  It  provides  a  comprehensive  set  of

underwater images with different optical properties, making it a valuable resource for
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researchers working on underwater image enhancement and related work the UIEB

data  set  contains  950  images  Specifically,  this  Combines  890  underwater  images 

with  their  corresponding  enhanced  underground  true  images,  which  used  different

enhancement  techniques  The  dataset  also  includes  60  other  underground  images 

including inaccurate subsurface costs  for qualitative research.  Pairs  of  images:  890

pairs of underwater and land truth images. Unpaired images: 60 underwater images

for qualitative analysis.

Table 2. Evaluation on UIEB Dataset

Model PSNR(dB)↑ SSIM↑ MSE↓ RMSE↓

FUnIGAN 22.77 0.8659 0.0053 0.0727

UGAN 17.27 0.7723 0.0187 0.1369

WaterNet 21.85 0.8288 0.0382 0.1955

RAUNE-Net 12.92 0.062 0.0808 0.2843

U-Shape 

Transformer
21.06 0.7596 0.0294 0.1714

These  images  covered  a  wide  range  of  underwater  environments,  including  depth,

lighting conditions,  and water types,  and provided a comprehensive set  of  data for

training  and  evaluating  underwater  image  enhancement  algorithms.  Two  images:

Each underwater image in the dataset has a corresponding reference (ground truth)

image that represents the best magnification version. This pairing is important for the 

purpose of the study and for monitoring research. High quality: Sample images are

carefully processed to remove common underwater image distortions such as color

shots, low contrast,  and blur, and provide clear targets for improvement algorithms

Description  and  benchmarking  :  The  dataset  includes  descriptions  and  benchmark

scores  for  different  methods  of  correction,  matching  the  benchmarks  set  by

researchers to its own algorithm Availability to compare performance: The dataset is
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in the public domain, which enables reproducibility and provides further research on

underwater image enhancement is facilitated.

Table  2  shows  that  FUnIE-GAN  [5]  has  the  highest  PSNR  and  SSIM  scores,

indicating better performance in image dissimilarity and noise reduction compared to 

other models with RAUNE-Net [4] having the lowest metrics scores overall, which

means it may not work well for this particular application. UGAN [2], WaterNet [1],

and U-Shape Transformer show exceptional performance, with UGAN [2] having the 

lowest  SSIM and the  highest  RMSE,  indicating  a  worse  performance compared to

FUnIE-GAN [5] and WaterNet [1].

2.6.2. EUVP

Designed for paired image enhancement tasks. The EUVP dataset is designed 

to  support  research  in  underwater  image  enhancement.  It  is  specifically  curated  to

address the challenges of underwater imaging, such as color distortion, low contrast,

and  haziness.  The  EUVP  dataset  includes  a  total  of  2,720  images.  The  dataset  is

divided  into  training,  validation,  and  testing  sets,  each  containing  paired  and

unpaired underwater images.

Total  Number  of  Images:  Paired  Images:  400  (training)  +  100  (validation)  +  100

(testing) = 600 pairs (1,200 images).

Unpaired Images: 500 (testing) + 1,520 (unsupervised) = 2,020 images

Thus, the EUVP dataset consists of 2,720 images in total, with 1,200 paired images

(600 pairs) and 2,020 unpaired images. This comprehensive collection supports both

supervised and unsupervised learning approaches in underwater image enhancement

research.
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Table 3. Evaluation on EUVP Dataset

Model PSNR(dB)↑ SSIM↑ MSE↓ RMSE↓

FUnIGAN 19.21 0.5929 0.0239 0.1547

UGAN 18.45 0.7565 0.0359 0.1894

WaterNet 23.46 0.8333 0.1697 0.0288

RAUNE-Net 11.76 0.0416 0.1057 0.3252

U-Shape 

Transformer
21.94 0.8261 0.0388 0.1865

Collection  of  images:  The  dataset  contains  several  underwater  images  taken  at

different  underwater  locations.  This  diversity  helps  in  training  models  that  can

generalize  well  to  different  situations.  Paired images:  The  EUVP data  set  contains

paired images. Duplicate images: An underwater image with corresponding reference 

images (ground truth). Undouble images: Underwater images without corresponding

ground truths, useful for unsupervised learning. High-Resolution Images: The images 

in  the  dataset  are  of  high  resolution,  which  is  beneficial  for  training  high-capacity

models and for tasks requiring fine details. Ground Truth: The reference images are

carefully curated to represent the ideal enhanced versions of the underwater images,

free from typical underwater distortions.

Table 3 shows WaterNet [1] outperforms other models in terms of PSNR and SSIM,

suggesting it  provides  the  best  image quality  and structural  integrity  on the EUVP

dataset.  RAUNE-Net  [4]  shows significantly  lower performance across  all  metrics,

indicating it might be the least effective model for this dataset. U-Shape Transformer

has  decent  performance,  especially  in  terms  of  SSIM,  showing  good  structural

similarity  to  the original  images despite  a  lower PSNR compared to WaterNet [1].

