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ABSTRACT 

 

     In today’s world, smartphones play a vital role in our lives as the control of, everything we do, 

has been taken over by digital platforms. At present, it is impossible to live without smartphones. 

There is more than one operating system for smartphones amongst which the Android operating 

system can be considered one of the most popular ones.  

     Android is an open-source operating system which means it is available freely. Anyone can 

develop their android application. Furthermore, being an open-source system cybercriminals also 

use it to develop their malicious applications. That is why Android has become a key for attackers 

to invade the privacy of users and sabotage using the same weapon. Further, many malicious 

applications perform venomous activities to breach the privacy of the users. So, it is mandatory to 

detect these infringe or malicious applications.  

     In this paper, we have proposed two statistical-based ranking techniques by taking some 

references from the Spearman Ranking test and Mann-Whitney U test to rank the permissions in 

order to check whether the permission is significant or not. Such a ranking helps us to eliminate 

irrelevant permissions. Further, we apply machine learning algorithms to the dataset by eliminating 

the lower-ranked permissions from the dataset. The experimental results demonstrate that we 

obtain the highest accuracy of 99.4% and 99.25% using both ranking techniques respectively. 
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CHAPTER 1  INTRODUCTION 

 

1.1 COMMENCEMENT 

 

     In today’s world, smartphones have become an irreplaceable part of everyone’s lives by 

replacing personal computers with Internet usage and allowing users to check messages, emails, 

social media accounts, and access online banking services on such devices. 

     In the late 1990s, growth in the use of PDAs (personal digital assistants) increased, and it did 

not take much time to transform them into mobile devices, popularly known as smartphones. The 

number of smartphone users is increasing over time. In 2022, worldwide 6,648 million people are 

using smartphones. That's approximately 83.72 percent of the world's population, up from 3.7 

billion smartphone users just five years ago in 2016 [1].  

     In addition, by 2027, the number of smartphone users is predicted to expand at a rate of 4 

percent per year, reaching 7.69 billion [2]. 

     Among all existing smartphone operating systems, Android is the most popular operating 

system.  

     Android is a modified version of the Linux kernel, developed by Open Handset Alliance and 

commercially sponsored by Google. Other open-source software is designed primarily 

for touchscreen mobile devices such as smartphones and tablets. It was introduced in November 

2007, with the first commercial Android device, the HTC Dream, being launched in September 

2008. 

     Android has a 70.97 % market share worldwide [3]. The main reason behind this is its wide 

range of functionalities and its open-source nature. Being an open-source technology, android is 

not only limited to smartphones but has also extended its reach to TV, car, and automation systems. 

Android provides SDK to developers to plant their apps and allocate those apps through Android 

application stores.  

     Unfortunately, an increasing number of benign applications also raise the number of malware 

applications. Also, the popularity of Android attracts cyber criminals who design malicious / 

malware applications. 
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     Malware applications can exploit one’s device, steal personal data and compromise security. 

These malicious applications are plotted to carry out multiple attacks such as spyware, SMS 

Trojans, mobile banking Trojans, and viruses shown in Fig.1. 

 

  

 

   

 

                                                                                  

 

 

 

 

Fig.1.1 Types of Android Malware 

 

     Such malicious apps can damage the system, leak sensitive information, send SMS messages 

in the background without the user’s knowledge, etc. So, it is necessarily needed to detect these 

malicious applications. 

     In Android malware detection, the study is done in three approaches static, hybrid, and 

dynamic. In the static approach, malware is pulled apart into a source code and specific features 

are removed. In the dynamic approach, malware is examined at run-time in the virtual 

environment. In both cases, the classification models of the dataset have been made by machine 

learning algorithms. Then the detection of malicious apps is done by using these classification 

models. 
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     Android app stores organize 32 app categories in the google play store such as Social media 

apps, Educational apps, Entertainment apps, music apps, sports apps, etc. Also, these categories 

have their features. Also, the applications which have similar categories share similar 

functionalities. One of the most important features is permission. 

     Permissions are a type of data that is asked by the application from the user so that the 

application can run smoothly.  

     Normal Permissions: Permissions that pose a low risk to the user, system, or device and are 

granted by default during the installation process. 

     Dangerous Permissions: Permissions that are dangerous and pose a significant risk due to their 

ability to access private information and the device's most critical sensors. 

