
PERMISSIONS RANKING WITH STATISTICAL TECHNIQUES FOR

ANDROID MALWARE DETECTION

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF SCIENCE

IN

MATHEMATICS

Submitted by:

Anjali Mishra

(2K20/MSCMAT/05)

Mahima

(2K20/MSCMAT/17)

Under the supervision of

Dr. ANSHUL ARORA

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY, 2022

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

We, (Anjali Mishra, Mahima), 2K20/MSCMAT/05,2K20/MSCMAT/17, students of

MSc(Mathematics), hereby, declare that the project Dissertation titled, ” Permissions Ranking with

Statistical Techniques for Android Malware Detection” which is submitted by us to the

Department of Applied Mathematics, Delhi Technological University, Delhi in partial fulfillment

of the requirement for the award of the degree of Master of Science, is original and not copied

from any source without proper citation. This work has not previously formed the basis for the

award of any Degree, Diploma Associateship, Fellowship, or other similar title or recognition.

Place: Delhi ANJALI MISHRA AND MAHIMA

Date: 5th May 2022

iii

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Permissions Ranking with Statistical

Techniques for Android Malware Detection” which is submitted by [Anjali Mishra, Mahima],

2K20/MSCMAT/05,2K20/MSCMAT/17 [Department of Applied Mathematics], Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award of the

degree of Master of Science, is a record of the project work carried by the students under my

supervision. To the best of my knowledge this work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere.

Place: Delhi Dr. ANSHUL ARORA

Date: 5th May 2022 SUPERVISOR

 ASSISTANT PROFESSOR

iv

ABSTRACT

 In today’s world, smartphones play a vital role in our lives as the control of, everything we do,

has been taken over by digital platforms. At present, it is impossible to live without smartphones.

There is more than one operating system for smartphones amongst which the Android operating

system can be considered one of the most popular ones.

 Android is an open-source operating system which means it is available freely. Anyone can

develop their android application. Furthermore, being an open-source system cybercriminals also

use it to develop their malicious applications. That is why Android has become a key for attackers

to invade the privacy of users and sabotage using the same weapon. Further, many malicious

applications perform venomous activities to breach the privacy of the users. So, it is mandatory to

detect these infringe or malicious applications.

 In this paper, we have proposed two statistical-based ranking techniques by taking some

references from the Spearman Ranking test and Mann-Whitney U test to rank the permissions in

order to check whether the permission is significant or not. Such a ranking helps us to eliminate

irrelevant permissions. Further, we apply machine learning algorithms to the dataset by eliminating

the lower-ranked permissions from the dataset. The experimental results demonstrate that we

obtain the highest accuracy of 99.4% and 99.25% using both ranking techniques respectively.

v

ACKNOWLEDGEMENT

 The most awaited moment of successful completion of an endeavor is always a result of persons

involved implicitly or explicitly in it. The successful completion of the planning and research

phases of our project is the result of dedicated efforts put in by many people and this report would

be incomplete without giving due credits to them. This acknowledgment is but a token of gratitude

in recognition of their help in our endeavor. We sincerely thank our project guide for providing us

the solutions that always take us out of all the chaos. It had been an honor and pleasure to work

under him. Not just the knowledge but a lot we have learned from them calm and composed attitude

for which we will remain indebted to them throughout our life.

 We would like to give our sincere thanks to ANSHUL ARORA (Professor) and S.Sivaprasad

Kumar (Professor), HOD of the Department of Applied Mathematics, and all the faculties from

whom we have learned a lot. We would like to acknowledge our work on “Permissions Ranking

with Statistical Techniques for Android Malware Detection” Last but not least, we would like to

thank our colleagues, friends, and our parents who were a constant and willing source of

encouragement and inspiration for us throughout the project.

Thanking you

Anjali Mishra

Mahima

vi

CONTENTS

Candidate’s Declaration ii

Certificate iii

Abstract iv

Acknowledgment v

Contents vi

List of Figures viii

List of Tables ix

CHAPTER 1 INTRODUCTION 1

1.1 Commencement 1

1.2 Motivation 3

1.3 Thesis Structure 5

CHAPTER 2 ANDROID 6

2.1 Background 6

2.2 Android Architecture 7

2.3 Android Security Feature 8

2.4 Android Malware 9

CHAPTER 3 LITERATURE REVIEW 11

3.1 Related Work 11

CHAPTER 4 PROPOSED METHODOLOGY 17

4.1 Structure 17

4.2 First Ranking Method 18

4.3 Second Ranking Method 19

4.4 Detection Process 20

vii

CHAPTER 5 RESULTS AND CONCLUSION 22

5.1 Machine Learning Algorithms 22

5.2 Classification and Accuracy 22

5.3 Conclusion and Future Work 25

REFERENCES 26

viii

LIST OF TABELS

2.1 Android Malware……………………………………………………………………………...9

5.1 Top 10 Permissions from both the ranking techniques………………………………………23

5.2 Detection Results when lower-ranked permissions are deleted from the first ranking

technique…………………………………………………………………………………………24

5.3 Detection Results when lower-ranked permissions are deleted from the second-ranking

technique…………………………………………………………………………………………24

ix

LIST OF FIGURES

1.1 Type of Android Malware……………………………………………………………………2

1.2 About Android………………………………………………………………………………..4

2.1 Architecture of Android……………………………………………………………………....7

4.1 Methodology Process………………………………………………………………………..17

1

CHAPTER 1 INTRODUCTION

1.1 COMMENCEMENT

 In today’s world, smartphones have become an irreplaceable part of everyone’s lives by

replacing personal computers with Internet usage and allowing users to check messages, emails,

social media accounts, and access online banking services on such devices.