FUnIE-GAN [5] and UGAN [2] have moderate performances with balanced metrics

but do not lead in any particular area.
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2.6.3. Underwater ImageNet

Underwater  ImageNet:  Adapted  from  the  standard  ImageNet  but  focused  on

underwater  imagery,  adding  complexity  due  to  diverse  underwater  conditions.  The

ImageNet  dataset  is  a  large-scale  visual  database  designed for  use  in  visual  object

recognition research. It has been one of the most significant datasets in the field of

computer vision and has played a pivotal role in advancing the development of deep

learning algorithms, particularly CNNs. The ILSVRC dataset, a subset of ImageNet,

consists  of  1,000  categories  and  1.2  million  training  images,  50,000  validation

images, and 100,000 test images.

Scale  and  Diversity:  The  ImageNet  dataset  contains  over  14  million  annotated

images, making it one of the largest image datasets available. It covers a wide range

of object categories, with over 20,000 categories represented in the full dataset.

Hierarchy and Labeling: Images are organized according to the WordNet hierarchy,

with each node in the hierarchy representing a different object category. Each image

is  labeled  with  one  or  more  WordNet  synsets,  providing  a  detailed  and  structured

labeling  system.  High-Quality  Annotations:  The  annotations  are  created  through  a

combination of automatic and manual labeling processes, ensuring high-quality and

accurate  labels.  Images  are  often  verified  by  multiple  human  annotators  to  ensure

reliability.

Challenges  and Benchmarks:  The  ILSVRC  is  an annual  competition  that  uses  a 

subset of the ImageNet data. The challenge includes tasks like image classification,

object detection, and image segmentation.
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Table 4. Evaluation on Subset of ImageNet

Model PSNR(dB)↑ SSIM↑ MSE↓ RMSE↓

FUnIGAN 22.04 0.8165 0.0063 0.0791

UGAN 16.72 0.651 0.0268 0.1637

WaterNet 22.07 0.7515 0.0404 0.201

RAUNE-Net 13.09 0.0962 0.0778 0.2789

U-Shape 

Transformer
20.45 0.6924 0.0348 0.1865

Table 4 shows WaterNet and FUnIE-GAN [5] have very close performances in terms 

of  PSNR,  both  surpassing  22  dB,  indicating  excellent  quality  of  image

reconstruction.  FUnIE-GAN  [5]  leads  slightly  in SSIM,  which  suggests  it  might

retain structural  details  slightly  better  than WaterNet.  UGAN [2]  and RAUNE-Net

lagbehind, especially RAUNE-Net, which shows significantly lower scores across all 

metrics, suggesting it may be less effective in dealing with this subset of ImageNet.

UGAN  [2],  while  having  a  lower  PSNR  and  SSIM  than  FUnIE-GAN  [5]  and

WaterNet, still performs significantly better than RAUNE-Net.
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2.7. Results

Fig.2.1. PSNR Values of FUnIE -GAN, UGAN, WaterNet, RAUNE-Net, and U-Shape 

Transformer on the UIEB, EUVP, and ImageNet Datasets.

Fig.2.2. SSIM Values of FUnIE -GAN, UGAN, WaterNet, RAUNE-Net, and U-Shape 

Transformer on the UIEB, EUVP, and ImageNet Datasets.
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Fig.2.3.  MSE Values of FUnIE -GAN, UGAN, WaterNet,  RAUNE-Net,  and U-Shape

Transformer on the UIEB, EUVP, and ImageNet Datasets.

Fig.2.4.  RMSE  Values  of  FUnIE-GAN  [5],  UGAN,  WaterNet,  RAUNE-Net,  and U- 

Shape Transformer on the UIEB, EUVP, and ImageNet Datasets.
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CHAPTER 3 

PROPOSED WORK

Underwater image enhancement is essential for various applications such as marine

biology,  underwater  archaeology,  and  underwater  inspection.  GANs  have  shown 

promising  results  in  this  domain.  Among  them,  the  FUnIE-GAN  [5]  model  has 

demonstrated effectiveness in enhancing underwater images.

Fig.3.1.  EEF-GAN model with encoder and decoder parts

However, to further improve its performance, this study proposes a new modification 

of the FUnIE-GAN [5] model, named Enhanced-Encoder FUnIE-GAN (EEF-GAN).

The main improvement of EEF-GAN is the modification of its encoder architecture.

