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ABSTRACT 
 

 

 
The urban environment in developing countries is transforming from rural to urban 

areas at a rapid pace. Urbanization brings economic and social benefits (e.g. 

economic prosperity and improved quality of life), but it also causes many 

environmental effects such as it directly impacts surface runoff [1] [2], degradation 

in water quality, loss of biodiversity and urban heat island effect [3] [4] [5], etc. Due 

to these major impacts, understanding the behavior of the urban environment and 

their spatio-temporal analysis, become essential for local and regional planning and 

environmental management. This demands development of some cost-efficient 

approaches to get urban sprawl information timely. As an indicator of urbanization, 

built-up surface mapping has turned out to be an active area of research and various 

techniques have been developed in the recent past [6] [7] [8] [9]. Therefore, taking 

advantage of imaging spectrometry, in this research, the detection and identification 

of engineered or built-up surfaces have been carried out under different objectives: 

i. The first objective deals with the creation of a spectral library of urban built-up 

surfaces and materials for Indian regions, and analysis of spectral signatures of 

these surfaces and materials.  

ii. In the second objective, the research has been carried out in four different sub-

objectives:  

a. In the first sub-objective, three new spectral indices i.e. New Impervious 

Index (NII), Road Detection Index (RDI) and New Roof Extraction Index 

(NREI) have been proposed for detection of built-up (Level-1), road and 

roof surfaces (Level-2), respectively.  
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b. In second, two new spectral indices have been introduced, in which 

Condition Index-Road (CI-Road) is utilized for condition analysis of road 

surfaces while Deterioration Index-Roof (DI-Roof) is used for 

deterioration analysis of roof surfaces in AVIRIS-NG hyperspectral 

imagery. 

c. In third sub-objective, existing multispectral built-up indices formulated 

for extraction of built-up surfaces, have been used for extraction of urban 

built-up surfaces along with its sub-categories in hyperspectral imagery.  

d. Finally, based on existing literature, extraction of impervious or 

engineered surfaces has been carried out using index based Red-Green-

Blue (RGB) and Near Infrared (NIR) band combinations in AVIRIS-NG 

imagery. 

iii. In the third objective, a new method is proposed, in which different 

combinations of feature bands have been created for extraction of built-up 

surfaces, sub-surfaces and materials in different levels (Level-1, 2 and 3) using 

AVIRIS-NG hyperspectral imagery. The knowledge based features identified 

in this study are thematic spectral indices, major principal components and 

fractional abundances. 

iv. In the fourth and final objective of the research, a performance evaluation of 

Sentinel-2B, Landsat-8 multispectral, and AVIRIS-NG hyperspectral imageries 

for extraction of road and roof surfaces using proposed spectral index based, 

and other conventional algorithms has been presented. The New Road 

Extraction Index (NREI) and New Building Extraction Index (NBEI) are 

developed for extraction of road and roof surfaces, respectively. Moreover, 

existing Spectral Angle Mapper (SAM), Spectral Information Divergence 
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(SID), Matched Filtering (MF), and Support Vector Machine (SVM) are 

utilized as angle, information, filtering, and machine learning based 

algorithms, respectively, for detection of both the surfaces.      

     The entire analysis has been carried out using AVIRIS-NG and ground 

hyperspectral data of the Udaipur and Jodhpur, Rajasthan region of India. The results 

of the analysis depict that, indices based approach outperforms other conventional 

classification / detection algorithms for extraction and estimation of engineered / 

built-up surfaces, sub-surfaces, and materials in AVIRIS-NG hyperspectral imagery 

with less time and computational complexity. 
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Chapter 1 
 

Introduction 
 

 
1.1 Motivation 

The urban environment in developing countries is transforming from rural to urban at 

a rapid pace. According to the report of the United Nations submitted in the year 

2018, urbanization has increased all around the world, rising from 30 % in 1950 to 

47 % in 2000, and it further increased to 55% in the year 2018. It is also projected 

that 68 % of the population would survive in the urban areas by 2050. The estimation 

for the developed countries is significantly higher than the aforementioned figures, 

with 76 % of their population residing in urban areas in 2018 and estimated to be 90 

% by 2050 (https://www.un.org/development/desa/en/ accessed on 2
nd

 March 2020 ).  

     Urbanization leads to several environmental problems such as air pollution, water 

quality degradation, urban heat island effect and loss of biodiversity etc. [1] [2] [3]. 

Due to these major environmental impacts, understanding of the urban environment 

and their spatio-temporal effects is necessary for local and regional planning along 

with sustainable development. The need of the hour is to develop cost-effective 

approaches to achieve urban sprawl information temporally.  

     Remote sensing images have been extensively used for extraction of built-up 

surfaces (e.g. roads, roofs etc.) due to its suitability in the mapping of built-up 

surfaces over large areas [4] [5]. Furthermore, the regions which are hard to access 

using field survey make remote sensing technology the only feasible means of urban 

land cover mapping. Substantial efforts have been made to enhance the accuracy of 

urban built-up mapping, but mapping with better accuracy continues to be 

problematic. This may be due to the large diversity of built-up surface materials such 

https://www.un.org/development/desa/en/
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as asphalt, concrete, cement, plastic, and metal [6] [7]. Their spectral characteristics 

may be similar to other natural surfaces (e.g. bare soil and sand). Dry soil and bright 

built-up surfaces are similar in spectral responses while shades originated by trees 

and tall buildings are easy to be confused with dark built-up surfaces [4]. Hence, 

discriminating built-up surfaces from non-built-up surfaces is a critical and 

challenging task.   

     Further, it is highly desirable to develop reliable methods for mapping of urban 

land covers. The diversified urban activities and spatio-temporal variations imply a 

challenge to classify and map land covers in these areas. Over the past few decades, 

remote sensing data have proved efficient for mapping urban land covers and 

monitoring multi-temporal changes. Various land cover classification / target 

detection approaches have been used to map different land covers. However, it is 

difficult to select the best classifiers because each of the methods has its own 

strengths and limitations [8] [9].    

     The applicability of imaging spectrometry / hyperspectral remote sensing has 

already shown its efficacy for snow and glacier, coastal-ocean chemistry, coral reef 

and cloud microphysical characterization. In India, the hyperspectral science 

initiative is also included in the “Big Data Initiatives” of Department of Science and 

Technology (DST), Government of India. Keeping the future applicability potential 

in tandem with the development of advanced technology, the Space Application 

Centre (SAC), Indian Space Research Organisation (ISRO) has undertaken the 

Airborne Visible / Infrared Imaging Spectrometer- Next Generation (AVIRIS-NG) 

data collection campaign over different cities of India in conjunction with Jet 

Propulsion Laboratory (JPL), National Aeronautics and Space Administration 

(NASA) (https://vedas.sac.gov.in/aviris_web/ accessed on 10
th
 January 2018). 

     The motivation for the work presented in this thesis comes from the points 

https://vedas.sac.gov.in/aviris_web/
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enumerated above and a desire to contribute, howsoever small, towards 

understanding and mapping of urban environment using high resolution remote 

sensing data.   

 

1.2 Imaging Spectrometry 

Imaging Spectrometry of Earth’s land and ocean environments is based on the 

principles of spectroscopy, either reflectance or emission spectroscopy over 

shortwave (300 – 3000 nm) and longwave (5000 – 50000 nm) spectral wavelength 

range. Interaction of energy with the molecular structure of surface materials results 

into characteristic or diagnostic absorption or emission features in the reflectance or 

emittance spectra [10]. These diagnostic features occur due to changes in energy 

state of the molecules as a function of electronic or vibrational transitions. The 

electronic transitions occur predominantly at shorter wavelengths due to changes in 

energy state of electrons bound to atoms or molecules or lattices. Normally, the 

vibrational transitions occur in longer wavelength due to stretches and bendings 

where overtones occur at sums or multiples of the fundamental vibration frequencies.            

     The Hyperspectral Remote Sensing (HSRS) combines imaging and spectroscopy 

in a single system which includes large data sets and require new processing 

methods. The HSRS refers to 100 – 500 spectral bands generally in continuum with 

relatively narrow band interval (5 – 10 nm) in contrast to Multispectral Remote 

Sensing (MSRS) that refers usually to 5 – 15 discrete wide bands with bandwidths of 

about 50 – 400 nm. The advantages of HSRS over MSRS are (i) the HSRS can detect 

more materials or surface types such as minerals, rocks, built-up, vegetation, snow, 

(ii) relates directly to surface chemistry and (iii) can estimate the abundance of 

material present. This greater information content enables new methods for 

detection, characterization and quantification in a broad range of Earth system 
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environments [11].  

     The ability to develop HSRS instrument is only recently enabled by technologies 

of the 21st Century. Further, handheld field spectrometers are generally useful for 

ground-based survey. However, they provide only point target spectra but not the 

continuous spatial coverage over large areas required for many local or regional 

research and applications [12] [13]. Several imaging HSRS instruments such as 

micro-hyperspec and nano-hyperspec are available for hyperspectral imaging to 

provide data with centimeter spatial resolution from airborne (e.g. Aeroplane, 

Robotic UAV, Drones etc.) and ground-based platforms. The satellite-based HSRS 

mission such as EO-1 Hyperion of NASA provided reasonably good datasets 

sampled around the globe, including India, but Hyperion suffers from low Signal-to-

Noise Ratio (SNR). Figure 1.1 represents process of imaging spectrometry using 

spaceborne hyperspectral sensor, while Figure 1.2 shows the captured data in the 

form of hyperspectral image cube, in which x and y dimensions represent spatial 

domain while z is associated with spectral domain. 