 In the late 1990s, growth in the use of PDAs (personal digital assistants) increased, and it did

not take much time to transform them into mobile devices, popularly known as smartphones. The

number of smartphone users is increasing over time. In 2022, worldwide 6,648 million people are

using smartphones. That's approximately 83.72 percent of the world's population, up from 3.7

billion smartphone users just five years ago in 2016 [1].

 In addition, by 2027, the number of smartphone users is predicted to expand at a rate of 4

percent per year, reaching 7.69 billion [2].

 Among all existing smartphone operating systems, Android is the most popular operating

system.

 Android is a modified version of the Linux kernel, developed by Open Handset Alliance and

commercially sponsored by Google. Other open-source software is designed primarily

for touchscreen mobile devices such as smartphones and tablets. It was introduced in November

2007, with the first commercial Android device, the HTC Dream, being launched in September

2008.

 Android has a 70.97 % market share worldwide [3]. The main reason behind this is its wide

range of functionalities and its open-source nature. Being an open-source technology, android is

not only limited to smartphones but has also extended its reach to TV, car, and automation systems.

Android provides SDK to developers to plant their apps and allocate those apps through Android

application stores.

 Unfortunately, an increasing number of benign applications also raise the number of malware

applications. Also, the popularity of Android attracts cyber criminals who design malicious /

malware applications.

2

 Malware applications can exploit one’s device, steal personal data and compromise security.

These malicious applications are plotted to carry out multiple attacks such as spyware, SMS

Trojans, mobile banking Trojans, and viruses shown in Fig.1.

Fig.1.1 Types of Android Malware

 Such malicious apps can damage the system, leak sensitive information, send SMS messages

in the background without the user’s knowledge, etc. So, it is necessarily needed to detect these

malicious applications.

 In Android malware detection, the study is done in three approaches static, hybrid, and

dynamic. In the static approach, malware is pulled apart into a source code and specific features

are removed. In the dynamic approach, malware is examined at run-time in the virtual

environment. In both cases, the classification models of the dataset have been made by machine

learning algorithms. Then the detection of malicious apps is done by using these classification

models.

Android Malware

Warms

Rootkits

Bots

Trojan Horses

 Ransomware

Steal Wear

Keyloggers

Viruses

3

 Android app stores organize 32 app categories in the google play store such as Social media

apps, Educational apps, Entertainment apps, music apps, sports apps, etc. Also, these categories

have their features. Also, the applications which have similar categories share similar

functionalities. One of the most important features is permission.

 Permissions are a type of data that is asked by the application from the user so that the

application can run smoothly.

 Normal Permissions: Permissions that pose a low risk to the user, system, or device and are

granted by default during the installation process.

 Dangerous Permissions: Permissions that are dangerous and pose a significant risk due to their

ability to access private information and the device's most critical sensors.

 On the other hand, malicious apps request anomalous features to do their malicious activities.

 In this regards, this paper describes the detection of malware applications by the ranking of the

permissions of the applications using statistical techniques. We apply statistical tests to rank the

permissions so that irrelevant permissions can be deleted from the detection method. Further, on

the ranked permissions list, we delete the lower-ranked permissions and apply machine learning

algorithms for malware detection.

1.2 MOTIVATION

 As the growth of android benign apps is increasing day by day the growth of Android malware

apps is also increasing day by day. According to the researchers, the malicious attacks on

smartphone users exhibited “exceptional” peaks during the start and the end of February 2022.

Now, hackers are shifting their focus toward discrete infections through email and IoT. Their focus

is on enterprise businesses and governments versus average web users.

4

Fig. 1.2 About Android

 Being an open-source system, Publishing of Android applications is increasing day by day. On

the report of statistics (Statista), the number of applications accessible on Google play store is

around 3,298,329 in 2022 [45].

 Currently, Machine learning algorithms are used for detecting malware on Android. Mostly,

the researchers have their focus on machine learning classifiers to classify the malware to a known

malware family. Also, determine a new one by using semi-supervised learning. Machine learning

algorithms predict extraordinary accuracy rates at perceiving malicious apps based upon the

superiority of the features.

Inter App Integration

Reduce Cost of Development

Larger Developer and Community Reach

Higher Success Ratio

Increased Marketing

Rich Development

Environment

Open-Source

5

1.3 THESIS STRUCTURE

 The structure of this thesis report is systemized into 6 chapters.

 Chapter 2 presents a brief introduction to Android OS such as background, architecture, android

security features, and Android malware.

 Chapter 3 presents related work that has been done for malware perceived in Android OS.

 Chapter 4 presents the proposed ranking methods of this research which include structure,

extracting permissions, selecting permissions using ranking techniques, and detection process.

 Chapter 5 shows the outcomes, the significant findings, and the performance of the classifiers,

conclusion, and future work.

 References.

6

CHAPTER 2 ANDROID

2.1 BACKGROUND

 Android was constructed based on the Linux kernel and developed by Google. It is released on

September 23, 2008. It is an open-source operating system for smartphones, tablets, TVs, cars, and

wearable devices. Being an open environment of Android, many companies and manufacturers

use it for their products as a platform. Moreover, it allows companies to establish it to meet their

needs.

 Android provides a warm development environment through numerous kits: Android NDK,

Android SDK, Android Developer Tools (Eclipse), and Android Debug Bridge (ADB). As a new

version of Android is released Android Software Development Kit (SDK) goes updated. it

provides inclusive packages of Java framework classes, libraries, and debuggers for programmers.

Android Native Development Kit (NDK) is a set of libraries written in programming languages

such as C, C++, and more, that may be filled into Java code by System.loadLibrary call.

 Android Debug Bridge (ADB) consists of three components: client, server, and daemon. It is a

command-line tool in a client-server form. ADB authorizes an organizer to check their apps for

bugs using terminal commands by linking the software running device to a PC.