Conventional  encoders  in  GANs  use  simple  convolution  operations  to  extract  this

feature. In contrast, EEF-GAN adds a convolution gap to a simple displacement in its
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encoder, resulting in a more subtle feature extraction process This modification aims

to  capture  details  from  underwater  imagery  types  of  filters,  thus  improving  image

quality. Data collection and preprocessing: Use 890 raw UIEB underwater images for 

training  and  100  images  for  validation.  Process  images  first  to  ensure  they  are 

compatible  with  the  web  design.  Base  architecture:  Based  on  the  FUnIE-GAN [5]

model. Modification: Increase the encoder part by adding convolution differences to

the simple diffraction, resulting in EEF-GAN.

3.1. Development Tools

Python and PyTorch were the primary tools, with PyCharm and Google Colab used

for coding and model training, respectively.

3.1.1. PyCharm

PyCharm  is a popular  integrated  development  environment  for Python,  widely  used 

in  software  development,  including  deep  learning  projects.  It  offers  a  variety  of

features that make it suitable for deep learning and other machine learning tasks.

Intelligent  Code  Editor:  Code  Completion:  PyCharm  provides  smart  code

completion, which helps write code faster and reduce errors.

Syntax  highlighting:  The  IDE  highlights  syntax  errors  and  code  inconsistencies,

making it easier to find and fix problems.

Code Navigation:  PyCharm allows easy navigation through the codebase,  allowing

quick access to functions, classes, and files.

Support  for  popular  libraries:  PyCharm  supports  deep  learning  libraries  such  as 

TensorFlow, Keras, PyTorch, and others, making it easy to set up and modify models.

Package management:  Integrated tools  for  managing Python packages (pip,  conda)

help to install and manage dependencies.

Debugging:  PyCharm's  powerful  debugging  allows  you  to  set  breakpoints,  find

variables, and traverse code, which is essential for finding problems in complex deep 

learning  models  Profiling:  Built-in  profiling  tools  help  identify  performance

bottlenecks and it improves code quality.
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Git  and  other  VCS:  PyCharm  integrates  with  version  control  systems  like  Git,

Mercurial,  and SVN, making it  easy to manage code versions and collaborate with

others.  Notebook  integration:  PyCharm  Professional  Edition  supports  Jupyter

notebooks,  allowing  interactive  development  and  testing  of  code  cells  similar  to

JupyterLab or  Jupyter  Notebook.  SSH and Remote  Translators:  PyCharm supports

remote development over SSH and can use remote translations, which enables work

on remote servers with powerful GPUs.

PyCharm is a robust IDE that provides a comprehensive set of tools for developing

deep  learning  projects.  Its  intelligent  features,  support  for  popular  libraries,

debugging  capabilities,  and  integration  with  various  development  tools  make  it  a

great  choice  for  both  beginners  and  experienced  practitioners  in  the  field  of  deep

learning.

3.1.2. PyTorch

PyTorch is an opensource machine learning library widely used for developing and

training  deep  learning  models.  Developed  by  Facebook’s  AI  Research  Lab,  it

provides an intuitive and dynamic algorithm for building neurons. Here are some of

the key features and benefits of using PyTorch for deep learning projects:

Dynamic calculations: PyTorch uses dynamic calculations, also known as define-by-

run. This makes model building simple and easy, making it easier to set up and test

models.  Tensor  Functions:  PyTorch  provides  powerful  tensor  functions  similar  to

NumPy,  but  with  GPU  speed.  This  enables  efficient  computation  and  ease  of

implementation in multidimensional arrays.

Autograd:  PyTorch  includes  Autograd,  an automatic  differentiation  library.  This

feature enables realistic calculation of horizontal displacements, which is important

for the development of classical surface propagating tissues.

Neural  Network Library:  The  Torch.nn module  provides  a  rich  library  of  pre-built

layers,  loss  functions,  and  optimizers,  making  it  easy  to  build  and  train  neural

networks  CUDA  Support:  PyTorch  has  native  support  for  CUDA,  which  provides
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allowing  fast  and  easy  tensor  computation  on  NVIDIA  using  GPUs.  This  greatly

accelerates  the  training  process  for  large  sample  sizes  and data  sets.  Data  Loading 

and  Preprocessing:  The  Torch.utils.data  module  contains  utilities  for  loading  and

preprocessing  data.  The  Dataset  and  DataLoader  classes  support  high-performance

data pipelines, supporting parallel data loading and incrementation.

3.3. Evaluation Metrics

Evaluation  Criteria:  Calculate  the  PSNR,  SSIM,  MSE,  and  RMSE  to  evaluate  the

performance of the EEF-GAN model compared to the baseline model.