 

                  Figure 1.1  Imaging spectrometry of Earth Surface [8] 
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             Figure 1.2  Hyperspectral Image Cube [14] 

 

1.3 Engineered Surfaces 

Engineered surfaces or built-up surfaces are the anthropogenic features through 

which water can not infiltrate into the soil, such as roads, driveways, sidewalks, 

parking lots, rooftops, and so on [15], as shown in Figure 1.3. In recent years, 

engineered surfaces have emerged not only as an indicator of the degree of 

urbanization, but also a major indicator of environmental quality [16]. An engineered 

surface may be defined as a stationary surface bearing the following characteristics: 

 A man-made surface created artificially 

 Less Depth/Thickness 

 Single/mixed composition 

 Stationary over a large span of time 

 An identifiable collection of matter which is preferably 3-dimensional in 

nature 

Examples: Roads, Roofs, Pavements, Sports infrastructures etc.  
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                    Figure 1.3  Matrix of image showing various types of Engineered surfaces  

 

1.4 Significance of the Study 

An Engineered or built-up surface is a unifying theme for all the communities 

including planners, landscape architects, engineers, scientists, social scientists, local 

officials, and others [17]. The magnitude, location, geometry and spatial pattern of 

built surfaces, and the built-up and non-built-up ratio in a watershed have 

hydrological impacts. Also, roof and transport related built-up surfaces could have a 

greater impact on land use zoning. The increase of built-up cover would lead to the 

increase in the volume, duration, and intensity of urban runoff [1]. Watersheds with 

large amounts of built-up cover may experience an overall decrease of groundwater 

recharge and base flow and an increase of storm flow and flood frequency [18]. 

Furthermore, increase in built-up cover and runoff directly impact the transport of 

non-point source pollutants including pathogens, nutrients, toxic contaminants, and 

sediment [19]. Increases in runoff volume and discharge rates, in conjunction with 

non-point source pollution, will inevitably alter in-stream and riparian habitats, and 

the loss of some critical aquatic habits [20]. In addition, the areal extent and spatial 
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occurrence of engineered surfaces may significantly influence urban climate by 

altering sensible and latent heat fluxes within the urban canopy and boundary layers 

[21]. As built-up cover increases within a watershed/administrative unit, vegetation 

cover would decrease. The percentage of land covered by built-up surfaces varies 

significantly with land use categories and sub-categories. 

     Therefore, estimating and mapping engineered surface is significant to a range of 

issues and themes in environmental science central to global environmental change 

and human environment interactions. The datasets of engineered surfaces are 

valuable for urban planning, e.g., building infrastructure and sustainable urban 

development, environmental management, e.g., water quality assessment and storm 

water taxation. 

 

1.5   Research Gaps 

This study proposes to address different research gaps identified through extensive 

literature survey. Following point-wise discussion summarizes the research gaps 

which have been considered for investigation: 

i. In Indian continent, no such spectral library has been explored for urban built-

up surfaces and the study of urban surfaces and materials using HSRS is also 

yet to be explored intensively.   

ii. Various existing built-up indices are effective to some extent when applied to 

the urban environment but several problems still persist. The first problem is 

that most of the built-up indices are proposed to extract only single land cover 

class and confusion among other land cover classes still exists. For example, 

the confusion between built-up surfaces and bare soil has not been effectively 

reported in the literature [3] [60] [65] [72] [101] [102]. Furthermore, even 

though NDBI is projected to highlight built-up surfaces but it was not able to 
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efficiently differentiate built-up surfaces from bare soil [53]. The second 

problem of indices is related to limited applicability in remote sensing images 

at different spectral and spatial resolutions. Except vegetation indices such as 

NDVI and SAVI, most of the built-up indices are unavailable for high spectral 

resolution remote sensing images. Another challenge is that, most of the built-

up indices have only been utilized to detect built-up surfaces in remote sensing 

imagery but not used to extract subcategories of these surfaces (e.g. roads and 

roofs). Even, several vegetation indices have already been reported in the 

literature to extract subclasses of vegetation (e.g. coniferous and deciduous). 

The next problem is associated with the identification of the most significant 

wavelength bands for extraction of built-up surfaces and its subclasses. Most of 

the built-up indices have not successfully utilized band selection approaches 

for the identification of suitable bands for development of built-up indices. 

iii. Urban built-up surface extraction using moderate and high resolution remote 

sensing data is still a challenging task due to significant intra-class 

heterogeneity, inter-class similarity and spectral confusion with other land 

cover classes. Further, high dimensionality of hyperspectral data increases the 

system and time complexity for the image analysis. 

iv. In spite of the rapid development of different built-up spectral indices and 

supervised classification/detection algorithms, there is still a lack of 

comprehensive comparison applied to various imageries acquired by different 

multispectral and hyperspectral sensors, especially from AVIRIS-NG sensor. 

Further, the performance evaluation of various sensors for extraction of road 

and roof surfaces has also not been explored. 
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1.6  Research Objectives 

Following objectives have been drawn from the research gaps of existing literature:  

i. Spectral library creation and critical analysis of spectral characteristics of 

selected engineered surfaces and materials. 

ii. Identification of significant wavelegths and development of new spectral 

indices for extraction of engineered surfaces and sub-surfaces. 

iii. To address mixed pixel classification problem using combination of 

significant features such as spectral indices, principal components, and 

fractional abundances. 

iv. Comparative evaluation of indices based approaches with conventional 

classification/detection algorithms for extraction of engineered surfaces. 

 

1.7  Thesis Overview 

This thesis is organized into Eleven Chapters. Chapter-1 discusses the motivation 

behind the research followed by introduction to imaging spectrometry / 

Hyperspectral Remote Sensing and Engineered Surfaces. The last section of this 

chapter describes the significance of the study. It also identifies the research gaps 

which lead to the formation of objectives of this research. 

     Chapter-2 is devoted to literature review on spectral library creation, various 

spectral index based algorithms, and several significant features in remote sensing 

imagery followed by a review of comparative assessment of different algorithms 

used for extraction of engineered surfaces in multi-sensor remote sensing imageries.  

     Chapter 3 to 9 separately discusses each of the objectives or sub-objectives, study 

area and dataset, description of tasks carried out on each objective, methodology and 

its implementation, observations and discussion of results. 
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     Chapter-3 describes the spectral library creation of various engineered surfaces, 

sub-surfaces and materials for Indian regions followed by a critical analysis of 

spectral characteristics of these surfaces and materials.  

     In Chapter-4 three new Spectral Indices have been proposed for extraction of 

urban built-up surfaces and its sub-classes in AVIRIS-NG hyperspectral Imagery 

while in Chapter-5, two new built-up indices have been proposed for extraction of 

road and roof surfaces based on their condition and deterioration. In Chapter-6, 

existing built-up indices developed for multispectral dataset, have been utilized for 

extraction of built-up surfaces and sub-surfaces in AVIRIS-NG imagery while in 

Chapter-7, extraction of aforesaid surfaces has been carried out using different band 

combinations of Red-Green-Blue (RGB) and Near Infrared (NIR) in AVIRIS-NG 

imagery.   

     Chapter-8 focuses on extraction of built-up surfaces, sub-surfaces, and 

materials by combination of various knowledge based features such as spectral 

index, principal component and fractional abundance.  

     Chapter-9 presents a performance evaluation of Sentinel-2B, Landsat-8 

multispectral, and AVIRIS-NG hyperspectral imageries for extraction of road and 

roof surfaces using proposed spectral index based, and other conventional 

classification / detection algorithms.  

     Chapter-10 shows the conclusions of research followed by major research 

contributions, and limitations. Finally, Chapter-11 describes the scope of future 

research. 
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Chapter 2  

Literature Review 

This chapter discusses the existing state-of-the-art for creation of spectral library of 

built-up surfaces and materials followed by spectral index based algorithms for 

extraction of built-up surfaces in remote sensing imagery. Subsequent sections 

discuss the literature on significant features for detection of built-up surfaces using 

high resolution hyperspectral imagery followed by a comparative assessment 

between various algorithms for extraction of aforesaid surfaces using multi-sensor 

imageries.  

 

2.1 Spectral library creation 

Urban environments characterize only a small percentage of the total land area, but 

these environments have turned into increasingly populated as larger number of 

individuals move from rural to urban areas and towns [5] [22] [23]. The term urban 

environment here refers to urbanization, which brings social and economic benefits 

(e.g. improved quality of life and economic prosperity), it also results in a number of 

environmental effects such as, degradation in the water quality [24], urban heat 

island effect and loss of biodiversity [25] etc. Urban environments basically consist 

of various built-up surfaces i.e. roads, roofs, pavements, sports infrastructure, railway 

tracks as well as non-built-up surfaces i.e. vegetation, soil and water. Due to 

aforesaid major environmental effects, the understanding of urban environment and 

their spatio-temporal analysis become necessary for urban planning, environmental 

management, risk assessment and disaster management. The dynamic behavior of 

urban environments demand technologies that are fast, repeatable and offer large 
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areal coverage at a reasonable price, makes remote sensing as one of the most 

feasible technologies [1] [25] [26] [27]. 

     Modern advancement in the technology has witnessed extensive applications of 

Hyperspectral Remote Sensing (HSRS) in the field of image processing for 

identification of different urban built-up surfaces and materials on the basis of their 

unique characteristics [26] [27] [28]. HSRS technology is very useful in the study of 

urban environments due to its high potential in investigating the spectral properties 

or characteristics of urban surfaces and materials [29] [30]. The spectral properties of 

different surfaces and materials are responsible for the identification of various 

classes and sub-classes using HSRS [6] [31] [32].  

     Urban environments may be considered as one of the most demanding areas to 

carry out remote sensing analysis [33] [34] [35] due to high heterogeneity of urban 

built-up surfaces and materials [36]. Further, difficulty is attributed to the fact that 

urban area is characterized by typical land cover surface along with existence of 

various types of materials [29] [37]. Therefore, in remote sensing, it is of primary 

importance to study the spectral behavior of different built-up surfaces and materials. 

In view of this, most of the studies on urban built-up surfaces and materials have 

resulted in creation of a spectral library of these features followed by analysis on the 

basis of their unique spectral characteristics [6] [30] [33] [38] [39] [40] [41] [42] [43] 

[44] [45]. List of existing libraries as surveyed from literature is given in Table 1. 

These libraries include pure spectral signatures of the various built-up surfaces called 

as end members. Such libraries include wide range of materials over different 

wavelength in different spectral regions along with other information in the form of 

metadata and documentation regarding the quality of the spectral signature and 

surface characteristics [36]. The spectral samples of different surfaces and materials 

can be derived from the HSRS observations together with laboratory or field spectral 
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measurement [46] [47].  