     On the other hand, malicious apps request anomalous features to do their malicious activities.  

     In this regards, this paper describes the detection of malware applications by the ranking of the 

permissions of the applications using statistical techniques. We apply statistical tests to rank the 

permissions so that irrelevant permissions can be deleted from the detection method. Further, on 

the ranked permissions list, we delete the lower-ranked permissions and apply machine learning 

algorithms for malware detection. 

 

1.2 MOTIVATION 

 

     As the growth of android benign apps is increasing day by day the growth of Android malware 

apps is also increasing day by day. According to the researchers, the malicious attacks on 

smartphone users exhibited “exceptional” peaks during the start and the end of February 2022. 

Now, hackers are shifting their focus toward discrete infections through email and IoT. Their focus 

is on enterprise businesses and governments versus average web users. 
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Fig. 1.2 About Android 

     Being an open-source system, Publishing of Android applications is increasing day by day. On 

the report of statistics (Statista), the number of applications accessible on Google play store is 

around 3,298,329 in 2022 [45]. 

     Currently, Machine learning algorithms are used for detecting malware on Android. Mostly, 

the researchers have their focus on machine learning classifiers to classify the malware to a known 

malware family. Also, determine a new one by using semi-supervised learning. Machine learning 

algorithms predict extraordinary accuracy rates at perceiving malicious apps based upon the 

superiority of the features. 
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1.3 THESIS STRUCTURE 

     The structure of this thesis report is systemized into 6 chapters.  

     Chapter 2 presents a brief introduction to Android OS such as background, architecture, android 

security features, and Android malware.  

     Chapter 3 presents related work that has been done for malware perceived in Android OS.  

     Chapter 4 presents the proposed ranking methods of this research which include structure, 

extracting permissions, selecting permissions using ranking techniques, and detection process.  

     Chapter 5 shows the outcomes, the significant findings, and the performance of the classifiers, 

conclusion, and future work.  

     References. 
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CHAPTER 2  ANDROID 

 

2.1 BACKGROUND 

 

     Android was constructed based on the Linux kernel and developed by Google. It is released on 

September 23, 2008. It is an open-source operating system for smartphones, tablets, TVs, cars, and 

wearable devices. Being an open environment of Android, many companies and manufacturers 

use it for their products as a platform. Moreover, it allows companies to establish it to meet their 

needs. 

     Android provides a warm development environment through numerous kits: Android NDK, 

Android SDK, Android Developer Tools (Eclipse), and Android Debug Bridge (ADB). As a new 

version of Android is released Android Software Development Kit (SDK) goes updated. it 

provides inclusive packages of Java framework classes, libraries, and debuggers for programmers. 

Android Native Development Kit (NDK) is a set of libraries written in programming languages 

such as C, C++, and more, that may be filled into Java code by System.loadLibrary call. 

     Android Debug Bridge (ADB) consists of three components: client, server, and daemon. It is a 

command-line tool in a client-server form. ADB authorizes an organizer to check their apps for 

bugs using terminal commands by linking the software running device to a PC. 

     Android Developer Tools (Eclipse) is an Integrated Development Environment (IDE) used to 

develop Android applications and provides many functionalities through command lines/ GUI. 

Also, the Google Play Store is the official distribution center for Android Apps. It provides app 

installation and updates. 

     Unfortunately, an open-source environment of Android attracts developers and cybercriminals 

to establish their apps. Android markets use a variety of procedures to catch and extract malicious 

applications. Also, Google Play Store uses  “Bouncer” to scan the uploaded applications and apply 

security evaluation before letting the application be published. 

 



 
7 

 

2.2 ANDROID ARCHITECTURE 

     Android stack consists of 6 layers shown in Fig. 2.1. 

 

 

Fig.2.1 Architecture of Android 
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     These layers control the entire system starting from power management to the system 

application. Each layer provides particular services. 

     The first layer, The Linux kernel; The foundation of Android OS is based on the Linux kernel. 