 Android Developer Tools (Eclipse) is an Integrated Development Environment (IDE) used to

develop Android applications and provides many functionalities through command lines/ GUI.

Also, the Google Play Store is the official distribution center for Android Apps. It provides app

installation and updates.

 Unfortunately, an open-source environment of Android attracts developers and cybercriminals

to establish their apps. Android markets use a variety of procedures to catch and extract malicious

applications. Also, Google Play Store uses “Bouncer” to scan the uploaded applications and apply

security evaluation before letting the application be published.

7

2.2 ANDROID ARCHITECTURE

 Android stack consists of 6 layers shown in Fig. 2.1.

Fig.2.1 Architecture of Android

8

 These layers control the entire system starting from power management to the system

application. Each layer provides particular services.

 The first layer, The Linux kernel; The foundation of Android OS is based on the Linux kernel.

It manages the hardware’s functionalities such as power, drives, memory, security settings,

hardware abstraction, and shared libraries. The second layer, Hardware Abstraction Layer (HAL);

It contains a verity of libraries, each of which is responsible for a particular type of hardware

component. It provides standard interfaces that expose device hardware capabilities to the higher-

level Java API framework. The third layer, Native libraries; it is a set of guidelines that are

responsible for the data process. It gives open-source libraries like Webkit, Media framework,

OpenMAX AL, Libc, and OpenGL-ES. It also provides the Android runtime libraries which

include the Dalvik VM and the core libraries. The fourth layer is, Java API Framework; APIs are

interfaces for the development of Android applications. This layer organizes the basic

functionalities on the system and links with the running applications. It consists of programs

content providers, view systems, Activity managers, Location managers, Package managers,

Notification managers, Resources managers, Telephony managers, and Window managers. The

last layer is System apps; Finally, it is the step where the phone’s functionalities are provided to

the user. It consists of a set of core apps such as SMS messaging, Emails, Calendars, Contacts, and

so on [46].

2.3 ANDROID SECURITY FEATURES

 Android security focuses on the smartphone’s hardware, user data, and system. Android’s

security features are as follows: App sandbox, App signing, Authentication, Biometrics,

Encryption, Keystore, Security-Enhanced Linux, Trusty Trusted Execution Environment (TEE),

and Verified Boot.

 App sandbox identifies and isolates app resources by using Linux user-based protection. It

allocates a unique user ID (UID) to each app. This UID is used to set up a kernel-level app sandbox.

App signing permits a user to recognize the app’s author and to update their application without

any kind of complications. The user-authentication-gated cryptographic key which requires a

9

cryptographic key, service provider and user authentication is used by the Android for

authentication purposes. Users can sign in to the derives by their fingerprints. A device can have

more than one fingerprint. For the transection purpose, high android versions use a

BiometricPrompt API. With this, application developers may affiliate biometric authentication

into their applications. Encryption makes the data unreadable that is if the data is accessed by an

unauthorized user still, he/she will not be able to read that data. Android provides a hardware-

backed Keystore. It provides a key generation. Security-Enhanced Linux (SELinux) is used by

Android to impose mandatory access control (MAC) over the process. Trusty is an OS and enables

a Trusted Execution Environment. Trusty is isolated and works as same as the android. Verified

Boot ensures that all the executed codes come from a trusted source but not from any attacker or

hacker [47].

2.4 ANDROID MALWARE

 The below table represents android malware and its work.

 Table 2.1 Android Malware

Type Definition

Worm It launches by itself and makes copies and spreads over a

network’s node.

Trojan It shows like a benign app and offers the user to use its useful

functionalities but performs its malicious activities in the

background by hiding from the user.

Spyware It collects the user’s information and sends them to the linked

remote device. Also, it sends users’ data like messages, location,

photos, and more to a remote server.

10

Backdoor It accesses high-level user access by exploiting the system’s

authentication mechanism. It is undetected and enables remote

access.

Bot It enables remote control over the device from a server called Bot-

master. It is used to launch an attack called DDoS.

Ransomware It makes the system inaccessible and encrypts the data.

Adware It sends customized advertisements found on a user’s collected

data such as location.

11

CHAPTER 3 LITERATURE REVIEW

3.1 RELATED WORK

 Earlier research, such as [5], and [6], looked at permissions to detect harmful behavior within

regular apps. By evaluating permissions and API requests, Grace et al. [5] assessed potential

dangers connected with in-app advertisement libraries. Based on a combination of permissions,

the Kirin model [6] has established security criteria to identify high-risk apps. The authors of these

investigations looked into normal in-app permissions for evidence of nefarious conduct. The

analysis did not include malware samples

 Sanz et al. [7] used machine learning classifiers to extract top permissions in malicious and

benign apps. The permissions and other properties of the manifest file were retrieved by the

MAMA model [8]. The authors of each of these papers concentrated on obtaining permissions that

are commonly utilized by malware and normal applications.

 Permissions were retrieved from the apps by Talha et al. [9]. The score for each permission was

calculated by comparing the amount of malware that contained the permission to the total number

of malwares. Tao et al. [10] used permissions, APIs, and the links between them to detect malware.

For detecting malicious samples, Cen et al. [11] used a probabilistic discriminative model on

decompiled source code and permissions. Peng et al. [12] used probabilistic generative models

such as Naive Bayes to assess the dangers of Android apps based on the permissions requested.

 To discover problematic permission patterns, the permission patterns mining method is used in

[13]. The model, on the other hand, did not take into account common apps and did not present

any detection models. Similarly, the dangerous permissions were ranked using feature ranking

methods in the model provided in [14]. When using a set of 40 permissions, SVM produces good

accuracy, but Random Forest produces superior results with ten permissions.