 

Table 2.1  Existing spectral libraries of urban built-up surfaces and materials 

Study Area Spectral Range 

(nm) 

No. of 

Samples 

Data Acquisition 

Platform 

Spectral Library 

Reference 

Various locations, 

USA 

2500-14500 74 Laboratory and In-

situ 

[38] 

Dresden and 

Potsdam, Germany 

400-2500 32 Airborne and In-

situ 

[6] [39] 

Santa Barbara, CA, 

USA 

350-2400 26 In-situ [30] 

Tel-Aviv, Israel 400-1100 55 Airborne and In-

situ 

[33] 

Serdang, Malaysia 350-2500 15 In-situ [40] 

London, UK 350-15400 74 Laboratory and In-

situ 

[41] 

Various locations, 

USA 

400-15400 3420 Laboratory [42] 

Various locations, 

USA 

200-200000 2468 Airborne, 

Laboratory and In-

situ 

[43] 

Madrid, Spain 350-2500 

8000-14000 

27 Airborne and In-

situ 

[44] 

Karlsruhe, Germany 350-2500 181 In-situ [45] 
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2.2 Spectral index based algorithms 

 
Many approaches have been proposed for the extraction of built-up surfaces from 

remote sensing imageries in recent past, which include artificial neural network 

(ANN) [48] [49] [50], multiple regression [9] [48] [51], classification trees [5] [48] 

and spectral unmixing [52] [53] [54]. Nevertheless, the outcomes of these methods, 

to some extent, are dependent on the characteristics of the selected training samples. 

The detection results of parametric classifiers are also directly affected by the size, 

location, and representativeness of the training dataset. Further, it is difficult to 

identify the pure endmembers or the most representative endmembers from the 

heterogeneous urban environment to construct a model for subpixel analysis, as the 

spectral characteristics of built-up surfaces vary geographically [55] [56]. 

Consequently, the aforementioned classification and detection based approaches are 

often considered as computationally intensive, complex, and sometimes subjective, 

particularly when applied to the large geographical areas [57].  

     When compared with the aforesaid conventional algorithms for extraction and 

estimation of built-up surfaces, spectral index based approaches illustrate apparent 

advantages due to their ease of implementation, parameter independence, and 

convenience in practical applications. Initially, Kawamura et al. (1996) [58] 

observed the spectral behavior of built-up surfaces and developed urban index (UI) 

for the extraction of urban built-up surfaces. Afterward, extensive efforts have gone 

into formulating and applying indices to extract built-up surfaces over the preceding 

years [3] [57] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] 

[73]. The indices developed may typically be categorized into three groups, these are 

i) Band-ratio method using spectral bands as components in the index directly. Zha et 

al. (2003) [59] examined the spectral characteristics of urban built-up surfaces and 

proposed normalized difference built-up index (NDBI), which utilized a combination 
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of short-wave infrared (SWIR) and near-infrared (NIR) bands to enhance the contrast 

of built-up surfaces. After that, a series of specific spectral indices have been 

formulated and applied on various remote sensing imageries to extract urban built-up 

surfaces. Few examples of these are, built-up area index (BAI) [74], visible red near-

infrared built-up index (VrNIR-BI), visible green near-infrared built-up index 

(VgNIR-BI) [75] and road extraction index (REI) [67]. Most of these indices are 

derived from multispectral data set by directly comparing the spectral characteristics 

of built-up and non-built-up surfaces ii) Through the association of built-up surfaces 

with other land cover classes, such as soil adjusted vegetation index (SAVI) [76] and 

modified normalized difference water index (MNDWI) [77]. In these indices, the 

negative correlation between imperviousness and vegetation indices is monitored, 

which is useful for the development of spectral indices for built-up extraction iii) By 

feature extraction methods, such as index based built-up index (IBI) [78] and 

biophysical composition index (BCI) [57] [79]. It is identical to the approaches that 

utilize more than one method for improvement of accuracy of detection in support 

with studies only utilized a single detection method.   

 

2.3   Significant features in remote sensing imagery 

Mapping of urban land covers using thematic spectral index based approach has 

proved to be effective because these indices mainly characterize a particular land 

cover class and demonstrate the relative abundance value of features of interest. 

Further, the extensively used approach in remote sensing to extract built-up surfaces 

in an urban environment is Spectral Mixture Analysis (SMA) based on V-I-S model 

[22] [80] [81]. The V-I-S model was first proposed by Ridd (1995) [80], which states 

that any urban landscape can be conceptualized as having three main components, 
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which are Vegetation (V), Impervious Surfaces (I) and Soil (S), in addition to the 

water. This model assumes that land cover in the urban environment is a linear 

mixture of these three components [80], which gives a guideline for decomposing 

urban environment and a relation for those components to remote sensing spectral 

characteristics. Prior to further spectral analysis, a method called feature selection is 

generally applied to determine the bands that are most efficient in discriminating 

each class from the others [5] [82] [83]. The objective of feature selection is to 

remove those bands that offer redundant spectral information, as well as to reduce 

the dimensionality. The widely used approaches in feature selection are Maximum 

Noise Fraction (MNF) and Principal Component Analysis (PCA). MNF is actually a 

revised PCA, which is suitable for hyperspectral imagery rather than the 

multispectral Thematic Mapper (TM) image [84] [85]. 

     PCA is generally used to create new images for transforming high dimensional 

data from highly correlated bands to an orthogonal subset [85]. In PCA 

transformation, the rescaling and decorrelation of noise in the image based on an 

estimated covariance matrix generate different images in which there are no band to 

band correlations. The noise is separated from useful data, therefore improving 

spectral processing results. A study in the past has shown that the use of PCA 

transformation can improve the degree of recognition, then enhancing the accuracy 

of urban built-up extraction [84] [85]. But still, the ability of PCA is limited for 

hyperspectral data set as it relies only on the second order statistical information 

[85]. 

     Normalized indices derived from multispectral bands have been commonly 

utilized in most of the studies for extraction of a particular land cover class. For 

example, Soil Adjusted Vegetation Index (SAVI) [76] has been used to estimate 



 

17 

 

vegetation as well as built-up surfaces in an urban watershed, in Index based Built-up 

Index (IBI) [86], Normalized Difference Built-up Index (NDBI) [3] has been 

combined with SAVI and Modified Normalized Difference Water Index (MNDWI) 

[77] to enhance the built-up estimation. Further, Normalized difference Built-up 

Area Index (NBAI) [62] and Road Extraction Index (REI) [67] have been utilized to 

extract built-up areas as well as road surfaces directly by selecting an appropriate 

threshold. The major problem with all the aforesaid built-up spectral indices is that, 

these are not capable of effectively separating bare soil from built-up surfaces due to 

limitations of multispectral dataset [3] [77] [86] [87] [67] [88] [89].  

     Next, in comparison with traditional pixel based methods, some sub-pixel based 

algorithms, commonly Linear Spectral Mixture Analysis (LSMA) have shown its 

effectiveness for abundance estimation and mapping of urban built-up surfaces. 

LSMA has been extensively applied in coarse to medium and high resolution remote 

sensing images to quantitatively extract the urban built-up surface fractions in mixed 

pixels at a sub-pixel scale. However, the LSMA still has some complexity in 

extracting high-precision urban built-up surfaces and materials because of the similar 

spectral response among different land cover types [54] [90].     

 

2.4   Comparative assessment of different algorithms using 

multi-sensor imageries 

As for urbanization, it is a primary requirement to derive land use land cover (LULC) 

maps from remote sensing imageries. In recent years, Landsat, ASTER, Sentinel and 

Hyperion imageries are frequently utilized for LULC mapping and for now, some 

researches focused on modeling of urban sprawl and its environmental impact, and 

simulating the phenomenon of heat island. In general, there are three main indicators 
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to describe the urban environment including the density of vegetation, biodiversity 

and built-up surfaces. The increase in the built-up surfaces in urban area has led to 

the decrement of natural resources and degradation of the environment [25] [67]. 

     A large number of remote sensing satellites provide us with continuous imageries 

in different wavelength bands for the applications of land use, marine, agriculture, 

climate, defense and security etc. The new generation of moderate resolution (10–30 

m) Earth Observation (EO) satellites have become operational during the last few 

years. Landsat-8 OLI (Operational Land Imager) / TIRS (Thermal Infrared Sensor) 

was launched on 11 February 2013. The bands of multispectral OLI sensor have a 30 

m spatial resolution and wavelength ranges similar to the prior Landsat TM 

(Thematic Mapper) and ETM (Enhanced Thematic Mapper) sensors to provide data 

continuity [91].The European Sentinel-2 satellite aims at offering multispectral data 

with a 5 day revisit cycle. The Sentinel-2A and Sentinel-2B satellites became 

operational on 23rd June 2015 and on 7th March 2017, respectively. The Sentinel-2A 

and 2B MSI (Multi Spectral Instrument) sensors have 13 spectral bands with a 10–60 

m spatial resolution [92] [93]. Further, Jet Propulsion Laboratory’s Airborne Visible 

/ Infrared Imaging Spectrometer- Next Generation (AVIRIS-NG) sensor is a 

hyperspectral sensor, which measures the spectral range over the interval of 376–

2500 nm at 5 nm intervals with high SNR (>2000 @ 600 nm and >1000 @ 2200 nm) 

and an accuracy of 95%. The field-of-view (FOV) is 34° and instantaneous FOV 

(IFOV) of AVIRIS-NG sensor is 1 milli radian. In the past 30 years, Landsat series 

data are extensively used in the mapping of LULC. Though, with the development of 

new sensors, it is essential to use numerous types of remote sensing data, particularly 

in the monitoring of long term dynamics. During the process, there may be a 

discrepancy between the dissimilar sensors. When two sensors are utilized, a number 

of problems may appear due to the differences in solar illumination condition, 
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viewing angle, spectral band pass and radiometric precision. In the past, the 

comparisons were conducted based on bands, spectral indices and classification 

algorithms. In recent years, some researchers have also carried out comparative 

analysis and integrated application utilizing Sentinel-2A MSI and Landsat-8 data [4] 

[94] [95].
 