It manages the hardware’s functionalities such as power, drives, memory, security settings, 

hardware abstraction, and shared libraries. The second layer, Hardware Abstraction Layer (HAL); 

It contains a verity of libraries, each of which is responsible for a particular type of hardware 

component. It provides standard interfaces that expose device hardware capabilities to the higher-

level Java API framework. The third layer, Native libraries; it is a set of guidelines that are 

responsible for the data process. It gives open-source libraries like Webkit, Media framework, 

OpenMAX AL, Libc, and OpenGL-ES. It also provides the Android runtime libraries which 

include the Dalvik VM and the core libraries. The fourth layer is, Java API Framework; APIs are 

interfaces for the development of Android applications. This layer organizes the basic 

functionalities on the system and links with the running applications. It consists of programs 

content providers, view systems, Activity managers, Location managers, Package managers, 

Notification managers, Resources managers, Telephony managers, and Window managers. The 

last layer is System apps; Finally, it is the step where the phone’s functionalities are provided to 

the user. It consists of a set of core apps such as SMS messaging, Emails, Calendars, Contacts, and 

so on [46].   

 

2.3 ANDROID SECURITY FEATURES 

 

     Android security focuses on the smartphone’s hardware, user data, and system. Android’s 

security features are as follows: App sandbox, App signing, Authentication, Biometrics, 

Encryption, Keystore, Security-Enhanced Linux, Trusty Trusted Execution Environment (TEE), 

and Verified Boot.  

     App sandbox identifies and isolates app resources by using Linux user-based protection. It 

allocates a unique user ID (UID) to each app. This UID is used to set up a kernel-level app sandbox. 

App signing permits a user to recognize the app’s author and to update their application without 

any kind of complications. The user-authentication-gated cryptographic key which requires a 
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cryptographic key, service provider and user authentication is used by the Android for 

authentication purposes. Users can sign in to the derives by their fingerprints. A device can have 

more than one fingerprint. For the transection purpose, high android versions use a 

BiometricPrompt API. With this, application developers may affiliate biometric authentication 

into their applications. Encryption makes the data unreadable that is if the data is accessed by an 

unauthorized user still, he/she will not be able to read that data. Android provides a hardware-

backed Keystore. It provides a key generation. Security-Enhanced Linux (SELinux) is used by 

Android to impose mandatory access control (MAC) over the process. Trusty is an OS and enables 

a Trusted Execution Environment. Trusty is isolated and works as same as the android. Verified 

Boot ensures that all the executed codes come from a trusted source but not from any attacker or 

hacker [47].    

 

2.4 ANDROID MALWARE 

 

     The below table represents android malware and its work. 

 

                                                    Table 2.1 Android Malware 

Type Definition 

Worm It launches by itself and makes copies and spreads over a 

network’s node. 

Trojan It shows like a benign app and offers the user to use its useful 

functionalities but performs its malicious activities in the 

background by hiding from the user. 

Spyware It collects the user’s information and sends them to the linked 

remote device. Also, it sends users’ data like messages, location, 

photos, and more to a remote server.  
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Backdoor It accesses high-level user access by exploiting the system’s 

authentication mechanism. It is undetected and enables remote 

access. 

Bot It enables remote control over the device from a server called Bot-

master. It is used to launch an attack called DDoS.  

Ransomware It makes the system inaccessible and encrypts the data.  

Adware It sends customized advertisements found on a user’s collected 

data such as location. 
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CHAPTER 3   LITERATURE REVIEW 

 

3.1 RELATED WORK 

 

     Earlier research, such as [5], and [6], looked at permissions to detect harmful behavior within 

regular apps. By evaluating permissions and API requests, Grace et al. [5] assessed potential 

dangers connected with in-app advertisement libraries. Based on a combination of permissions, 

the Kirin model [6] has established security criteria to identify high-risk apps. The authors of these 

investigations looked into normal in-app permissions for evidence of nefarious conduct. The 

analysis did not include malware samples 

     Sanz et al. [7] used machine learning classifiers to extract top permissions in malicious and 

benign apps. The permissions and other properties of the manifest file were retrieved by the 

MAMA model [8]. The authors of each of these papers concentrated on obtaining permissions that 

are commonly utilized by malware and normal applications. 

     Permissions were retrieved from the apps by Talha et al. [9]. The score for each permission was 

calculated by comparing the amount of malware that contained the permission to the total number 

of malwares. Tao et al. [10] used permissions, APIs, and the links between them to detect malware. 

For detecting malicious samples, Cen et al. [11] used a probabilistic discriminative model on 

decompiled source code and permissions. Peng et al. [12] used probabilistic generative models 

such as Naive Bayes to assess the dangers of Android apps based on the permissions requested. 