3.3.1. PSNR

Peak  Signal-to-Noise  Ratio  is  a  widely  used  metric  for  evaluating  the  quality  of

reconstructed  or  compressed  images  and videos.  It  measures  the  ratio  between the

maximum possible power of a signal and the power of corrupting noise that affects

the fidelity of its representation. PSNR is expressed in decibels (dB).
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Higher  PSNR  values  indicate  better  quality  of  the  reconstructed  image,  as  they 

represent a higher ratio of signal to noise. Typical PSNR values for lossy image and

video compression range between 30 and 50 dB, with higher values indicating better

quality.  PSNR  is  simple  to  compute  and  widely  understood.  It  provides  a  single

scalar value representing the quality of  the image reconstruction.  PSNR is  a  pixel-

wise  metric  and  does  not  always  correlate  well  with  human  perception  of  image

quality. It does not consider structural distortions or perceptual differences that may

be  more  important  to  human  viewers.  PSNR  is  commonly  used  to  evaluate  the

quality  of  image  and  video  compression  algorithms.  It  is  also  used  to  assess  the

performance  of  image  enhancement  algorithms,  such  as  denoising,  deblurring,  and

super-resolution. In medical imaging and other fields, PSNR is used to evaluate the

quality of reconstructed images from various reconstruction algorithms.
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3.3.2. SSIM

The Structural Similarity Index is a perceptual metric used to measure the similarity

between two images. Unlike traditional methods such as Mean Squared Error

(�µ� µ�  +  �� )(����  +  �� )
����(�, �)  =

(µ� �  +  µ��  +  �� )(�� �  +  ���  +  �� )
… (2)

(MSE)  and  Peak  Signal-to-Noise  Ratio  (PSNR),  SSIM  considers  changes  in

structural  information,  luminance,  and  contrast,  which  makes  it  more  aligned  with

human  visual  perception.  SSIM  values  range  from  -1  to  1.  A  value  of  1  indicates

perfect structural similarity, while values closer to -1 indicate dissimilarity. Typically, 

values above 0.9 indicate high similarity. SSIM is more consistent with human visual 

perception compared to MSE and PSNR. It considers structural information, making

it effective for tasks where the preservation of structural details is crucial.  SSIM is

computationally more complex than MSE and PSNR. It may not perform well when

comparing images with different types of distortions. SSIM is widely used to assess

the quality of images in compression, denoising, and enhancement tasks. Researchers 

use  SSIM  to  evaluate  the  performance  of  image  processing  algorithms,  especially

those focusing on preserving structural information.

3.4.3. MSE

Mean Squared Error  is  a  fundamental  metric  used to  measure the  average squared

difference between the actual  (original)  values and the predicted (or reconstructed)

values. It is widely used in regression tasks and for evaluating the quality of image

compression,  enhancement,  and  reconstruction  algorithms.  MSE  quantifies  the

average squared error between the original and reconstructed images.

�
1 �

��� = ∑ ∑(�(�, �)  − �(�, �))2
�� �=1

�=1

… (3)

Lower  MSE  values  indicate  better  quality,  with  smaller  differences  between  the

original and reconstructed images.  MSE = 0 indicates perfect reconstruction with no
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errors. Simple to compute and understand. Provides a single scalar value representing 

the overall error. MSE is a pixel-wise metric and does not take into account human

perception  of  image  quality.  It  can  be  sensitive  to  outliers,  as  it  squares  the  error

terms,  giving more weight  to  larger  errors.  MSE is  used to  evaluate  the quality  of

compressed images by comparing them to the original images. It assesses the

Performance of image enhancement algorithms by measuring the error between the

enhanced  and  original  images.  In  tasks  like  denoising,  deblurring,  and  super-

resolution,  MSE  helps  in  quantifying  how  close  the  reconstructed  image  is  to  the

ground truth.

3.4.4. RMSE

Root Mean Squared Error is a metric used to measure the average magnitude of the

errors between predicted and actual values. It is the square root of the Mean Squared

Error (MSE) and provides  a measure of the differences  between values predicted by 

a model or an algorithm and the values actually observed. RMSE provides the square 

root of the average squared errors, bringing the error metric back to the original unit

of  measurement  (e.g.,  pixel  intensity  for  images).  Lower  RMSE  values  indicate 

better  quality,  with  smaller  differences  between  the  original  and  reconstructed

images. RMSE = 0 indicates perfect reconstruction with no errors. RMSE is easy to

���� =  √��� … (4)

interpret since it has the same unit as the quantity being measured. It penalizes large

errors  more  strongly  than  small  errors  due  to  the  squaring  process  in  MSE.  Like

MSE,  RMSE  is  a  pixel-wise  metric  and does  not consider  human  perception  of

image  quality.  It  can  be  sensitive  to  outliers,  as  it  squares  the  error  terms  before 

taking the square root. Image Compression: RMSE is used to evaluate the quality of

compressed  images  by  comparing  them  to  the  original  images.  It  assesses  the

performance of image enhancement algorithms by measuring the error between the

enhanced  and  original  images.  In  tasks  like  denoising,  deblurring,  and  super-

resolution,  RMSE  helps  in quantifying  how close  the reconstructed  image  is  to the
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ground  truth.  The  study  revealed  varying  efficacy  across  models  with  respect  to

different datasets.