 The DroidMat [15] model used K-means clustering to detect permissions, intents, components,

and API requests. To detect malware, Arp et al. [4] looked at permissions, hardware components,

API calls, and network addresses. Permissions and intentions were utilized to detect malware in

12

the study proposed in [16]. Kim et al. [17] built an app vector out of static features like manifest

file components, strings, and API calls.

 To depict the association between the permissions of regular apps, Solokova et al. [18]

employed graphs. They categorized apps in the same category and calculated metrics for each

graph, such as node degree, weighted degree, and page rank score. However, they only looked at

the apps that were classified as normal and not the malicious samples. To generate different

permission pair graphs, the suggested method in this study considered both malware and normal

apps.

 Zhu et al. [19] developed a mechanism for evaluating an app's hazards based on its permissions.

They built a bipartite network, with the first set of vertices representing apps and the other set of

vertices representing permissions. Similarly, a new Android malware detection method based on

static analysis and graph neural networks was proposed in [43] . The source code of Android

applications was analyzed to extract high-level semantic information, which raised the detection

barrier. To represent an Android program, an estimated call graph from function invocation links

was generated, and then intra-function data was extracted, such as necessary permission, security

level, and statistical instructions information, to form node attributes within graph structures. After

that, a graph neural network (GNN) was employed to produce a vector representation of the

application, which was then used to classify malware

 Lu et al. [20] presented a two-layered malware detection methodology based on permission.

The analysis for the first layer detection used an upgraded random forest technique. The fuzzy sets

created by the first layer detection were analyzed using sensitive permission rules matching in the

second layer detection. The findings demonstrated that using sensitive permission rules improved

the detection accuracy of Android malware.

 The authors in [21] proposed a permission weight approach using which each permission was

assigned a distinct score. The algorithms K-nearest Neighbor (KNN) and Naive Bayes (NB) were

then used.

 The proposed system in [22] used a reduction of features to find the most influential

permissions. Random Committee, Sequential Minimal Optimization (SMO), Multilayer

Perceptron, J48, and Randomizable filtered classifiers were used for feature reduction, and

13

Random Committee, Sequential Minimal Optimization (SMO), Multilayer Perceptron, J48, and

Randomizable filtered classifiers were used for feature evaluation. The trials demonstrated that

five permissions can reach near-complete feature accuracy, allowing the malware detection system

to be improved

 The performance of some machine learning methods, such as naive Bayes, J48, Random Forest,

Multi-class classifier, and Multi-layer perceptron, was investigated in [23]. For normal apps,

Google Play store data from 2015 and 2016 was used, and typical malware data sets were used in

the evaluation. In terms of classification accuracy, the multi-class classifier outperformed the other

algorithms. In terms of model development time, the Naive Bayes classifier had outperformed.

 The authors in [24] proposed a hybrid technique based on network traffic and permission bit-

vectors to detect malware. A decision tree classifier was built to detect the android malware. The

results showed that combining network traffic analysis and permission bit-vector was highly

efficient, with a detection accuracy of 95.56 percent. Kuo et al. [44] proposed a malware detection

system that used a hybrid analysis model and machine learning methods (SVM or Random Forest).

The combination of the Permissions characteristic from the static analysis approach and API from

the dynamic analysis method is the main feature of the hybrid analysis model. The accuracy rate

and TP (true positive) rate employing the proposed technique were 88 percent and 89 percent,

respectively, according to the experimental results.

 A machine learning-based malware detection method was suggested in [25] to differentiate

Android malware from benign apps. Using a linear regression-based feature selection approach,

the proposed malware detection system's feature selection stage aimed to reduce unneeded

features. When the study's findings were examined, the highest score of 0.961 was attained

utilizing the F-measure metric and at least 27 features.

 For Android malware detection, Firdaus et al. [26] used static analysis and a genetic search-

based strategy to find the best features. Five machine learning classifiers were employed to

evaluate the best features determined by GS: J48, Naive Bayes (NB) random forest (RF),

multilayer perceptron (MLP), and functional trees (FT). With only six features, FT provided the

highest accuracy (95%) and true positive rate (TPR) (96.7%) among these classifiers.

14

 Wang et al.[27] proposed a novel method for extracting different permission patterns, which

were used to evaluate the variations in permissions between Android benign apps and malware,

and to identify Android malware using these differences. Then, using the support-based permission

candidate method, unique required or utilized permission patterns were mined for the detection of

Android malware. This method used permission patterns from Android malware to detect a mixed

Android app dataset in an experiment. The results revealed that the proposed method has a 94

percent accuracy rate, a 5% false-positive rate, and a 1% false-negative rate.

 The Android-based malware detection and classification framework were built using eXtreme

Gradient Boosting (XGBoost) in [28]. APK permission categories were retrieved from Android

apps and used in the framework. The comparison of modeling results revealed that the XGBoost

is particularly well-suited to Android malware classification, achieving a F1 score of 74.40 percent

with real-world Android application sets.

 The authors in [29] presented a two-phase static Android malware analysis approach based on

bloom filters. Phase I involved two filters for a bloom that classified a sample as malware or benign

only based on the features allowed. Phase II used a Naive Bayes Classifier with permission and a

code-based mixed feature set to assess the escaped harmful samples from Phase I. The addition of

Phase I classification reduced the computing complexity of the technique, while Phase II

classification improved the overall accuracy of the suggested model.

 Congyi et al.[30] proposed a method for detecting and distinguishing Android malware. First,

a static analysis of the AndroidManifest file in APK was conducted to extract system

characteristics such as component calls, permission calls, and intents. Then, to detect malware

programs, an ensemble learning implementation XGBoost approach was employed.