     To discover problematic permission patterns, the permission patterns mining method is used in 

[13]. The model, on the other hand, did not take into account common apps and did not present 

any detection models. Similarly, the dangerous permissions were ranked using feature ranking 

methods in the model provided in [14]. When using a set of 40 permissions, SVM produces good 

accuracy, but Random Forest produces superior results with ten permissions. 

     The DroidMat [15] model used K-means clustering to detect permissions, intents, components, 

and API requests. To detect malware, Arp et al. [4] looked at permissions, hardware components, 

API calls, and network addresses. Permissions and intentions were utilized to detect malware in 
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the study proposed in [16]. Kim et al. [17] built an app vector out of static features like manifest 

file components, strings, and API calls. 

     To depict the association between the permissions of regular apps, Solokova et al. [18] 

employed graphs. They categorized apps in the same category and calculated metrics for each 

graph, such as node degree, weighted degree, and page rank score. However, they only looked at 

the apps that were classified as normal and not the malicious samples. To generate different 

permission pair graphs, the suggested method in this study considered both malware and normal 

apps.  

      Zhu et al. [19] developed a mechanism for evaluating an app's hazards based on its permissions. 

They built a bipartite network, with the first set of vertices representing apps and the other set of 

vertices representing permissions. Similarly, a new Android malware detection method based on 

static analysis and graph neural networks was proposed in [43] . The source code of Android 

applications was analyzed to extract high-level semantic information, which raised the detection 

barrier. To represent an Android program, an estimated call graph from function invocation links 

was generated, and then intra-function data was extracted, such as necessary permission, security 

level, and statistical instructions information, to form node attributes within graph structures. After 

that, a graph neural network (GNN) was employed to produce a vector representation of the 

application, which was then used to classify malware 

     Lu et al. [20] presented a two-layered malware detection methodology based on permission. 

The analysis for the first layer detection used an upgraded random forest technique. The fuzzy sets 

created by the first layer detection were analyzed using sensitive permission rules matching in the 

second layer detection. The findings demonstrated that using sensitive permission rules improved 

the detection accuracy of Android malware. 

     The authors in [21] proposed a permission weight approach using which each permission was 

assigned a distinct score. The algorithms K-nearest Neighbor (KNN) and Naive Bayes (NB) were 

then used. 

     The proposed system in [22] used a reduction of features to find the most influential 

permissions. Random Committee, Sequential Minimal Optimization (SMO), Multilayer 

Perceptron, J48, and Randomizable filtered classifiers were used for feature reduction, and 



 
13 

 

Random Committee, Sequential Minimal Optimization (SMO), Multilayer Perceptron, J48, and 

Randomizable filtered classifiers were used for feature evaluation. The trials demonstrated that 

five permissions can reach near-complete feature accuracy, allowing the malware detection system 

to be improved 

     The performance of some machine learning methods, such as naive Bayes, J48, Random Forest, 

Multi-class classifier, and Multi-layer perceptron, was investigated in [23]. For normal apps, 

Google Play store data from 2015 and 2016 was used, and typical malware data sets were used in 

the evaluation. In terms of classification accuracy, the multi-class classifier outperformed the other 

algorithms. In terms of model development time, the Naive Bayes classifier had outperformed. 

     The authors in [24] proposed a hybrid technique based on network traffic and permission bit-

vectors to detect malware. A decision tree classifier was built to detect the android malware. The 

results showed that combining network traffic analysis and permission bit-vector was highly 

efficient, with a detection accuracy of 95.56 percent. Kuo et al. [44] proposed a malware detection 

system that used a hybrid analysis model and machine learning methods (SVM or Random Forest). 

The combination of the Permissions characteristic from the static analysis approach and API from 

the dynamic analysis method is the main feature of the hybrid analysis model. The accuracy rate 

and TP (true positive) rate employing the proposed technique were 88 percent and 89 percent, 

respectively, according to the experimental results. 

     A machine learning-based malware detection method was suggested in [25] to differentiate 

Android malware from benign apps. Using a linear regression-based feature selection approach, 

the proposed malware detection system's feature selection stage aimed to reduce unneeded 

features. When the study's findings were examined, the highest score of 0.961 was attained 

utilizing the F-measure metric and at least 27 features. 