The  proposed  EEF-GAN  model  is  expected  to  outperform  the  original  models

including WAterNet [1], RAUENet, UGAN [2], and U-shape transformer in terms of 

image quality metrics, convolution differences are expected incorporating them into

encoders  will  improve feature extraction,  resulting in  submerged images  becoming

clearer  and  more  visually  appealing.  The  EEF-GAN  system  has  the  potential  to

significantly improve the quality of underwater images, which can support a variety

of underwater applications including underwater imaging, marine biological surveys

and  underwater  survey  projects.  The  proposed  EEF-GAN  model  is  expected  to

outperform  the  original  models  including  WAterNet  [1],  RAUNE-NET  [4]ENet,

UGAN [2], and U-shape Transformer in terms of image quality metrics, convolution

differences  are  expected  incorporating  them  into  encoders  will  improve  feature

extraction,  resulting  in  submerged  images  becoming  clearer  and  more  visually

appealing.  The  EEF-GAN  system  has  the  potential  to  significantly  improve  the 

quality of underwater images, which can support a variety of underwater applications 

including  underwater  imaging,  marine  biological  surveys  and  underwater  survey 

projects.
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CHAPTER 4 

RESULT

This section presents a comparative analysis of the EEF-GAN model against several

state-of-the-art  models  in  underwater  image  enhancement  Performance  indicators

used  for  comparison  include  the  peak  signal-to-noise  ratio,  structural  similarity

index,  mean  square  error  and  root  mean  square  error.  The  EEF-GAN  model

demonstrated superior performance across all considered metrics, as summarized in

the following table:

Table 5. Performance of implemented and proposed models

Model PSNR(dB)↑ SSIM↑ MSE↓ RMSE↓

EEFGAN 22.94 0.8926 0.0042 0.068

FUnIGAN 22.77 0.8659 0.0053 0.0727

UGAN 17.27 0.7723 0.0187 0.1369

WaterNet 21.85 0.8288 0.0382 0.1955

RAUNE-Net 12.92 0.062 0.0808 0.2843

U-Shape 
Transformer

21.06 0.7596 0.0294 0.1714

The EEF-GAN obtained the highest PSNR value of 22.94 dB, indicating that it can

produce clear images with high fidelity compared to ground truth and, moreover, the

SSIM  of  0.8926  exhibits  construction  they  are  better  preserved  than  competing 

models.  In  terms  of  error  simulation,  EEF-GAN  recorded  the  lowest  MSE  and 

RMSE,  indicating  low mean square  error  and reduced error  variance,  respectively,

confirming its  robustness in underwater images of  the optical  enhancer.  EEF-GAN

performance  comes  from  its  new  encoder  design,  which  combines  convolutional
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differences  along  with  standard  convolutional  layers.  This  improvement  facilitates 

the extraction  of more  effective  features  from  degraded  underwater  images,  leading 

to  improved  image  detail  and  reproducibility.  The  improved  performance  of  EEF-

GAN  not  only  sets  a  new  standard  for  underwater  image  enhancement  but  also

highlights how deep learning models can be applied to real-world scenarios such as

the ocean of biology, underwater robotics, and environmental monitoring where high-

quality  visual  information  is  paramount  as  well  with  an  emphasis  .This  section

presents a comparative analysis of the EEF-GAN model against several state-of-the-

art  models  in  underwater  image  enhancement  Performance  indicators  used  for

comparison include the peak signal-to-noise ratio,  structural  similarity index,  mean

square error and root mean square error. The EEF-GAN obtained the highest PSNR

value  of  22.94 dB,  indicating  that  it  can  produce  clear  images  with  high  fidelity

compared to ground truth and, moreover, the SSIM of 0.8926 exhibits construction

they are better preserved than competing models. In terms of error simulations, EEF-

GAN recorded  the  lowest  MSE and RMSE,  indicating  low mean square  error  and

reduced error variance, respectively, confirming its robustness in underwater images

of the optical enhancer. EEF-GAN performance comes from its new encoder design,

which combines convolutional differences along with standard convolutional layers.