It is worth stating that Zhang et al. (2018) [79] characterized the 

differences in nadir bidirectional reflectance distribution function (BRDF) adjusted 

reflectance, top of atmosphere (TOA) and Normalized Difference Vegetation Index 

(NDVI) between Landsat-8 and Sentinel-2A.  

     In order to accurately and rapidly map built-up surfaces from satellite imageries, 

previous studies have put forward various algorithms based on spectral indices and 

supervised learning. Spectral index based algorithms include Road Extraction Index 

(REI) [67], Normalized Built-up Area Index (NBEI) [62], Normalized Difference 

Built-up Index (NDBI) [3], Index-based Built-up Index (IBI) [3], and the Normalized 

Difference Impervious Surface Index (NDISI) [25] etc. Further, different supervised 

learning algorithms cover Spectral angle Mapper (SAM) [96], Spectral Information 

Divergence (SID) [97], Matched Filter (MF) [98], Minimum Distance to mean and 

Support Vector Machine (SVM) [99] [100] etc. All the aforesaid built-up indices 

have been proposed for specific sensor imageries. Besides, extraction of road and 

roof surfaces, using these indices for aforesaid imageries has not been explored.  

     Finally, in view of the literature review on spectral library creation, spectral index 

based algorithms, significant features in remote sensing imagery, and comparative 

assessment of different algorithms used for extraction of engineered surfaces in 

multi-sensor imageries, various research gaps are identified, which lead to different 

research objectives. These research gaps and objectives of the research have been 

discussed in Chapter 1 Section 1.5 and 1.6, respectively. 
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Chapter 3 
 

Spectral Library Creation and Analysis of Spectral 

Signatures 

 

 
Most of the studies on urban built-up surfaces and materials have resulted in a 

spectral library creation followed by its analysis [39] [40] [41] [42] [43] [44] [45]. 

Further, in Indian continent, no such spectral library has been explored for these 

surfaces and materials and the study using HSRS is also yet to be explored 

intensively. This chapter deals with the creation of a spectral library and critical 

analysis of spectral characteristics of urban built-up surfaces and materials. Field 

measurements have been carried out using spectroradiometer over the wavelength 

range of 350 to 2500 nm. Further, this chapter investigates the unique spectral 

characteristics and complexity of heterogeneous urban environments using spectral 

signatures of major urban built-up surfaces and materials in Indian regions. 

 

The tasks under this objective are: 

a) Spectral library creation and critical analysis of spectral signatures of urban 

engineered / built-up surfaces and materials in Indian continent  

b) Identification of significant wavelengths and regions for extraction of 

different built-up surfaces and materials  
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3.1  Study area 

The area under examination belongs to the Udaipur, Rajasthan, India, which is a 

mixture of built-up and non-built-up surfaces. The focus in this study is only on 

built-up surfaces. Therefore, built-up surfaces are further categorized into different 

levels upto constituent material, which will be discussed in upcoming section. 

Spectral signatures of these surfaces and materials are utilized for identification of 

significant spectral wavelengths and regions for extraction of various classes.  

 

3.2  Instrumentation and software 

Ground spectral data in the study region is collected using Spectral Evolution 

Spectroradiometer. This instrument is having proven effectiveness in the applications 

in different areas, which require measurement of reflectance, radiance and irradiance. 

It has 2151 spectral channels over the spectral range of 350 nm to 2500 nm. The 

whole spectral range is divided into various regions, which are visible, near infra-red 

(NIR) and short wave infra-red (SWIR), respectively. Further, the data collection has 

been carried out using gun as well as contact probe, depending on the lighting 

condition. The field data has been collected between 10 am to 3 pm in cloud free 

atmospheric condition. The spectral signature has been collected in a set of four for 

each sample of built-up surfaces. Before recording the spectral signature of target, 

white reference is recorded using Spectralon plate. Figure 3.1 (a) represents the 

satellite imagery of Udaipur with some points representing the field sample locations 

of built-up surfaces and materials. There are various fields of metadata which have 

been included in the spectral library of built-up surfaces and materials. These fields 

are Fore Optics (Contact Probe / Gun), Scan ID of Spectra, Latitude, Longitude and 
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Altitude, Material Composition, Name of class and sub-class, Observation, 

Temperature, Relative Humidity, Radiometric Calibration and GPS Time. 

     The spectral analysis of different built-up surfaces have been carried out visually 

and using continuum removed spectra, which is utilized for identification of 

significant regions and wavelengths for a particular surface or material. Continuum 

analysis has been carried out using IDL DISPEC 18.03 tool [47].  The basic software 

utilized in this study includes Environment for Visualizing Images (ENVI) 5.3 and 

ArcGIS 10.4. ENVI 5.3 accepts all the spectral data in ASCII format and converts it 

in the form of spectral library, which can be represented in any of the graphical 

format for analysis. Further, ArcGIS 10.4 is utilized for mapping of all the point 

coordinates associated with field data into satellite imagery of the study region. 

Figure 3.2 (b) represents some of the photographs of ground data collection 

campaign of different built-up surfaces and materials.         

 

3.3  Urban Engineered or Built-up surfaces  

As suggested from the studies in the past [6] [30] [33] [38] [39] [40] [41] [42] [43] 

[44] [45], in this study, the major urban engineered surfaces exist in the Indian 

regions, have been categorized into different levels (Level- 1, 2, 3 and 4), which are 

tabulated in Table 3.1. 

                       Table 3.1  Categorization of various engineered surfaces in different levels 

Level - 1 Level - 2 Level - 3 Level-4 

Engineered  / Built-

up Surfaces 

 

Roof  / Building Concrete 

Asbestos 

CGI Sheet 

 

 

New  
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Cement 

Wood 

DPC Brick 

Sandstone 

Irony 

 

 

Roads and Pavements Bitumen road  

 

 

Bitumen Parking Lot 

Asbestos pavement 

Concrete Road  

Concrete Pavement 

Concrete Bridge 

Charcoal 

Brick pavement 

New 

Old  

Repaired 

 

 

 

 

 

 

Railway Track Sleeper 

Track Iron 

Ballast boulder 

RCC 

Concrete log 

 

Sports Infrastructure Basketball court  

 

 

 

Volleyball court  

 

Tennis court  

Cricket pitch  

Concrete 

Blue  fabric 

Red fabric 

Bitumen 

Fabric 

Cement 

Fabric 

Cement 
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                                 (a)                                                                         (b) 

                             (a)                                                                                      (b) 

Figure 3.1  (a) The green points on the imagery of Udaipur, Rajasthan, India represent the actual 

locations of ground spectral data collection (b) Some of the selected photographs of field data 

collection campaign 

 

As mentioned in the study area, the spectral signatures of built-up surfaces have been 

captured in the wavelength range of 350 - 2500 nm with 1 nm spectral sampling. 

These wavelengths are divided into different spectral regions for the analysis of 

various spectral signatures of engineered surfaces, as shown in Table 3.2. 
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                                     Table 3.2  Division of full spectral range into different wavelength regions 

Region Wavelength Range 

Visible  350 nm  – 700 nm 

Very Near Infra-Red (VNIR) 700 nm – 1000 nm  

Far Near Infra-Red (FNIR) 1000 nm – 1500 nm 

Early Short Wave Infra-Red (ESWIR) 1500 nm – 2000 nm 

Far Short Wave Infra-Red (FSWIR) 2000 nm – 2500 nm 

 

3.4  Implementation  

This research has been carried out in two different stages: 

a) Spectral library creation and analysis of spectral signatures of built-up 

surfaces and materials 

i. Obtaining in-situ spectral signatures of different urban built-up surfaces 

and materials  

ii. Categorization of urban built-up surfaces (Level-1) into sub-surfaces 

(Level-2) and then further these sub-surfaces into materials (Level-3 

and 4) 

iii. Creation of spectral library of aforesaid surfaces and materials in Level-

1, 2, 3 and 4 

iv. Division of full spectral range i.e. 350-2500 nm into different spectral 

regions, which are visible, VNIR, FNIR, ESWIR and FSWIR 

v. Visual analysis of spectral signatures of built-up surfaces (Level-1, 2, 3 

and 4) 
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b) Identification of different significant wavelengths and regions of built-up 

surfaces and materials 

i. Generation of continuum removed spectra of all the built-up surfaces 

and materials 

ii. Critical analysis of spectral signatures of built-up surfaces and materials 

using various statistical parameters 

iii. Finding out the significant wavelengths of absorption in different        

regions of built-up surfaces and materials  

 

3.5  Spectral library creation and analysis of signatures of 

Urban Engineered / Built-up surfaces  

3.5.1 Roof / Building 

The spectral signatures of different types of roof surfaces and materials along with 

the observations are tabulated in Table 3.3.  

 

                                              Table 3.3  Spectral library creation and analysis of roof surfaces 

Spectral Signature Observation 

 

The reflectance is almost constant in all the regions except in visible. 

Some small absorption features due to metallic component and 

hydrocarbons, are observed in visible, VNIR, and FSWIR regions, 

respectively.    
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In visible and FSWIR, the response is almost concave with some major 

peaks. The reflectance decreases from visible to VNIR, while having 

sinusoidal behavior in FNIR. The response is almost constant in ESWIR. 

Further, iron oxide and hydrocarbon absorption features dominate in 

VNIR, FNIR, and FSWIR regions, respectively.  

 

In fresh CGI sheet, response is almost constant in all the regions, which 

has some absorption features near 1020, 1250 and 2250 nm. 

 

 

In irony CGI sheet, the reflectance decreases from visible to VNIR while 

it increases from VNIR to FSWIR with a major absorption near 1050 

nm. A minor absorption also appears near 2250 nm. 

 

The spectral response of cemented roof surface increases from visible to 

FNIR while having sinusoidal behavior in ESWIR and FSWIR regions. 

It has a major peak in FSWIR with some minor absorptions in FNIR. 

 

There is a sudden increase in reflectance from visible to VNIR and 

FNIR while behaves as a decreasing sinusoid in all the other regions 

with different peaks and absorptions.   
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The reflectance is high and almost constant in all the regions with 

different peaks and absorptions in FSWIR. Some minor absorptions also 

appear in VNIR and FNIR regions. 