 The authors in [31] proposed a novel static approach to detect fraudulent Android programs by

offering a set of Android program properties, including sensitive API calls, sensitive permissions,

and utilizing Extreme Learning Machine. Tiwari et al. [32] used permissions and APIs for

detecting Android malware. Common and combined feature vectors were created. Using logistic

regression,97.25 percent accuracy was achieved for common characteristics and 96.56 percent

accuracy was achieved for composite features. Furthermore, to reduce categorization training and

15

testing time, a reduction of features to 131 by deleting low variance features was done, with which

95.87 percent accuracy was achieved.

 In[33] Latex semantic Indexing was applied to identify malware applications.

 The authors in [34] presented the EDMDroid malware detection system, which is based on

frequency of Android permission. The goal of this framework was to increase detection rates by

ensuring that classifiers of ensemble base are diverse. To achieve variety, random feature subspace

and bootstrapping technology were utilized to build data subsets, then non-negative matrix

factorization (NMF) technology was applied to produce new data sets based on subsets of the data.

The integrated predicted outcomes of the model trained by the decision tree algorithm were used

to generate the final prediction results using the integrated strategy voting technique. The results

of the tests showed that EDMDroid is a good tool for detecting Android malware.

 The authors in [35] used permission-based techniques to identify applications as malware and

classify them as benign using filtering function selection algorithms and machine learning

algorithms such as Random Forest, SVM, and J48.

 In [36] , an ensemble model that distinguished between dangerous and benign apps based on

permission combinations was created. Combining classifiers into an ensemble model improved

accuracy over using a single classifier. The malware detection rate came out to be 99.3 percent.

 For malware comprehension, detection, and classification, a precise semantic model of Android

malware based on Deterministic Symbolic Automaton (DSA) was proposed in [37]. It

demonstrated that DSA could capture both the malware variations and the malware family's shared

harmful behaviors. In[37], researchers developed the SMART automatic analysis framework,

which learned DSA by recognizing and summarising semantic clones from malware families and

then extracted semantic properties from the learned DSA to classify malware based on attack

patterns.

 NTPDroid, a hybrid detection approach that extracted Network Traffic features and

Permissions from applications was proposed in [38]. To build frequent patterns consisting of traffic

features and permissions, the FP-Growth algorithm was used to train and test the proposed model.

The detection accuracy of the experimental results achieved was 94.25 percent, which was higher

than the detection accuracy of frequent patterns acquired separately.

16

 Using a deep neural network model, the study in [39] focused on detecting malware that can

infiltrate through permissions on Android. The suggested method detected permission-based

malware in real-time Android apk files with an accuracy of above 85%.

 The authors in [40] developed an Android malware dataset in which the second half of the

dataset comprised API calls as dynamic features and permissions and intents as static features. The

malware scanner for Android was two-layered. According to our findings, at the first layer, 95.3

percent precision in Static-Based Malware Binary Classification was achieved, 83.3 percent

precision in Dynamic-Based Malware Category Classification, and 59.7% precision in Dynamic-

Based Malware Family Classification at the second layer was achieved.

 Information Gain was used by the authors in [41] to rank permissions and intents in order to

find the optimum set of intents and permissions for more accurately identifying Android malware.

A combination of machine learning algorithms such as Random Forest, SVM, and Naive Bayes

was used to discover the optimal set. The best set consisted of 37 features, including 20 intents and

17 permissions, according to the trial data, and the Random Forest classifier had the best accuracy

of 94.73 percent.

 Shyong et al. [42] proposed a method to improve Android Malware Detection by Using Static

Permissions and Dynamic Packet Analysis. The malware's network traffic was used to extract

numerous sorts of features in the dynamic analysis stage, and machine learning was employed to

achieve malware family categorization.

17

CHAPTER 4 PROPOSED METHODOLOGY

4.1 STRUCTURE

 In this proposed methodology, firstly, the APK files of benign and malware applications are

extracted. `The flowchart of the proposed methodology is shown below in Figure 4.1.

Fig. 4.1 Methodology Process

 After, the extraction of the APK file there are enormous folders and files present in the

application’s folder. There is a file namely manifest.xml which contains a list of all the permissions

needed for the application. In this work, the dataset consists of 12,000 benign applications and

5,000 malware applications from Genome [20], and Drebin [21]. By, the extraction of this data,

all the permissions were collected. Then, the occurrence of these permissions was counted using

the Python and a sheet of these permissions with a label was made. Permissions that are present in

benign applications are labeled by 1 and permissions that are present in malware applications are

labeled by 0.

 Extract Permissions Rank all the permissions

Machine Learning Algorithm Detection of Results

18

 To identify distinguishing/significant permissions, we ranked the permissions based on

statistical techniques of the Spearman ranking test and the Mann Whitney U test.

 The Spearman Ranking test is a nonparametric measure of rank correlation. It is a version of

the Pearson correlation. To apply the spearman ranking test we need two variables or two datasets.

This method is appropriate for both discrete and continuous variables.

 The Mann-Whitney U test is a nonparametric test for randomly selected values of variables. It

is also called Mann-Whitney Wilcoxon. Mainly this method is used for continuous variables.

 Permissions present only in malicious applications are permissions with high risk. On the other

hand, permissions present only in benign applications are permissions with low risk. Some

permissions are common to both malware and benign application and hence those permissions

have to be ignored, since they may confuse the malware detection process. Therefore, we aim to

rank the permissions to find the significant permissions. This paper discusses two methods to rank

the dataset of permissions. Here, our database consists of the following columns:

1. Permissions’ Name

2. Number of times the permission has occurred in benign applications

3. Number of times the permission has occurred in malware applications

4.2 FIRST RANKING METHOD

 This ranking is inspired by Spearman Ranking Test. In the first method, the rank of the

permissions of both benign and malware applications is done separately.

 Rank R1 (Rank of the permissions of benign applications) is found as follows:

1. The permission which is present in the least number of benign applications is assigned as

rank 1 and the permission which is present in the second-least number of benign

applications is assigned as rank 2 and the process continues.