This  improvement  facilitates  more  effective  feature  extraction  from  degraded

underwater  images,  resulting  in  improved  image  detail  and  texture  recovery.  The

improved  performance  of  EEF-GAN  not  only  sets  a  new  standard  for  underwater

image enhancement but also highlights how deep learning models can be applied to

real-world  scenarios  such  as  the  ocean  of  biology,  underwater  robotics,  and

environmental  monitoring  where  high-quality  visual  information  is  paramount  as 

well with an emphasis .The EEF-GAN obtained the highest PSNR value of 22.94 dB, 

indicating  that  it  can  produce  clear  images  with  high  fidelity  compared  to  ground

truth  and,  moreover,  the  SSIM  of  0.8926  exhibits  construction  they  are  better

preserved than competing models. In terms of error simulation, EEF-GAN recorded

the  lowest  MSE  and  RMSE,  indicating  low  mean  square  error  and  reduced  error

variance, respectively, confirming its robustness in underwater images of the optical

enhancer.  EEF-GAN  performance  comes  from  its  new  encoder  design,  which

combines  convolutional  differences  along  with  standard  convolutional  layers.  This
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improvement  facilitates  the  extraction  of  more  effective  features  from  degraded 

underwater  images,  leading  to  improved  image  detail  and  reproducibility.  The

improved  performance  of  EEF-GAN  not  only  sets  a  new  standard  for  underwater

image enhancement but also highlights how deep learning models can be applied to

real-world  scenarios  such  as  the  ocean  of  biology,  underwater  robotics,  and

environmental  monitoring  where  high-quality  visual  information  is  paramount  as 

well with an emphasis.

.Fig 4.1. PSNR values calculated on UIEB Dataset

Fig 4.2. SSIM values calculated on UIEB Dataset
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Fig.4.3. MSE values calculated on UIEB Dataset

Fig. 4.4. RMSE values calculated on UIEB Dataset
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Fig.4.5. (a)

Fig. 4.5. (b)

Fig. 4.5. (c)

Fig. 4.5. (d) (e)



45

Fig. 4.5. (f)

Fig. 4.5.(g)

Fig. 4.5. (h)

Fig. 4.5. (i)

Fig. 4.5. (j), Resultant Images of Proposed Method (a to j)
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CHAPTER  5 

RESEARCH GAP & FUTURE SCOPE

The  EEF-GAN  model  was  inspired  by  the  distinctive  shortcomings  of  existing

underwater  image  enhancement  techniques  Commonly  used  models  typically  deal

with  severe  damage  such  as  various  lighting  conditions  and  color  a  distortion  that

poorly  handles  underwater  environmental  characteristics,  and  results  in  detail  and

inaccurate color rendering. It greatly improves feature extraction and detail recovery, 

thus ensuring that the rendered images are attractive and realistic.

Looking ahead,  the  expansion potential  of  EEF-GAN is  immense.  Optimization of

real-time modeling could transform the application of underwater robotics and live

ocean surveys. Furthermore, adapting the EEF-GAN to other unpredictable imaging

conditions, such as nighttime weather or fog, could expand its applicability. Future

research  may  also  seek  to  integrate  this  model  into  an  autonomous  vehicle  for  in-

flight video processing, and test its effectiveness on different datasets to increase its

robustness and versatility If we push these limitations, future research could enhance

the  impact  of  EEF-GAN,  opening  new  frontiers  in  internal  imaging  and

environmental monitoring.
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CHAPTER 7 

CONCLUSION
This  study  introduces  the  EEF-GAN,  a  new  method  for  underwater  image

enhancement  that  significantly  improves  existing  models  in  terms  of  clarity  and

image quality by affecting convolutional contrast together in the encoder part, EEF-

GAN used methods such as FUnIE-GAN , UGAN, WaterNet, Comparatively, good

performance was obtained in all metrics.

RAUNE-Net, and U-Shape Transformer, as reflected by the highest PSNR and SSIM 

values and the lowest MSE and RMSE.

The effectiveness of EEF-GAN highlights the power of particularly deep neurons in

addressing  specific  imaging  challenges,  especially  in  areas  where  conventional

imaging fails.

However,  the study  is not without  limitations.  While  the performance  of EEF-GAN 

is  promising,  it  has  been  tested  under  controlled  experimental  conditions  and

especially  on  the  UIEB  dataset.  Future  research  should  look  to  validate  the  model 

and possibly improve its robustness in different downstream environments and under 

different degradation conditions.

Looking  ahead,  there  is  considerable  scope  for  expansion  of  the  EEF-GAN

programme. Possible improvements could include the integration of  more dynamic

coding techniques or the use of transfer learning to adapt the model for similar tasks.

In other visually challenging situations, such as fog or night scenes.

In addition, further research may seek to reduce the computational requirements of

the model to facilitate its implementation in real-time applications. In conclusion, the 

development of EEF-GAN represents a significant step forward in the application of

deep  learning  to  enhance  underwater  imaging,  providing  a  strong  foundation  for

future advancements in this important area of research.



48

REFERENCES

[1] C.  Li  et  al.,  "An  Underwater  Image  Enhancement  Benchmark  Dataset  and
Beyond,"  in  IEEE  Transactions  on  Image  Processing,  vol.  29,  pp.  4376-4389,
2020, doi: 10.1109/TIP.2019.2955241.