 

Spectral signature of DPC brick is almost constant in all the regions with 

a peak and major absorption in FSWIR. Further, some minor absorptions 

are observed in visible, FNIR and ESWIR regions.          

 

The response of sandstone roof increases from visible to VNIR while 

decreases from VNIR to ESWIR and almost constant in FSWIR regions. 

Some absorption features are observed near 890, 2250 and 2390 nm. 

 

 

 

3.5.2  Roads and Pavements 

The spectral characteristics of various types of roads and pavements are shown in 

Table 3.4. The observations drawn from the analysis of signatures are also tabulated 

in Table 3.4. 
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                                 Table 3.4  Spectral library creation and analysis of roads and pavements 

Spectral Signature Observation 

 

The spectral response of bitumen roads linearly increases in visible 

region while almost constant in all the other regions with minor 

absorptions near 1190 and 2350 nm.  

 

The spectra of old bitumen road is almost flat in all the regions with 

major peak in FSWIR region. Iron oxide absorption appears in VNIR. 

 

The response of repaired bitumen road is almost flat in all the regions 

with some hydrocarbon absorptions near 2250 and 2400 nm. A minor 

absorption due to metallic component is observed in VNIR. 

 

Bitumen Parking lots are having same response as road but more flatter 

with two absorption bands near 1050 and 2260 nm.  

 

The spectra of asphalt pavement linearly increases in all the regions with 

lesser slop. Some small absorptions are observed in VNIR and FNIR 

regions.  
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The spectral signature of concrete road appears to have some minor 

absorptions in VNIR and FSWIR regions.  

 

Signature of concrete pavement is almost flat in all the regions except in 

visible while more concavity with hydrocarbon absorptions is observed 

near 2290 nm in FSWIR. 

 

The spectral signature of concrete bridge linearly increases in all the 

regions except FSWIR, while it becomes almost flat in FSWIR region. 

Some iron oxide and hydrocarbon features highlight in FNIR and 

FSWIR regions, respectively. 

 

Spectra of road charcoal is almost flat in all the regions with clay 

absorption near 2350 nm. The iron component appears to dominate in 

FNIR region near 1020 nm.  

 

The response of brick pavement gradually increases in all the regions 

with two minor absorptions near 1050 and 2250 nm. 
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3.5.3  Railway Track 

The spectral responses of various types of surfaces and materials associated with 

railway track are given in Table 3.5. Several observations have been derived from the 

analysis of spectral signatures, are also shown in Table 3.5.  

 

                                             Table 3.5  Spectral library creation and analysis of railway track 

Spectral Signature Observation 

 

The response of railway track sleeper is almost constant in all the 

regions with some iron oxide and hydrocarbon absorptions in VNIR and 

FSWIR, and a peak in FSWIR region. 

 

Here, the iron properties seem to be disappear, as slight absorption is 

observed in VNIR Also, the hydrocarbon absorption dominates in 

FSWIR  

 

Spectra of ballast boulder is almost flat and having different absorptions 

in FNIR, ESWIR and FSWIR regions. These absorptions may be due to 

iron oxide and different hydrocarbons.  

 

Here, the more absorption features appear in FNIR and ESWIR regions. 

The hydrocarbon absorptions in FSWIR are disappeared.  
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In concrete log, absorption features are observed due to iron oxide and 

hydrocarbons near 1000 and 2240 nm, respectively. 

 

 

3.5.4  Sports Infrastructure 

The spectral characteristics and observations of different types of surfaces and 

materials used in the construction of sports infrastructure are shown in Table 3.6.  

                                           

                                        Table 3.6  Spectral library creation and analysis of sports infrastructure 

Spectral Signature Observation 

 

The signature of concrete surface is almost constant in all the regions 

except in visible. Further, two minor absorptions due to iron oxide are 

observed in VNIR with a slight concavity in FSWIR. 

 

The signature of blue fabric behaves as decreasing sinusoid in FNIR, 

ESWIR and FSWIR regions with a blue peak in visible region.  

 

Here, the signature is almost similar to blue fabric but a red peak is 

observed near 670 nm. 
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The reflectance of bitumen court appears to have very less reflectance in 

all the regions with a major peak and concavity in FSWIR. Minor iron 

oxide and hydrocarbon absorption features appear near 1030 and 2380 

nm, respectively.  

 

The signature of fabric increases linearly in all the regions with different 

iron oxide and hydrocarbon absorptions in visible, VNIR and FSWIR 

regions. Further, due to color of fabric, the red peak is dominating at 

665 nm. 

 

The spectral characteristics of cemented volleyball court is almost flat in 

all the regions with different iron oxide absorptions in visible and VNIR 

regions. 

 

The signature of tennis court fabric is having a red peak with different 

hydrocarbon absorptions near 1750 and 2420 nm, while it is almost flat 

in VNIR, FNIR and ESWIR regions.  

 

In spectral response of cemented cricket pitch, a major peak appears in 

the FSWIR region with different iron oxide and hydrocarbon 

absorptions near 890 and 2240 nm, respectively.      
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3.6  Identification of significant wavelengths and regions for 

extraction of different built-up surfaces and materials 

For quantification of absorption features in spectra, the overall concave shape of a 

spectrum should be removed. This normalization procedure is referred as continuum 

removal or convex-hull transform, continuum equation is given as:  

 

                                                                                                                                 (3.1) 

Where SCR (λ) is continuum removed spectra while S (λ) is original spectra and C (λ) 

is continuum curve.  

     The resulting spectrum in Equation 3.1 i.e. SCR (λ) is equal to 1.0 where the 

continuum and the spectra match, and less than 1.0 where absorption features occur. 

The resulting spectrum has been analyzed for determining the changes in absorption 

features in different regions of spectra. The continuum removed spectra was further 

analyzed to calculate the parameters that depict the absorption feature, such as 

central wavelength position, area of the absorption A, absorption asymmetry and 

feature depth. The relative depth, D is defined as the difference between the 

continuum line and minimum value in the continuum removed spectra, 

                                                     1 min( ( ))CRD S                                              (3.2) 

     The area of absorption feature is defined as the summation of individual areas 

between continuum line and the channels in the continuum removed feature, it is 

given as, 

                                                      
1

(1 ( ))
n

CR

i

A S i


                                               (3.3) 

Where i is the number of channels from the starting point to end point. The 
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

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asymmetry factor AF of the absorption feature is given as, 

                                                          
left

Right

Area
AF

Area
                                               (3.4) 

     Figure 3.2 represents the analysis of spectral signature of a sample using various 

statistical parameters i.e. relative depth, area of absorption, and asymmetry factor, 

using IDL DISPEC 18.03 tool developed by University of Twente, Netherlands [47]. 

Figure 3.2 (a) shows the spectra of a rock sample along with its continuum removed 

curve while Figure 3.2 (b) represents the spectral analysis of a particular sample 

using above mentioned tool and parameters. Further, Figure 3.2 (c) shows the 

normalized reflectance curve of a sample, which is used for calculating aforesaid 

statistical parameters associated with spectral signature of a particular class. On the 

basis of spectrum generated by continuum removal analysis and different statistical 

parameters, various significant wavelengths in different regions are obtained, which 

can prove to be effective for extraction of a particular built-up class or material. The 

significant absorption parameters and central wavelengths of spectral signature of 

different built-up surfaces and materials are shown in Table 3.7. In this study, these 

central wavelengths are termed as significant wavelengths. Table 3.8 describes 

various significant wavelengths and regions for different subcategories of urban 

built-up surfaces. These significant wavelengths can be utilized for detection and 

identification of a particular surface or material in hyperspectral imagery. Further, 

the aforesaid spectral library can be used for extraction and unmixing of different 

engineered surfaces and materials in hyperspectral imagery. The significant 

wavelengths and absorption features of the most the surfaces and materials have been 

validated with the existing literature on spectral library creation and analysis [6] [30] 
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[33] [38] [39] [40] [41] [42] [43] [44] [45].   

 

   

                                            (a)                                                                                           (b) 

 

(c) 

Figure 3.2  (a) Sample spectral signature of a rock with continuum removal curve (b) Spectral 

analysis in IDL DISPEC 18.03 tool (c) Normalized reflectance of a sample 
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                    Table 3.7 Significant absorption parameters and wavelengths of different built-up surfaces and materials  

Built-up 

Surfaces 

Material Centre 

wavelength 

(nm) 

Absorption parameters 

Depth Area  Asymmetry 

Factor 

Roof  / 

Building  

Concrete 

 

 

 

Asbestos 

 

 

 

 

 

New CGI Sheet 

 

 

Irony CGI Sheet 

 

Cement 

 

 

Wood 

 

 

 

Lime painted 

 

 

576 

733 

2120 

2172 

480 

933 

1119 

1357 

2245 

2290 

985 

1235 

2230 

1029 

2250 

1572 

2120 

2245 

1632 

1955 

2110 

2230 

834 

2080 

2340 

0.3589 

0.4318 

0.3687 

0.4565 

0.2342 

0.2589 

0.3187 

0.3713 

0.2982 

0.2678 

0.2489 

0.3256 

0.2769 

0.1582 

0.2864 

0.4065 

0.3874 

0.3689 

0.3654 

0.2986 

0.2740 

0.3152 

0.3354 

0.2786 

0.2579 

27.8990 

38.3658 

28.9285 

40.2638 

20.1669 

21.2892 

25.5869 

31.3185 

28.1563 

23.7865 

21.0563 

26.1860 

24.8906 

16.4378 

23.5620 

35.3217 

33.1226 

29.8856 

28.3547 

28.1538 

23.0542 

24.6495 

27.1549 

24.3209 

22.5438 

0.3426 

0.9486 

1.1042 

0.7327 

0.9239 

1.2068 

0.7139 

1.8132 

1.1253 

1.6747 

2.5136 

0.6142 

0.1632 

1.1241 

0.9285 

0.6837 

3.0921 

0.5986 

1.7143 

1.1726 

1.2631 

1.5204 

1.2683 

0.3225 

2.7532 
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DPC Brick 

 

 

Sandstone 

 

 