19

2. The permissions that are present the same number of times in benign applications are

ranked differently.

The ranking of such permission is given by the formula below:

𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

3. Similarly, Rank R2 (Rank of permissions in malware applications) is found.

4. The final rank of the permissions in our dataset is then found by R1-R2

 When the process is done the range of almost all common permissions will come in some

interval and the range of almost all distinct benign permissions will become positive outside of

this interval and the range of almost all distinct malicious permissions will become negative

outside of this interval. Then |𝑅1 − 𝑅2| is found.

 Our database is then sorted in descending order by the column namely |R1-R2 | so that almost

all the distinct permissions come at the top of the sheet and common permissions between benign

and malware applications come at the bottom. Removal of lower-ranked permissions one by one

from the labeled database is done until the set of best permissions is left. In addition, the accuracy

of this dataset is done through the machine learning algorithms: Decision Tree, SVC, and Random

Forest.

4.3 SECOND-RANKING METHOD

 In this method, inspired by Mann Whitney U Test, the rank of permissions in both benign and

malware applications is calculated simultaneously.

1. While ranking, both the columns of benign and malware applications are considered

together. The permission which is least present in either benign or malware applications is

assigned as rank 1 under the column of R1 or R2 where R1 is the column for the rank of

benign applications and R2 is the column for the rank of malware applications and the

20

permission which is second least present in either benign or malware applications is

assigned as rank 2 and the process continues.

2. The permissions that are present the same number of times in both benign and malware

applications are ranked differently:

The ranking of such permission is given by the formula below:

𝑆𝑢𝑚 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑛𝑑
𝑚𝑎𝑙𝑤𝑎𝑟𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑛𝑑
𝑚𝑎𝑙𝑤𝑎𝑟𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 Note that, if the values in both the columns namely benign and malware contain duplicates,

then the average rank is assigned to each set of duplicates simultaneously.

3. The ranking of the dataset is done by finding
𝑅1−𝑅2

𝑁
 . where N represents the total number

of permissions.

 When the process is done the range of almost all common permissions will come in some

interval and the range of almost all distinct benign permissions will become positive outside of

this interval and the range of almost all distinct malicious permissions will become negative

outside of this interval. Then, |
𝑅1−𝑅2

𝑁
| is found.

 The database is then sorted in descending order by the column namely |
𝑅1−𝑅2

𝑁
| so that almost

all the distinct permissions come at the top of the database and common permissions between

benign and malware applications come at the bottom.

4.4 DETECTION PROCEDURE

 Once we get the ranked permissions, we aim to remove irrelevant permissions which may

decrease the detection accuracy. Hence, we aim to remove the lower ranked permissions from both

21

the rankings. Removal of lower-ranked permissions one by one from the labeled database is done

until the set of best permissions is left. In addition, the accuracy of this dataset is done through the

machine learning algorithms of Decision Tree, SVC, and Random Forest Tree. In the next section,

we discuss the results obtained from the proposed approach.

22

CHAPTER 5 RESULTS AND CONCLUSION

5.1 MACHINE LEARNING ALGORITHMS

 A machine learning algorithm is a type of computer algorithm. These algorithms build a part

of the dataset (generally 75% of the dataset and called the training dataset) to train the machine, to

make predictions/ decisions without being explicitly programmed to do so. Some algorithms are

Decision Tree, SVC, Random Forest, etc.

 The Decision Tree algorithm is used for classification and regression problems. But preferably

it is used for classification. It contains two nodes one is Decision Node and the second is Leaf

Node. The decision node has multiple nodes and makes the prediction whereas Leaf nodes are the

output of those predictions.

 The Support Vector Classifier (SVC) is put a decision boundary to categorize the data. The

best decision boundary is known as a hyperplane. It uses an extreme vector to create the

hyperplane. These vectors are called support vectors.

 The Random Forest is proposed from ensemble learning, which is used to solve a complex

classifier by the combination of multiple classifiers. It consists of numerous decision trees on

various subsets of the dataset and predicts the accuracy of the dataset.

5.2 CLASSIFICATION AND ACCURACY

 In order to check the accuracy of these methods, machine learning algorithms have been used.

 Here, the dataset of 12k benign applications and 5k malware applications is provided. The

dataset of benign samples is downloaded from the google play store. A total of 293 permissions

have been taken in the experiment. Table 5.1 summarizes the top 10 permissions obtained from

both the ranking techniques.

23

 Table 5.1: Top 10 Permissions from both the ranking techniques

Rank Top 10 Permissions from the First

Ranking Method

Top 10 Permissions from Second

Ranking Method

1
BIND_DEVICE_ADMIN

BIND_GET_INSTALL_REFERRER_S

ERVICE

2 RECEIVE_WAP_PUSH RECEIVE

3 ACCESS_MTK_MMHW FOREGROUND_SERVICE

4 BROADCAST_SMS C2D_MESSAGE

5 RECEIVE_MMS READ

6 BIND_GET_INSTALL_REFERRE

R_SERVICE
WRITE

7 RECEIVE BROADCAST_BADGE

8 GLOBAL_SEARCH_CONTROL CHANGE_BADGE

9 BROADCAST_WAP_PUSH UPDATE_SHORTCUT

10 FOREGROUND_SERVICE UPDATE_COUNT

 These permissions are ranked by the first-ranking method. After ranking, the lowest-ranked

permission is removed from the labeled excel sheet. After deleting lower-ranked 221 permissions

one by one, the highest accuracy of 99.45% is achieved. Also, if more permissions are removed,

the accuracy starts reducing so the process is not continued further.

 The following results are achieved with the first ranking method, as summarized in Table 5.2.