     For Android malware detection, Firdaus et al. [26] used static analysis and a genetic search-

based strategy to find the best features. Five machine learning classifiers were employed to 

evaluate the best features determined by GS: J48, Naive Bayes (NB) random forest (RF), 

multilayer perceptron (MLP), and functional trees (FT). With only six features, FT provided the 

highest accuracy (95%) and true positive rate (TPR) (96.7%) among these classifiers. 
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     Wang et al.[27] proposed a novel method for extracting different permission patterns, which 

were used to evaluate the variations in permissions between Android benign apps and malware, 

and to identify Android malware using these differences. Then, using the support-based permission 

candidate method, unique required or utilized permission patterns were mined for the detection of  

Android malware. This method used permission patterns from Android malware to detect a mixed 

Android app dataset in an experiment. The results revealed that the proposed method has a 94 

percent accuracy rate, a 5% false-positive rate, and a 1% false-negative rate. 

     The Android-based malware detection and classification framework were built using eXtreme 

Gradient Boosting (XGBoost) in [28]. APK permission categories were retrieved from Android 

apps and used in the framework. The comparison of modeling results revealed that the XGBoost 

is particularly well-suited to Android malware classification, achieving a F1 score of 74.40 percent 

with real-world Android application sets. 

     The authors in [29] presented a two-phase static Android malware analysis approach based on 

bloom filters. Phase I involved two filters for a bloom that classified a sample as malware or benign 

only based on the features allowed. Phase II used a Naive Bayes Classifier with permission and a 

code-based mixed feature set to assess the escaped harmful samples from Phase I. The addition of 

Phase I classification reduced the computing complexity of the technique, while Phase II 

classification improved the overall accuracy of the suggested model. 

     Congyi et al.[30] proposed a method for detecting and distinguishing Android malware. First, 

a static analysis of the AndroidManifest file in APK was conducted to extract system 

characteristics such as component calls, permission calls, and intents. Then, to detect malware 

programs, an ensemble learning implementation XGBoost approach was employed. 

     The authors in [31] proposed a novel static approach to detect fraudulent Android programs by 

offering a set of Android program properties, including sensitive API calls, sensitive permissions, 

and utilizing Extreme Learning Machine. Tiwari et al. [32] used permissions and APIs for 

detecting Android malware. Common and combined feature vectors were created. Using logistic 

regression,97.25 percent accuracy was achieved for common characteristics and 96.56 percent 

accuracy was achieved for composite features. Furthermore, to reduce categorization training and 
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testing time, a reduction of features to 131 by deleting low variance features was done, with which 

95.87 percent accuracy was achieved. 

     In[33] Latex semantic Indexing was applied to identify malware applications. 

     The authors in [34] presented the EDMDroid malware detection system, which is based on 

frequency of Android permission. The goal of this framework was to increase detection rates by 

ensuring that classifiers of ensemble base are diverse. To achieve variety, random feature subspace 

and bootstrapping technology were utilized to build data subsets, then non-negative matrix 

factorization (NMF) technology was applied to produce new data sets based on subsets of the data. 

The integrated predicted outcomes of the model trained by the decision tree algorithm were used 

to generate the final prediction results using the integrated strategy voting technique. The results 

of the tests showed that EDMDroid is a good tool for detecting Android malware. 

     The authors in [35] used permission-based techniques to identify applications as malware and 

classify them as benign using filtering function selection algorithms and machine learning 

algorithms such as Random Forest, SVM, and J48. 

     In [36] , an ensemble model that distinguished between dangerous and benign apps based on 

permission combinations was created. Combining classifiers into an ensemble model improved 

accuracy over using a single classifier. The malware detection rate came out to be 99.3 percent. 

     For malware comprehension, detection, and classification, a precise semantic model of Android 

malware based on Deterministic Symbolic Automaton (DSA) was proposed in [37]. It 

demonstrated that DSA could capture both the malware variations and the malware family's shared 

harmful behaviors.  In[37], researchers developed the SMART automatic analysis framework, 

which learned DSA by recognizing and summarising semantic clones from malware families and 

then extracted semantic properties from the learned DSA to classify malware based on attack 

patterns. 

     NTPDroid, a hybrid detection approach that extracted Network Traffic features and 

Permissions from applications was proposed in [38]. To build frequent patterns consisting of traffic 

features and permissions, the FP-Growth algorithm was used to train and test the proposed model. 