980 

2040 

2235 

910 

2240 

2320 

0.3245 

0.2465 

0.2842 

0.2669 

0.2474 

0.3128 

25.9942 

21.4376 

25.6203 

24.0962 

22.1903 

24.9860 

1.3129 

0.2931 

2.4364 

0.8962 

0.9626 

0.7219 

Roads and 

pavements 

Bitumen  

 

 

 

Old Bitumen  

 

 

 

Repaired Bitumen  

 

 

 

 

Bitumen Parking Lot 

 

 

Asbestos Pavement  

 

 

Concrete Road  

 

 

Concrete Pavement 

490 

560 

832 

2115 

618 

890 

2142 

2260 

672 

840 

932 

2258 

2320 

1046 

2065 

2115 

570 

685 

2352 

590 

2245 

2310 

2210 

0.4589 

0.4123 

0.3936 

0.3924 

0.4563 

0.3165 

0.3454 

0.3786 

0.4235 

0.3589 

0.3182 

0.2865 

0.2674 

0.2915 

0.3134 

0.3060 

0.3471 

0.4005 

0.3512 

0.3265 

0.2969 

0.3050 

0.3267 

35.6032 

32.8937 

29.6039 

27.1586 

31.4679 

27.1834 

30.3545 

25.1673 

31.0589 

29.2130 

31.3902 

24.5439 

27.0498 

25.6548 

32.5639 

27.0940 

28.3871 

35.6232 

26.7129 

29.5603 

24.1689 

26.8560 

30.6811 

0.3749 

0.7302 

0.2253 

1.4542 

0.7468 

0.5196 

2.3184 

2.0472 

1.2153 

0.5327 

0.3269 

2.4326 

0.9845 

0.6389 

1.2545 

2.2341 

0.7218 

0.9342 

0.7894 

1.3876 

2.6548 

0.9030 

1.4276 
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Concrete Bridge  

 

 

 

 

 

Road Charcoal  

 

 

 

Brick Pavement  

  

2250 

745 

890 

932 

1366 

2032 

2195 

1012 

1265 

2045 

2256 

1032 

1380 

2172 

2355 

0.2849 

0.3173 

0.3035 

0.3785 

0.2914 

0.4189 

0.3485 

0.2876 

0.3348 

0.3187 

0.2965 

0.3090 

0.3365 

0.3498 

0.3649 

26.6232 

28.3019 

23.6833 

24.5627 

27.1131 

34.5139 

27.8523 

25.3910 

23.6504 

26.3219 

31.5921 

26.6125 

29.1927 

24.3195 

21.3295 

1.2135 

0.9684 

0.7782 

0.6598 

0.4973 

0.3259 

0.9438 

0.5489 

0.6578 

0.5764 

1.2867 

0.5364 

0.6485 

0.4358 

2.1043 

Railway track Sleeper 

 

 

Track Iron  

 

 

Ballast boulder 

 

 

 

RCC 

 

 

Concrete log 

1024 

2210 

2235 

932 

2118 

2350 

985 

1352 

2250 

2325 

1013 

2235 

2352 

2240 

0.2819 

0.3117 

0.3276 

0.3456 

0.4678 

0.3129 

0.2854 

0.3817 

0.2654 

0.2918 

0.2478 

0.3587 

0.3159 

0.2878 

23.4675 

28.5198 

29.0341 

25.9315 

37.3776 

26.1732 

29.1654 

31.4187 

22.3549 

27.0183 

20.6798 

29.1169 

26.9932 

23.8232 

2.1546 

0.5467 

0.8965 

0.9327 

0.7689 

1.6785 

0.4528 

0.5674 

2.3583 

2.1739 

0.6549 

1.5127 

2.1589 

2.8631 
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2375 0.3295 28.1428 1.7647 

Sports 

infrastructure 

Basketball Court : 

Concrete 

 

 

 

Blue Fabric 

 

 

 

 

 

 

Red Fabric 

 

 

 

 

 

 

Bitumen 

 

 

 

Volleyball Court : 

Fabric 

 

 

 

 

1052 

1132 

2140 

2235 

670 

1085 

1133 

1365 

1750 

2275 

2340 

550 

1052 

1136 

1754 

1815 

2245 

2320 

490 

985 

2210 

2355 

 

972 

2080 

2135 

2260 

 

0.2967 

0.2789 

0.3456 

0.3080 

0.2134 

0.2767 

0.3585 

0.2786 

0.2675 

0.3298 

0.3050 

0.2334 

0.2754 

0.4030 

0.3125 

0.3876 

0.3126 

0.3656 

0.2345 

0.2786 

0.2643 

0.3564 

 

0.2605 

0.3320 

0.3420 

0.4007 

 

24.1832 

28.4259 

29.3274 

26.5798 

19.3459 

24.9512 

30.2649 

21.6341 

25.5875 

30.7023 

24.9456 

20.2192 

23.4236 

35.7529 

27.8031 

29.2643 

22.8249 

28.6324 

19.7248 

23.1952 

24.9562 

29.0913 

 

22.7620 

27.3546 

25.9126 

31.1852 

 

0.6538 

1.3672 

1.3281 

1.6782 

0.9658 

0.8359 

0.7527 

1.1324 

0.8376 

1.2673 

2.1273 

1.2468 

1.1835 

0.8694 

1.3259 

0.9854 

1.5284 

2.2543 

2.3459 

1.7538 

0.8954 

1.2143 

 

0.3427 

0.9236 

0.7395 

0.9638 
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Cement 

 

 

Tennis Court: 

Fabric 

 

 

 

Cricket Ground: 

Cement Pitch 

 

692 

832 

2245 

 

425 

635 

1750 

2355 

 

885 

962 

2162 

2332 

0.2730 

0.3023 

0.3546 

 

0.2693 

0.2809 

0.2846 

0.3107 

 

0.2871 

0.3628 

0.3912 

0.2915 

22.3482 

26.5127 

30.2454 

 

25.1165 

23.8327 

21.8205 

27.5720 

 

27.2293 

30.3629 

32.4105 

23.0058 

0.7659 

1.3946 

0.8638 

 

0.6392 

0.2955 

0.9243 

1.2967 

 

1.7649 

0.6548 

0.9352 

1.4283 
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                       Table 3.8  Significant wavelengths and regions for different built-up surfaces and materials (Level-1, 2, 3 and 4) 

Roof / Building Surfaces 

 Concrete    Asbestos New CGI 

Sheet 

Irony 

CGI 

Sheet 

Cement  Wood Lime 

Pained  

DPC Brick Sandstone  

Significant 

regions and 

wavelengths 

(nm) 

VIS (576, 

733), 

FSWIR 

(2120, 

2172) 

VIS (480), VNIR 

(933),  FNIR 

(1119, 1375), 

FSWIR (2245, 

2290) 

VNIR (985), 

FNIR 

(1235), 

FSWIR 

(2230 ) 

FNIR  

(1029), 

FSWIR 

(2250) 

ESWIR 

(1572), 

FSWIR 

(2120, 

2245) 

ESWIR  

(1632, 1955), 

FSWIR (2110, 

2230) 

VNIR 

(834), 

FSWIR 

(2080, 

2340) 

VNIR (980), 

FSWIR 

(2040, 2235) 

VNIR (910), FSWIR (2240, 

2320) 

Road and Pavement  Surfaces 

 Bitumen  Old Bitumen  Repaired 

Bitumen 

Bitumen 

Parking 

Lot 

Asbestos 

Pavement 

Concrete 

Road 

Concrete 

Pavement 

Concrete 

Bridge 

Road Charcoal Brick Pavement 

Significant 

regions and 

wavelengths 

(nm) 

VIS (490, 

560), VNIR 

(832), 

FSWIR 

(2115) 

VIS (618), VNIR 

(890), FSWIR 

(2142, 2260) 

VIS (672), 

VNIR 

(840, 932), 

FSWIR 

(2258, 

2320) 

FNIR 

(1046), 

FSWIR 

(2065, 

2115) 

VIS (570, 

685), 

FSWIR 

(2352) 

VIS 

(590), 

FSWIR 

(2245, 

2310) 

FSWIR 

(2210, 

2250) 

VNIR (745, 

890, 932), 

FNIR 

(1366), 

FSWIR 

(2032, 

2195) 

FNIR (1012, 

1265), FSWIR 

(2045, 2256) 

FNIR (1032,1380), 

FSWIR (2172, 

2355) 
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Railway Track 

 

Significant 

regions and 

wavelengths 

(nm) 

Sleeper Track Iron Ballast Boulder RCC Concrete log 

FNIR (1024), FSWIR (2210, 

2235) 

VNIR  (932), FSWIR (2118, 2350) VNIR (985), FNIR 

(1352), FSWIR 

(2250, 2325) 

FNIR (1013), FSWIR 

(2235, 2352) 

FSWIR (2240, 2375) 

Sports Infrastructure 

 

 

 

Significant 

regions and 

wavelengths 

(nm) 

Concrete Basketball 

Court 

Blue Fabric 

Basketball 

Court 

Red Fabric 

Basketball 

Court 

Bitumen 

Basketball 

Court 

Fabric 

Volleyball 

Court 

Cement 

Volleyball 

Court 

Fabric Tennis Court Cemented Cricket 

Pitch 

FNIR (1052, 1132), 

FSWIR (2140, 2235) 

VIS (670), 

FNIR (1085, 

1133, 1365), 

ESWIR 

(1750), 

FSWIR 

(2275, 2340) 

VIS (550), 

FNIR (1052, 

1136), ESWIR 

(1754, 1815), 

FSWIR (2245, 

2320) 

VIS (490), 

VNIR (985), 

FSWIR 

(2210, 2355) 

VNIR (972), 

FSWIR 

(2080, 2135, 

2260) 

VIS (692), 

VNIR 

(832), 

FSWIR 

(2245) 

 

VIS (425, 635), ESWIR 

(1750), FSWIR (2355) 

 

VNIR (885, 962), 

FSWIR (2162, 

2332) 
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3.7  Summary 

In this study, a comprehensive collection of spectral signatures of various urban 

built-up surfaces and materials have been obtained in the field using spectral 

evolution spectroradiometer over the range of 350 to 2500 nm. Further, these built-

up or engineered surfaces (Level-1) have been divided into roofs/buildings, roads 

and pavements, railway track and sports infrastructure in second level while different 

sub-classes and materials related to these surfaces into third and fourth level. The 

aforesaid signatures were captured in the urban environment of Udaipur, Rajasthan, 

India. Further, a spectral library of built-up surfaces and materials is created with a 

critical analysis of spectral signatures of these surfaces and materials in different 

spectral regions, which are visible, VNIR, FNIR, ESWIR and FSWIR, respectively. 