24

 Table 5.2: Detection Results when lower-ranked permissions

 are deleted from the first ranking technique

Machine

Learning

Algorithms

 Detection Accuracy (in %)

Before Ranking

(no permissions

deleted)

After Ranking

(lower ranked

permissions deleted)

If more permissions

are deleted

Decision Trees 80.75 99.40 99.2

SVC 73.04 94.54 94.1

Random Forest 80.75 99.22 99.2

 The above table summarizes that the dataset had the highest accuracy of 80.7% before the

ranking technique was applied. When the ranking technique was applied, the highest accuracy

reached 99.4%. In this process, we removed 221 lower-ranked permissions from the dataset. Also,

the last column tells that if we remove more permissions then the accuracy goes down.

 Also, these permissions are ranked by the second-ranking method. After ranking, the lowest-

ranked permission is removed from the labeled excel sheet. After deleting 119 permissions one by

one, the highest accuracy of 99.25% is achieved. Also, if more permissions are removed, the

accuracy starts reducing so the process is not continued further. The following results are achieved

with the second-ranking method, as summarized in Table 5.3:

Table 5.3: Detection Results when lower-ranked permissions

are deleted from second-ranking technique

Machine

Learning

Algorithms

 Detection Accuracy (in %)

Before Ranking (no

permissions

deleted)

After Ranking

(lower ranked

permissions

deleted)

If more permissions

are deleted

Decision Trees 80.75 99.25 99.2

25

SVC 73.04 91.02 90.8

Random Forest 80.75 99.25 99.2

 The above table summarizes that the dataset had the highest accuracy of 80.7% before the

ranking technique was applied. When the ranking technique was applied, the highest accuracy

reached 99.25%. In this process, we removed about 119 permissions from the dataset. Also, the

last column tells that if we remove more permissions then the accuracy goes down.

 Hence, from the results, we can conclude that permissions ranking is quite useful in improving

the detection accuracy of Android malware detection. We get the highest accuracy of 99.40% when

we apply the Decision Trees classifier to the ranked permissions obtained from the first ranking

technique.

5.3 CONCLUSION AND FUTURE WORK

 Since smartphones are vital to our lives it is very important to protect our privacy when we use

them. In this paper, statistical-based ranking algorithms were proposed to rank the permissions

that are requested by the application when the application is downloaded. Such a ranking can help

in eliminating irrelevant permissions that can further improve detection accuracy. The best

permissions set was constructed using two proposed ranking algorithms. In addition, machine

learning algorithms were used to detect malicious Android apps. The highest accuracy achieved

was 99.4% using the first ranking method and 99.2% using the second-ranking method.

In the future, we will incorporate other static techniques and may include intents and hardware

components with permissions.

26

REFERENCES

[1]. https://www.bankmycell.com/blog/how-many-phones-are-in-the-world

[2]. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

[3]. https://gs.statcounter.com/os-market-share/mobile/worldwide

[4]. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “DREBIN: Effective and

Explainable Detection of Android Malware inYour Pocket”, NDSS, 2014.

[5]. M. C. Grace, W. Zhou, X. Jiang, and A.‘R. Sadeghi, “Unsafe exposure analysis of mobile in-

app advertisements”, 5th ACM WiSec, 2012.

[6]. W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile Phone Application

Certification”, 16th ACM CCS, 2009.

[7]. B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and G. A´ lvarez, “Puma:

Permission usage to detect malware in android, International Joint Conference CISIS’12-ICEUTE

12-SOCO 12 Special Sessions, Springer Berlin Heidelberg, 2013.

[8]. B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P. G. Bringas, and G. A´ lvarez

Maran, “MAMA: manifest analysis for malware detection in android”, Cybernetics and Systems,

44(6-7), 469-488, 2013.

[9]. K. A. Talha,D. I. Alper, and C. Aydin, APK Auditor: “Permission-based Android malware

detection system”, Digital Investigation, 13, 1-14, 2015.

[10]. G. Tao, Z. Zheng, Z. Guo, and M. Lyu, “MalPat: Mining Patterns of Malicious and Benign

Android Apps via Permission-Related APIs”, IEEE TRANSACTIONS ON RELIABILITY, 67(1),

355-369, 2018.

[11]. L. Cen, C. Gates, L. Si, and N. Li, “A Probabilistic Discriminative Model for Android

Malware Detection with Decompiled Source Code”,

IEEE Transactions On Dependable And Secure Computing, 12(4), 400-412, 2015.

[12]. Peng et al. “Using Probabilistic Generative Models for Ranking Risks of Android Apps”,

ACM CCS 2012.

[13]. V. Moonsamy, J. Rong, and S. Liu, “Mining permission patterns for contrasting clean and

malicious android applications”, Future Generation Computer Systems, 36, 122-132, 2014

27

[14]. W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zang, “Exploring Permission-Induced

Risk in Android Applications for Malicious Application Detection”, IEEE Transactions on

Information Forensics and Security, 9 , 1869-1882, 2014.

[15]. D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu, “Droidmat: Android malware

detection through manifest and api calls tracing”,

Seventh Asia Joint Conference on Information Security (Asia JCIS), 2012.

[16]. F. Idrees, M. Rajarajan, M. Conti, T. Chen, and Y. Rahulamathavan, “PIndroid: A novel

Android malware detection system using ensemble learning methods”, Computers & Security, 68,

36-46, 2017.

[17]. T. Kim, B. Kang, M. Rho, S. Sezer, and E. Im, “A Multimodal Deep Learning Method for

Android Malware Detection Using Various

Features”, IEEE Transactions on Information Forensics and Security, 14 (3), 2019.

[18]. K. Sokolova, C. Perez, and M. Lemercier, “Android application classification and anomaly

detection with graph-based permission patterns”, Decision Support Systems, 93, 62-76, 2017.

[19]. H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile App Recommendations with Security and

Privacy Awareness”, ACM KDD 2014.