The detection accuracy of the experimental results achieved was 94.25 percent, which was higher 

than the detection accuracy of frequent patterns acquired separately. 
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     Using a deep neural network model, the study in [39] focused on detecting malware that can 

infiltrate through permissions on Android. The suggested method detected permission-based 

malware in real-time Android apk files with an accuracy of above 85%. 

     The authors in [40] developed an Android malware dataset in which the second half of the 

dataset comprised API calls as dynamic features and permissions and intents as static features. The 

malware scanner for Android was two-layered. According to our findings, at the first layer,  95.3 

percent precision in Static-Based Malware Binary Classification was achieved, 83.3 percent 

precision in Dynamic-Based Malware Category Classification, and 59.7% precision in Dynamic-

Based Malware Family Classification at the second layer was achieved. 

     Information Gain was used by the authors in [41] to rank permissions and intents in order to 

find the optimum set of intents and permissions for more accurately identifying Android malware. 

A combination of machine learning algorithms such as Random Forest, SVM, and Naive Bayes 

was used to discover the optimal set. The best set consisted of 37 features, including 20 intents and 

17 permissions, according to the trial data, and the Random Forest classifier had the best accuracy 

of 94.73 percent. 

     Shyong et al. [42] proposed a method to improve Android Malware Detection by Using Static 

Permissions and Dynamic Packet Analysis. The malware's network traffic was used to extract 

numerous sorts of features in the dynamic analysis stage, and machine learning was employed to 

achieve malware family categorization. 
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CHAPTER 4   PROPOSED METHODOLOGY 

 

4.1 STRUCTURE 

 

     In this proposed methodology, firstly, the APK files of benign and malware applications are 

extracted. `The flowchart of the proposed methodology is shown below in Figure 4.1.  

 

 

  

 

 

 

Fig. 4.1 Methodology Process 

 

     After, the extraction of the APK file there are enormous folders and files present in the 

application’s folder. There is a file namely manifest.xml which contains a list of all the permissions 

needed for the application. In this work, the dataset consists of 12,000 benign applications and 

5,000 malware applications from Genome [20], and Drebin [21]. By, the extraction of this data, 

all the permissions were collected. Then, the occurrence of these permissions was counted using 

the Python and a sheet of these permissions with a label was made. Permissions that are present in 

benign applications are labeled by 1 and permissions that are present in malware applications are 

labeled by 0.  

 Extract Permissions     Rank all the permissions 

Machine Learning Algorithm Detection of Results 
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     To identify distinguishing/significant permissions, we ranked the permissions based on 

statistical techniques of the Spearman ranking test and the Mann Whitney U test.  

     The Spearman Ranking test is a nonparametric measure of rank correlation. It is a version of 

the Pearson correlation. To apply the spearman ranking test we need two variables or two datasets. 

This method is appropriate for both discrete and continuous variables. 

     The Mann-Whitney U test is a nonparametric test for randomly selected values of variables. It 

is also called Mann-Whitney Wilcoxon. Mainly this method is used for continuous variables. 

     Permissions present only in malicious applications are permissions with high risk. On the other 

hand, permissions present only in benign applications are permissions with low risk. Some 

permissions are common to both malware and benign application and hence those permissions 

have to be ignored, since they may confuse the malware detection process. Therefore, we aim to 

rank the permissions to find the significant permissions. This paper discusses two methods to rank 

the dataset of permissions. Here, our database consists of the following columns: 

 

1. Permissions’ Name 

2. Number of times the permission has occurred in benign applications 

3. Number of times the permission has occurred in malware applications 

 

4.2 FIRST RANKING METHOD 

 

     This ranking is inspired by Spearman Ranking Test. In the first method, the rank of the 

permissions of both benign and malware applications is done separately.  

     Rank R1 (Rank of the permissions of benign applications) is found as follows: 

1. The permission which is present in the least number of benign applications is assigned as 

rank 1 and the permission which is present in the second-least number of benign 

applications is assigned as rank 2 and the process continues. 
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2. The permissions that are present the same number of times in benign applications are 

ranked differently. 

The ranking of such permission is given by the formula below: 

 

 

𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡  𝑖𝑛 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

 

 

3. Similarly, Rank R2 (Rank of permissions in malware applications) is found. 

4. The final rank of the permissions in our dataset is then found by R1-R2 

 

     When the process is done the range of almost all common permissions will come in some 

interval and the range of almost all distinct benign permissions will become positive outside of 

this interval and the range of almost all distinct malicious permissions will become negative 

outside of this interval. Then |𝑅1 − 𝑅2| is found. 