The results of the analysis suggested that, various engineered surfaces can be 

differentiated on the basis of different significant absorption features at different 

wavelengths. These features may be due to iron oxide, silicates, organic components, 

hydrocarbons and clay etc. These significant wavelengths in different spectral 

regions may be effective for extraction of different built-up surfaces and materials in 

hyperspectral imagery. These wavelengths may also be useful for determining the 

age, condition and deterioration status of various engineered surfaces.  
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Chapter 4 
 

Development of Spectral Indices for extraction of 

Engineered surfaces and its Sub-categories 
 

 
In comparison to traditional algorithms for extraction and estimation of engineered / 

built-up surfaces, spectral index based approaches show distinct advantages due to 

their ease of implementation and parameter independence. In the past, several indices 

have been reported in the literature to extract only built-up or impervious surfaces, 

and confusion among spectrally similar classes still exists. Also, these indices have 

not been used for hyperspectral imageries [3] [60] [65] [72] [101] [102]. In this 

chapter, development of three new spectral indices i.e. New Impervious Index (NII), 

Road Detection Index (RDI) and New Roof Extraction Index (NREI) have been 

proposed for detection of built-up (Level-1), road and roof surfaces (Level-2), 

respectively, followed by a separability analysis between spectrally confused urban 

land cover classes. The whole analysis has been carried out using AVIRIS-NG image 

and in-situ hyperspectral data of Udaipur, Rajasthan region of India.  

   
     The tasks in this study are to develop new built-up indices using a hyperspectral 

dataset with a view to: 

a) Extract built-up surfaces in the first level followed by its subclasses i.e. roads 

and roofs in second level by proper identification of significant wavelengths.  

b) Carry out a comparative analysis of proposed indices with the existing built-

up indices. 

c) Analyze the separability between most spectrally confused urban land cover 

classes to further validate the detection results of proposed built-up indices.          
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4.1 Study area and Data 

The remote sensing image used in this study is atmospherically corrected AVIRIS-

NG hyperspectral imagery acquired on 2
nd

 February 2016. The AVIRIS-NG sensor 

measures the reflectance/radiance in the wavelength over the spectral range of 376 –

2500 nm with 5 nm sampling. The area under examination belongs to a region of 

Udaipur, Rajasthan, India, which is a combination of built-up and non-built-up 

surfaces as shown in Figure 4.1 (a). In this region, the majority of built-up surfaces 

were present in the form of bitumen road, concrete pavement as well as concrete and 

metallic roofs. The salient details of hyperspectral imagery are given in Table 4.1. 

Ground spectral signatures of the same region were collected using Spectral 

Evolution Spectroradiometer, with 2151 channels over a spectral range of 350 – 2500 

nm. The results of the study are validated using a high-resolution satellite base map 

of ArcGIS 10.4 in addition to 2297 known ground sample locations, out of which 

1032 belong to built-up and 1265 to non-built-up surfaces. The actual locations of 

field data collection along with some of the selected photographs are shown in Figure 

4.1 (b) and (c), respectively. The signatures of built-up surfaces are further divided 

into 500 road and 532 roof surfaces (uploaded in nisa.geos.iitb.ac.in). For brief visual 

and quantitative analysis of the extraction results of built-up surfaces, two 

geographical regions of interest are selected, which are shown under red rectangles in 

Figure 4.1 (a). The bottom rectangle comprises of 62 truth pixels of roads and 68 of 

roofs while the rectangle on the top consists of 78 pixels of roof surfaces. Further, the 

ward map of the study area has been used for validating the results of area estimation 

of different built-up surfaces using different built-up indices. 
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Table 4.1  AVIRIS-NG image data specifications 

SN Parameters Description 

1 Location Udaipur, Rajasthan, India 

2 Airborne Sensor  AVIRIS-NG 

3 Date and Time of Data acquisition 02/02/2016, 08:14:45 Am 

4 Spatial and Spectral resolution  8.1 meter, 5 nm 

5 Number of samples, lines, and bands 400, 400, 425 

 

4.2  Data preprocessing 

In the preprocessing stage, the spectral bands of AVIRIS-NG imagery which are 

severely affected by atmospheric gases and particles with visible, NIR, and SWIR 

detector overlap, with a high frequency of band noise and poor data quality have 

been removed, which results in 380 bands. Since the reduced data redundancy 

between original bands, significantly avoided the confusion between built-up 

surfaces and bare soil as well as between roads and roofs, and therefore enhances the 

accuracy of extraction of built-up surfaces along with its subcategories. Hence, 

dimensionality reduction of the remote sensing imagery is carried out using 

divergence and mutual information based algorithms. Next, the resampling of ground 

spectral data is carried out with respect to image bands using the nearest neighbor 

resampling technique. In the next stage of preprocessing, water pixels are masked out 

using the ISODATA unsupervised classification algorithm [70] [103]. Therefore, the 

three urban land cover classes that are vegetation, impervious/built-up surfaces, and 

soil (V-I-S) [80] [104] are considered for further analysis. In the next stage, the 

stepwise discriminant analysis is utilized for identification and selection of 

significant wavelengths for extraction of built-up surfaces using ground and image 

data simultaneously. This algorithm is executed on the SPSS tool [105] [106], which 
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identifies suitable wavelengths for detection of built-up surfaces and its subclasses 

based on two parameters i.e. tolerance and Wilks’s Lambda. 

 

(a) 

 

                                           (b)                                                                                 (c)                                                                                                                                                     

Figure 4.1  Hyperspectral data collection campaign at Udaipur, Rajasthan, India (a) AVIRIS-NG 

image data (b) Locations of field data collection (c) Photographs of field data collection            
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4.2.1 Kullback-Leibler (K-L) Divergence and Mutual Information 

(M-I) algorithms 

To overcome the demerits of reduced image quality and information contents of 

Principle Component Analysis (PCA) and Minimum Noise Fraction (MNF) based 

dimensionality reduction approaches [107] [108] [109] [110],  this study utilizes two 

widely used algorithms for dimensionality reduction and band selection in 

hyperspectral imagery, which are Kullback-Leibler (K-L) divergence and Mutual 

Information (M-I) [111] [112] [113]. K-L divergence approach is utilized for 

dissimilarity measurement between two bands of the remote sensing imagery by 

using their respective probability distributions. Let us consider Xa and Xb be two 

random variables representing the a
th 

and b
th 

bands of hyperspectral imagery. 

Assuming Pa(x) and Pb(x) as the probability distribution of these random variables, 

the divergence can be represented in terms of distance or dissimilarity measure as,                                    

                           
( ) ( )

( , ) ( ) log ( ) log
( ) ( )

a b
KL a b a b

x xb a

P x P x
D X X P x P x

P x P x 

                    (4.1) 

     M-I based algorithm is employed to quantify the degree of independence between 

random variables. Let us assume a set of K random variables that represent their 

corresponding bands X1,…..,XK  in hyperspectral imagery. If Xa and Xb be two random 

variables representing a
th 

and b
th

 bands of hyperspectral imagery. Then, mutual 

information I(Xa, Xb) is given as, 

                            
( , )

( , ) ( , ) log
( ) ( )a b

a b
a b a bx x

a b

P X X
I X X P X X

P X P X 
                  (4.2) 

Mutual information can be represented in terms of entropy measures as, 

                                 ( , ) ( ) ( ) ( , )a b a b a bI X X H X H X H X X                           (4.3) 

Where entropy and joint entropy of a random variable is given as,  
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( ) ( ) log ( )

( ) ( ) log ( )

( , ) ( , ) log ( , )

a

b

a b

a a ax

b b bx

a b a b a bx x

H X P X P X

H X P X P X

H X X P X X P X X





 

 

 

 





 

                     (4.4) 

The following measure is used to calculate the similarity between two random 

variables, 

                                        
2* ( , )

( , )
( ) ( )

a b
a b

a b

I X X
NI X X

H X H X



                                    (4.5) 

Which is the normalized form of information measure I. Furthermore, this 

normalized M-I is used as a distance or dissimilarity measure as, 

                                      
2

( , ) 1 ( , )NI a b a bD X X NI X X                                  (4.6) 

 

4.2.2  Stepwise Discriminant Analysis (SDA) 

The Stepwise Discriminant Analysis (SDA) is used for the identification of 

significant wavelengths in remote sensing imagery. In SDA, the standard for 

eliminating or introducing the random variable is measured using two parameters i.e. 

Wilk’s Lambda and tolerance [114] [115] [116]. 

     Wilk’s Lambda is a combination of statistics of each variable that contributes to 

the discrimination function and it has values in the range of 0 and 1. The values of 

this parameter indicate the discriminatory power or separability of spectral bands. A 

smaller value of this variable specifies that it will provide a greater contribution to 

the discriminant model.  

     Tolerance is another parameter that is used for the identification of significant 

bands in remote sensing imagery. It is the proportion of the variance of a random 

variable that is not considered by other independent random variables in the 

equation. A random variable with very low tolerance provides less information and 
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causes computational difficulties. 

     The SPSS (IBM Corporation) tool is used for the execution of stepwise 

discriminant analysis. Further, 40 pure pixels of each category of urban surfaces i.e. 

road, roof, vegetation, and soil are identified in AVIRIS-NG imagery. The spectral 

signatures of these pure pixels and ground spectral signatures of the respective urban 

land cover classes are utilized for the identification of significant wavelengths in 

hyperspectral imagery.       

 

4.3  New spectral indices for built-up extraction (Level-1 

and 2) 

In this study, road and roof surfaces have been considered under built-up surfaces 

while vegetation and soil under non-built-up surfaces. Further, concrete and metallic 

roofs are associated with roof surfaces, while bitumen roads and concrete pavements 

to road surfaces. The resampled ground spectral signatures of built-up and non-built-

up surfaces are shown in Figure 4.2.  