[20]. T. Lu ,S. Hou, “ A Two-Layered Malware Detection Model Based on Permission for

Android”, IEEE International Conference on Computer and Communication Engineering

Technology (CCET), 2018

[21]. D.O.Sahin,O.E.Kural,S. Akleylek, E.Kilic, “New results on permission based static analysis

for Android malware”, IEEE 6th International Symposium on Digital Forensic and Security

(ISDFS) , 2018

[22]. S.J.K, S. Chakravarty, R.K.V.P , “Feature Selection and Evaluation of Permission-based

Android Malware Detection.”,4th International Conference on Trends in Electronics and

Informatics (ICOEI) ,2020

[23]. R.K.V.P, K. P.Raj, K.V.S.Raju, “Android mobile security by detecting and classification of

malware based on permissions using machine learning algorithms”, IEEE International

Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud,2017

28

[24]. S.Kandukuru, R. M. Sharma, “Android malicious application detection using permission

vector and network traffic analysis.” IEEE 2nd International Conference for Convergence in

Technology (I2CT) ,2017

[25]. D.O.Sahin,O.E.Kural,S. Akleylek, E.Kilic , “A novel permission-based Android malware

detection system using feature selection based on linear regression”, Neural Computing and

Applications ,2021

[26]. A.Firdaus,N.B. Anuar, A.Karim,M.F.A.Razak, , “Discovering optimal features using static

analysis and a genetic search based method for Android malware detection”, Frontiers of

Information Technology & Electronic Engineering, 19(6), 712–736, 2018

[27]. C .Wang, Q.Xu , X.Lin, S.Liu, “Research on data mining of permissions mode for Android

malware detection” Cluster Computing, 2018

[28]. T. N. Turnip, A.Situmorang,A.Lumbantobing ,J.Marpaung ,S.I. G. Situmeang, “Android

malware classification based on permission categories using extreme gradient boosting”,

International Conference on Sustainable Information Engineering and Technology,190-194,2020

[29]. P.M.Kate,S.V. Dhavale, “Two Phase Static Analysis Technique for Android Malware

Detection” (2015). ACM International Symposium on Women in Computing and Informatics,

650–655, 2015

[30]. D. Congyi ,S Guangshun, “Method for Detecting Android Malware Based on Ensemble

Learning”,ACM International Conference on Machine Learning Technologies,28-31 ,2020

[31]. Y.Sun,Y.Xie,Z. Qiu,Y. Pan,J. Weng,S. Guo,“ Detecting Android Malware Based on Extreme

Learning Machine”,IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th

Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and

Computing and Cyber Science and Technology Congress, 47–53,2017

[32]. S. R. Tiwari , R. U. Shukla, “An Android Malware Detection Technique based on Optimized

Permissions and API” ,International Conference on Inventive Research in Computing

Applications (ICIRCA), 2018

29

[33]. H.Shahriar,M. Islam,V.Clincy, “Android malware detection using permission

analysis” IEEE SoutheastCon ,1–6, 2017

[34]. H Fang, H.J. Zhu,“,EDMDroid:Ensuring Diversity to improve Android malware detection

based on permissions .” International Conference on Internet of Things and Intelligent

Applications (ITIA), 2020

[35]. S.Ilham ,G. Abderrahim ,B.A.Abdelhakim , “ Permission based malware detection in android

devices”, ACM International Conference on Smart City Applications,1–6,2018

[36]. E. Amer, “Permission-Based Approach for Android Malware Analysis Through Ensemble-

Based Voting Model ”, International Mobile, Intelligent, and Ubiquitous Computing Conference

(MIUCC),2021

 [37]. G. Meng ,Y. Xue, Z. Xu, Y.Liu ,J.Zhang ,A. Narayanan , “ Semantic modeling of Android

malware for effective malware comprehension, detection, and classification”, International

Symposium on Software Testing and Analysis, 306–317,2016

[38]. A.Arora ,S.K.Peddoju, “NTPDroid: A Hybrid Android Malware Detector Using Network

Traffic and System Permissions”, IEEE International Conference On Trust, Security And Privacy

In Computing And Communications/ IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE) , 808–813 ,2018

[39]. P.Sirisha, K., P. B, A. K.K, A. T, “Detection of Permission Driven Malware in Android Using

Deep Learning Techniques” IEEE International conference on Electronics, Communication and

Aerospace Technology (ICECA ,941–945,2019.

[40]. L. Taheri, A.F.A. Kadir, A. H.Lashkari, “Extensible Android Malware Detection and Family

Classification Using Network-Flows and API-Calls”, IEEE 2019 International Carnahan

Conference on Security Technology (ICCST) 1–8,2019

[41]. K.Khariwal ,J.Singh ,A.Arora, “IPDroid: Android Malware Detection using Intents and

Permissions.” IEEE Fourth World Conference on Smart Trends in Systems Security and

Sustainablity (WorldS4),197–202,2020

30

[42]. Y.C. Shyong , T.H. Jeng, Y.M. Chen, “Combining Static Permissions and Dynamic Packet

Analysis to Improve Android Malware Detection”,IEEE International Conference on Computer

Communication and the Internet, 75–81, 2020.

[43]. P.Feng , J.Ma ,T.Li ,X.Ma, N.Xi, “Android Malware Detection based on Call Graph via

Graph Neural Network”, International Conference on Networking and Network Applications

(NaNA),2020

[44]. W.C. Kuo,T.P.Liu, “Study on Android Hybrid Malware Detection Based on Machine

Learning”, IEEE 4th International Conference on Computer and Communication Systems,31-

35,2019

[45].https://www.statista.com/statistics/289418/number-of-available-apps-in-the-google-play-

store-quarter/

[46]. https://developer.android.com/guide/platform

[47]. https://source.android.com/security/features