     Our database is then sorted in descending order by the column namely |R1-R2 | so that almost 

all the distinct permissions come at the top of the sheet and common permissions between benign 

and malware applications come at the bottom. Removal of lower-ranked permissions one by one 

from the labeled database is done until the set of best permissions is left. In addition, the accuracy 

of this dataset is done through the machine learning algorithms: Decision Tree, SVC, and Random 

Forest. 

4.3 SECOND-RANKING METHOD 

     In this method, inspired by Mann Whitney U Test, the rank of permissions in both benign and 

malware applications is calculated simultaneously. 

1. While ranking, both the columns of benign and malware applications are considered 

together. The permission which is least present in either benign or malware applications is 

assigned as rank 1 under the column of R1 or R2 where R1 is the column for the rank of 

benign applications and R2 is the column for the rank of malware applications and the 
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permission which is second least present in either benign or malware applications is 

assigned as rank 2 and the process continues. 

2. The permissions that are present the same number of times in both benign and malware 

applications are ranked differently: 

The ranking of such permission is given by the formula below: 

 

𝑆𝑢𝑚 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡  𝑖𝑛 𝑏𝑜𝑡ℎ  𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑛𝑑 
𝑚𝑎𝑙𝑤𝑎𝑟𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡  𝑖𝑛 𝑏𝑜𝑡ℎ 𝑏𝑒𝑛𝑖𝑔𝑛 𝑎𝑛𝑑 
𝑚𝑎𝑙𝑤𝑎𝑟𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 

     Note that, if the values in both the columns namely benign and malware contain duplicates, 

then the average rank is assigned to each set of duplicates simultaneously. 

3. The ranking of the dataset is done by finding  
𝑅1−𝑅2

𝑁
 .  where N represents the total number 

of permissions. 

 

     When the process is done the range of almost all common permissions will come in some 

interval and the range of almost all distinct benign permissions will become positive outside of 

this interval and the range of almost all distinct malicious permissions will become negative 

outside of this interval. Then,  |
𝑅1−𝑅2

𝑁
| is found.  

     The database is then sorted in descending order by the column namely |
𝑅1−𝑅2

𝑁
| so that almost 

all the distinct permissions come at the top of the database and common permissions between 

benign and malware applications come at the bottom.  

 

4.4 DETECTION PROCEDURE 

 

     Once we get the ranked permissions, we aim to remove irrelevant permissions which may 

decrease the detection accuracy. Hence, we aim to remove the lower ranked permissions from both 
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the rankings. Removal of lower-ranked permissions one by one from the labeled database is done 

until the set of best permissions is left. In addition, the accuracy of this dataset is done through the 

machine learning algorithms of Decision Tree, SVC, and Random Forest Tree.  In the next section, 

we discuss the results obtained from the proposed approach. 
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CHAPTER 5  RESULTS AND CONCLUSION 

 

5.1 MACHINE LEARNING ALGORITHMS 

 

     A machine learning algorithm is a type of computer algorithm. These algorithms build a part 

of the dataset (generally 75% of the dataset and called the training dataset) to train the machine, to 

make predictions/ decisions without being explicitly programmed to do so. Some algorithms are 

Decision Tree, SVC, Random Forest, etc. 

     The Decision Tree algorithm is used for classification and regression problems. But preferably 

it is used for classification. It contains two nodes one is Decision Node and the second is Leaf 

Node. The decision node has multiple nodes and makes the prediction whereas Leaf nodes are the 

output of those predictions.  

     The Support Vector Classifier (SVC) is put a decision boundary to categorize the data. The 

best decision boundary is known as a hyperplane. It uses an extreme vector to create the 

hyperplane. These vectors are called support vectors.   

     The Random Forest is proposed from ensemble learning, which is used to solve a complex 

classifier by the combination of multiple classifiers. It consists of numerous decision trees on 

various subsets of the dataset and predicts the accuracy of the dataset.  

 

5.2 CLASSIFICATION AND ACCURACY 

 

     In order to check the accuracy of these methods, machine learning algorithms have been used.  