[2] Fabbri, C., Islam, M. J., & Sattar, J. (2018). Enhancing Underwater Imagery
using Generative Adversarial Networks. ArXiv. /abs/1801.04011

[3] L. Peng, C.  Zhu and L. Bian, "U-Shape Transformer for Underwater Image
Enhancement,"  in  IEEE  Transactions  on  Image  Processing,  vol.  32,  pp.  3066-
3079, 2023, doi: 10.1109/TIP.2023.3276332.

[4] Peng,  W.,  Zhou,  C.,  Hu,  R.,  Cao,  J.,  &  Liu,  Y.  (2023).  RAUNE-Net:  A
Residual and Attention-Driven Underwater Image Enhancement Method. ArXiv.
/abs/2311.00246

[5] Islam,  M.  J.,  Xia,  Y.,  &  Sattar,  J.  (2019).  Fast  Underwater  Image 
Enhancement for Improved Visual Perception. ArXiv. /abs/1903.09766

[6] C. Fabbri,  M. J.  Islam and J.  Sattar,  ”Enhancing Underwater Imagery Using
Generative  Adversarial  Networks,”  2018  IEEE  International  Conference  on
Robotics  and  Automation  (ICRA),  Brisbane,  QLD,  Australia,  2018,  pp.  7159-
7165, doi: 10.1109/ICRA.2018.8460552.

[7] J. Li, K. A. Skinner, R. M. Eustice and M. Johnson-Roberson, ”WaterGAN:
Unsupervised  Generative  Network  to  Enable  Real-Time  Color  Correction  of 
Monocular Underwater Images,” in IEEE Robotics and Automation Letters, vol.
3, no. 1, pp. 387-394, Jan. 2018, doi: 10.1109/LRA.2017.2730363.

[8] Uplavikar,  P.,  Wu, Z.,  Wang, Z.:  All-in-one underwater image enhancement
using domain-adversarial learning. arXiv preprint arXiv:1905.13342 (2019)

[9] Goodfellow, I. J.,  Mirza, M., Xu, B., Ozair, S., Courville, A., & Bengio, Y.
(2014). Generative Adversarial Networks. ArXiv. /abs/1406.2661

[10] Deng,  J.,  Dong,  W.,  Socher,  R.,  Li,  L.-J.,  Li,  K.,  and  Fei-Fei,  L.  2009. 
ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009
IEEE  Conference  on Computer  Vision  and Pattern  Recognition,  Miami,  FL, 
USA, pp. 248-255.

[11] A.  K.  Pandey  and  A.  Singh  Parihar,  ”A  Comparative  Analysis  of  Deep 
Learning Based Human Action Recognition Algorithms,” 2023 14th International 
Conference  on  Computing  Communication  and  Networking  Technologies 
(ICCCNT), Delhi, India, 2023, pp. 1-7, doi: 
10.1109/ICCCNT56998.2023.10308200.

[12] Singh,  K.,  Pandey,  A.,  Agarwal,  A.  et  al.  FRN:  Fusion  and  recalibration
network  for  low-light  image  enhancement.  Multimed  Tools  Appl  83,  12235–
12252 (2024). https://doi.org/10.1007/s11042-023-15908-7

[13] A.  S.  Parihar  and K.  Singh,  ”A  study on Retinex  based method for  image
enhancement,”  2018  2nd  International  Conference  on Inventive  Systems  and



49

Control  (ICISC),  Coimbatore,  India,  2018,  pp.  619-624,  doi:
10.1109/ICISC.2018.8398874.

[14] A.  S.  Parihar,  Y.  K.  Gupta,  Y.  Singodia,  V.  Singh  and  K.  Singh,  ”A
Comparative  Study  of  Image  Dehazing  Algorithms,”  2020  5th  International
Conference  on  Communication  and Electronics  Systems (ICCES),  Coimbatore,
India, 2020, pp. 766-771, doi: 10.1109/ICCES48766.2020.9138037.

[15] Singh,  K.,  &  Parihar,  A.  S.  (2021).  Variational  optimization  based  single
image  dehazing.  Journal  of  Visual  Communication  and  Image  Representation, 
79, 103241. https://doi.org/10.1016/j.jvcir.2021.103241

[16] K.  Singh  and  A.  S.  Parihar,  ”A  comparative  analysis  of  illumination
estimation  based  Image  Enhancement  techniques,”  2020  International
Conference on Emerging Trends in Information Technology and Engineering (ic- 
ETITE), Vellore, India, 2020, pp. 1-5, doi: 10.1109/icETITE47903.2020.195.

[17] Singh,  K.,  Parihar,  A.S.  Illumination  estimation  for  nature  preserving  low-
light  image  enhancement.  Vis  Comput  40,  121–136  (2024). 
https://doi.org/10.1007/s00371-023-02770-9

[18] Wang,  N.,  Zhou,  Y.,  Han,  F.,  Zhu,  H.,  and  Yao,  J.  2019.  UWGAN:
Underwater  GAN  for  real-world  underwater  color  restoration  and  dehazing.
arXiv preprint arXiv:1912.10269.