     Here, the dataset of 12k benign applications and 5k malware applications is provided. The 

dataset of benign samples is downloaded from the google play store.  A total of 293 permissions 

have been taken in the experiment. Table 5.1 summarizes the top 10 permissions obtained from 

both the ranking techniques. 
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                                Table 5.1:  Top 10 Permissions from both the ranking techniques 

Rank Top 10 Permissions from the First 

Ranking Method 

Top 10 Permissions from Second 

Ranking Method 

1 
BIND_DEVICE_ADMIN 

BIND_GET_INSTALL_REFERRER_S

ERVICE 

2 RECEIVE_WAP_PUSH RECEIVE 

3 ACCESS_MTK_MMHW FOREGROUND_SERVICE 

4 BROADCAST_SMS C2D_MESSAGE 

5 RECEIVE_MMS READ 

6 BIND_GET_INSTALL_REFERRE

R_SERVICE 
WRITE 

7 RECEIVE BROADCAST_BADGE 

8 GLOBAL_SEARCH_CONTROL CHANGE_BADGE 

9 BROADCAST_WAP_PUSH UPDATE_SHORTCUT 

10 FOREGROUND_SERVICE UPDATE_COUNT 

 

     These permissions are ranked by the first-ranking method. After ranking, the lowest-ranked 

permission is removed from the labeled excel sheet. After deleting lower-ranked 221 permissions 

one by one, the highest accuracy of 99.45% is achieved. Also, if more permissions are removed, 

the accuracy starts reducing so the process is not continued further. 

     The following results are achieved with the first ranking method, as summarized in Table 5.2. 
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                                      Table 5.2: Detection Results when lower-ranked permissions  

                                                    are deleted from the first ranking technique 

Machine 

Learning 

Algorithms 

                            Detection Accuracy (in %) 

Before Ranking 

(no permissions 

deleted) 

After Ranking 

(lower ranked 

permissions deleted) 

If more permissions 

are deleted 

Decision Trees 80.75 99.40 99.2 

SVC 73.04 94.54 94.1 

Random Forest 80.75 99.22 99.2 

                                                                 

     The above table summarizes that the dataset had the highest accuracy of 80.7% before the 

ranking technique was applied. When the ranking technique was applied, the highest accuracy 

reached 99.4%. In this process, we removed 221 lower-ranked permissions from the dataset. Also, 

the last column tells that if we remove more permissions then the accuracy goes down. 

     Also, these permissions are ranked by the second-ranking method. After ranking, the lowest-

ranked permission is removed from the labeled excel sheet. After deleting 119 permissions one by 

one, the highest accuracy of 99.25% is achieved. Also, if more permissions are removed, the 

accuracy starts reducing so the process is not continued further.  The following results are achieved 

with the second-ranking method, as summarized in Table 5.3: 

Table 5.3: Detection Results when lower-ranked permissions 

are deleted from second-ranking technique 

Machine 

Learning 

Algorithms 

                                 Detection Accuracy (in %) 

Before Ranking (no 

permissions 

deleted) 

After Ranking 

(lower ranked 

permissions 

deleted) 

If more permissions 

are deleted 

Decision Trees 80.75 99.25 99.2 
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SVC 73.04 91.02 90.8 

Random Forest 80.75 99.25 99.2 

 

     The above table summarizes that the dataset had the highest accuracy of 80.7% before the 

ranking technique was applied. When the ranking technique was applied, the highest accuracy 

reached 99.25%. In this process, we removed about 119 permissions from the dataset. Also, the 

last column tells that if we remove more permissions then the accuracy goes down. 

     Hence, from the results, we can conclude that permissions ranking is quite useful in improving 

the detection accuracy of Android malware detection. We get the highest accuracy of 99.40% when 

we apply the Decision Trees classifier to the ranked permissions obtained from the first ranking 

technique. 

 

5.3 CONCLUSION AND FUTURE WORK 

 

     Since smartphones are vital to our lives it is very important to protect our privacy when we use 

them. In this paper, statistical-based ranking algorithms were proposed to rank the permissions 

that are requested by the application when the application is downloaded. Such a ranking can help 

in eliminating irrelevant permissions that can further improve detection accuracy. The best 

permissions set was constructed using two proposed ranking algorithms. In addition, machine 

learning algorithms were used to detect malicious Android apps. The highest accuracy achieved 

was 99.4% using the first ranking method and 99.2% using the second-ranking method.  

In the future, we will incorporate other static techniques and may include intents and hardware 

components with permissions.  
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