[19] A. Pipara, U. Oza and S. Mandal, "Underwater Image Color Correction Using 
Ensemble Colorization Network," 2021 IEEE/CVF International Conference on
Computer Vision Workshops (ICCVW),  Montreal,  BC, Canada, 2021, pp. 2011-
2020, doi: 10.1109/ICCVW54120.2021.00228.

[20] Mirza,  M.,  &  Osindero,  S.  (2014).  Conditional  Generative  Adversarial  Nets.
ArXiv. /abs/1411.1784

[21] S.  Han,  J.  Wang,  Z.  Pan  and  Z.  Shen,  "MSDR-Net:  Multi-Scale  Detail- 
Recovery  Network  for  Single  Image  Deraining,"  2022  China  Automation
Congress  (CAC),  Xiamen,  China,  2022,  pp.  4823-4828,  doi:
10.1109/CAC57257.2022.10055299.

https://doi.org/10.1007/s00371-023-02770-9


50

LIST OF PUBLICATIONS
1. Minal  Tandekar,  Anil  Singh  Parihar,  “Deep  Learning  Approaches  to

Underwater  Image  Enhancement:  Performance  Metrics  and  Evaluations”.
Accepted  at  the  International  Conference  on  Intelligent  Computing  and
Communication Techniques (ICICCT 2024).

Paper ID: 665, Indexed by Scopus



51



52

2. Minal  Tandekar,  Anil  Singh  Parihar,”  Underwater  Image
Enhancement  through  Deep  Learning  and  Advanced  Convolutional
Encoders.”  Accepted  at  the  15th  International  IEEE  Conference  on
Computing Communication and Networking Technologies.



53



Similarity Report

PAPER NAME

chapters.pdf

AUTHOR

Minal

WORD COUNT

9087 Words

CHARACTER COUNT

53653 Characters

PAGE COUNT

43 Pages

FILE SIZE

1.8MB

SUBMISSION DATE

May 31, 2024 10:52 AM GMT+5:30

REPORT DATE

May 31, 2024 10:52 AM GMT+5:30

15% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

9% Internet database 6% Publications database

Crossref database Crossref Posted Content database 

13% Submitted Works database

Excluded from Similarity Report

Bibliographic material Quoted material

Cited material Small Matches (Less then 8 words)



Summary


	Submitted in Partial Fulfilment of the Requirements For The Award of the Degree of
	DELHI TECHNOLOGICAL UNIVERSITY
	COMPUTER SCIENCE & ENGINEERING
	Minal Tandekar
	2K22/CSE/11

	REFERENCES
	LIST OF PUBLICATIONS
	chapters.pdf
	Minal
	9087 Words
	53653 Characters
	43 Pages
	1.8MB
	May 31, 2024 10:52 AM GMT+5:30
	May 31, 2024 10:52 AM GMT+5:30
	Excluded from Similarity Report

	ACKNOWLEDGEMENTS
	Minal Tandekar (2K22/CSE/11)
	Minal Tandekar
	Signature of Supervisor(s)	Signature of External Examiner
	Dr. Anil Singh Parihar

	Content Guided attention for Underwater Image Enhancement
	ABSTRACT
	TABLE OF CONTENT
	LIST OF TABLE(S)
	LIST OF FIGURE(S)
	LIST OF ABBREVIATION(S)
	1.1	OVERVIEW
	1.2	WHY NECESSARY
	1.3	PROBLEM STATEMENT
	1.4	MODEL ARCHITECTURE
	1.4.1	WaterNet:
	1.4.2. UGAN
	1.4.2.	U-Shape Transformer
	1.4.3.	FUnIE-GAN
	1.4.4.	RAUE-Net

	CHAPTER 2 LITERATURE REVIEW
	2.1.	UGAN [2]
	2.2.	WaterNet [1]
	2.3.	FUnIE-GAN [5]
	2.4.	RAUNE-NET [4]
	2.5.	U-shaped Transformer
	2.6.	DATASETS
	2.6.1.	UIEB
	2.6.2.	EUVP
	2.6.3.	Underwater ImageNet
	2.7.	Results

	CHAPTER 3 PROPOSED WORK
	3.1.	Development Tools
	3.1.1.	PyCharm
	3.1.2.	PyTorch
	3.3.	Evaluation Metrics
	3.3.1.	PSNR
	3.3.2.	SSIM
	3.4.3.	MSE
	3.4.4.	RMSE

	CHAPTER 4 RESULT
	Fig.4.5. (a)
	Fig. 4.5. (c)
	Fig. 4.5. (f)
	Fig. 4.5. (h)

	CHAPTER 5 RESEARCH GAP & FUTURE SCOPE
	CHAPTER 7 CONCLUSION