 

Figure 4.2  Spectral signatures of different urban land cover classes utilized for extraction of built-up 

surfaces (Level-1 and 2) 
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     Further, due to too much noise, the wavelength bands in the interval of 1850-1950 

nm have been removed and hence not considered for the analysis. Following is 

observed from Figure 4.2: 

 The spectral response of bitumen road gradually increases in the visible 

region between 400-700 nm while it is almost constant in NIR and SWIR 

regions.  

 In the spectra of concrete pavement, there appears a sudden increase in the 

visible region between 405-555 nm while it is almost constant in NIR and 

SWIR regions. Also, some iron oxide and clay absorption features are 

observed near 490 and 2250 nm, respectively.  

 The spectral characteristics of concrete and metallic roof surfaces gradually 

increase in all the regions from visible to SWIR. The difference between the 

two signatures is that, the concrete roof shows some hydrocarbon absorptions 

near 2100 nm, while the metallic roof shows some iron oxide absorption 

features near 490, 620, and 860 nm.  

 The spectra of vegetation depicts a red edge near 665 nm with a sudden 

increase from visible to NIR region. Furthermore, a concavity is observed in 

the SWIR region between 2100 to 2300 nm.   

 The spectra of soil is almost similar to all the man-made surfaces in the NIR 

region but, in visible it differs from all the built-up surfaces except concrete 

pavement. Moreover, in the SWIR region, absorptions due to various C-H 

components are observed between 2050 to 2300 nm.  

 In the NIR region, maximum correlation is observed between soil, concrete 

roof, and metallic roof surfaces, while in SWIR, high overlapping is observed 
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between spectral signatures of soil and concrete pavement.  

 In the visible region, built-up surfaces and their subcategories can easily be 

separated from non-built-up surfaces.  

     Therefore, based on aforesaid analysis and taking advantage of various absorption 

features, it is observed that, bands in visible and NIR regions can prove to be 

effective for the extraction of built-up surfaces (Level-1) and roads (Level-2), while a 

combination of visible and SWIR bands may be effective for extraction of roof 

surfaces in AVIRIS-NG hyperspectral imagery. Vegetation can be easily separated 

from the rest of the classes in all the regions, while soil may create some problem of 

overlapping with built-up surfaces to some extent. This overlapping can be reduced 

by the proper selection of significant wavelengths in the respective regions.   

     New Impervious Index (NII) and Road Detection Index (RDI) are developed for 

the extraction of urban built-up surfaces and roads, respectively, in AVIRIS-NG 

hyperspectral imagery. It is observed that built-up surfaces and roads can be perfectly 

extracted using appropriate combinations of NIR and visible bands in AVIRIS-NG 

imagery. 

                                                 
1

1

VIS NIR

VIS NIR

B B
NII

B B

 
  

 
                                            (4.7) 

                                                
1 1

1 1

VIS NIR

VIS NIR

B B
RDI

B B

 
  

 
                                            (4.8) 

Where VIS is the wavelength band in the range of 450 – 690 nm, while VIS1 in the 

interval of 405 – 555 nm. Further, NIR1 is the wavelength band over the range of 730 

– 1340 nm and B represents reflectance at a particular wavelength. 

     New Roof Extraction Index (NREI) is proposed for the detection of roof surfaces 

in AVIRIS-NG imagery. It is examined that roof surfaces can easily be extracted 
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using proper combinations of SWIR and visible bands in hyperspectral imagery. 

                                       

1
2

1
2

2 1

SWIR
SWIR

VIS

SWIR
SWIR

VIS

SWIR SWIR

B
B

B
NREI

B
B

B

B B

 
 

 
  
 



                                         (4.9) 

Where SWIR1 is the wavelength band over the interval of 1500 – 1790 nm and 

SWIR2 in the range of 1960 – 2490 nm followed by VIS over the interval of 450 – 

690 nm.  

     All the proposed indices have been used visible bands of hyperspectral data, it 

may be due to the large tonal variation of major urban built-up surfaces. For 

example, roof surfaces are having more reflectance and brightness in comparison to 

road surfaces, which are characterized by low reflectance or dark surfaces.  

 

4.4  Otsu’s thresholding 

For the detection of built-up surfaces using spectral index based approach, 

thresholding plays an important role. Recent studies have revealed that Otsu’s 

method [117] of optimization may be utilized for extraction of built-up surfaces from 

the index map generated from satellite images [75] [118] [119] [120]. Therefore, this 

study makes use of Otsu’s optimization approach for separating urban built-up 

targets from the background.  

     Otsu’s method was formulated to discriminate between target and background in 

an image by generating two classes with minimum intra-class and maximum inter-

class variance to produce optimal threshold [121]. In this method, pixels may be 

labeled into two classes, that are the target (T) ranging from [a,….,t] and background 

(B) ranging from [t,…..,b], where t is the threshold value. The optimal threshold TH 
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can be generated by determining the between-class variance of B and T.  

                                   
2 2 2( ) ( )B B T TP M M P M M                               (4.10) 

                                               B B T TM P M P M                                        (4.11) 

                                                           1B TP P                                                  (4.12) 

Where σ
2
 is the between-class variance of B and T; M is the mean of the index image; 

PB and PT are the probabilities of the pixel being present in B and T. MB and MT are 

the mean of pixel values in B and T, respectively. The optimal threshold is given as, 

                                                 
2( )H a t bT Argmax                                      (4.13) 

 

4.5  Existing built-up indices 

The proposed built-up indices are compared with existing indices for the extraction 

of urban built-up surfaces in AVIRIS-NG imagery. These existing indices are visible 

red NIR built-up Index (VrNIR-BI), visible green NIR built-up Index (VgNIR-BI), 

Road Extraction Index (REI), Built-up Areas Index (BAI), Urban Index (UI) and 

Normalized Difference Built-up Index (NDBI). Table 4.2 provides a brief overview 

of these existing built-up indices. 

     

    Table 4.2  Existing built-up indices utilized for extraction of built-up surfaces and subclasses          

   SN Spectral Index Expression Dataset 

1 VrNIR-BI, VgNIR-BI    

[75] 

RED NIR

RED NIR

B B
VrNIR BI

B B


 


 

GREEN NIR

GREEN NIR

B B
VgNIR BI

B B


 


 

Landsat-8 Operational Land 

Imager/Thermal Infrared 

Sensor (OLI/TIRS) and 

Landsat-7 Enhanced 

Thematic Mapper Plus 
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(ETM+) imageries 

2 REI [67]   

*

NIR BLUE

NIR BLUE NIR

B B
REI

B B B





 

Worldview (WV) – 2 

imagery 

3 BAI [74] 

              

( )

( )

BLUE NIR

BLUE NIR

B B
BAI

B B





 

High resolution multispectral 

aerial imagery  

4 UI [58] 
SWIR NIR

SWIR NIR

B B
UI

B B





 

Landsat Thematic Mapper 

(TM) imagery 

5 NDBI [59] 

  

( )

( )

SWIR NIR

SWIR NIR

B B
NDBI

B B





 

Landsat TM imagery 

 

 

4.6  Separability analysis of urban land cover classes 

Inter-class separability between built-up surfaces and bare soil, and between two 

types of built-up surfaces i.e. roads and roofs have been carried out using following 

statistical measures: 

 Spectral Discrimination Index (SDI) [122] 

 Jeffries-Matusita (J-M) distance [124] 

 Transformed-Divergence (T-D) [125] 

      

4.7  Implementation 

In this study, the whole analysis has been carried out using image processing and 

statistical tools available with MATLAB 2018B, ArcGIS 10.4, ENVI 5.3, and SPSS. 

The implementation steps of the study are represented by a flow chart shown in 

Figure 4.3. 
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Figure 4.3  Implementation steps of the study 
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4.8  Results 

4.8.1  Identification of significant wavelengths for extraction of built-

up surfaces (Level-1 and 2) 

The dissimilarity measures based on divergence and mutual information algorithms 

are utilized to reduce the data dimensionality and non-useful information amongst 

hyperspectral bands. These approaches are based on a hierarchical clustering 

structure to group clusters or bands of the hyperspectral image to maximize the inter-

cluster and minimize the intra-cluster variance. The final selected bands will be the 

best representative of each cluster. A band selection tool for dimensionality reduction 

of image bands based on these two criteria is utilized in this study [111]. In this tool 

380 bands of remote sensing imagery are selected as input cluster. On setting the 

number of output clusters as 150 and after execution of both of the algorithms, 70 

common bands have been identified.  Next, ground spectral data of 1032 built-up and 

1265 non-built-up surfaces along with the aforementioned 70 bands of hyperspectral 

imagery have been utilized to obtain significant wavelengths using SDA. The SDA is 

executed on SPSS (IBM Corporation) tool. Using SDA, suitable wavelengths have 

been identified for the detection of built-up surfaces and its subclasses using two 

parameters i.e. tolerance and Wilks’s Lambda.   

     Based on tolerance and Wilks’s Lambda parameters, different significant 

wavelengths in visible, NIR, and SWIR regions are obtained, which are listed in 

Table 4.3. Using these wavelengths, various combinations have been generated for 

each of the proposed and existing built-up indices. Table 4.4 depicts the appropriate 

mapping of wavelengths in proposed and existing built-up indices, which have been 

generated based on the histogram plot of various land cover classes mentioned in the 

study area. Further, to validate the applicability of the developed approach, two most 
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suitable combinations are selected for each of the proposed built-up indices (Level-1 

and 2).     

                 Table 4.3  Significant wavelengths used to compute built-up indices 

Visible region 

Wavelength (nm) 416 466 481 486 560 631 656 

Tolerance 0.985 0.978 0.965 0.989 0.980 0.991 0.976 

Wilks’s Lambda 0.342 0.352 0.401 0.258 0.286 0.265 0.389 

NIR 

Wavelength (nm) 842 862 867 982 1042 1232  

Tolerance 0.975 0.968 0.902 0.915 0.982 0.960  

Wilks’s Lambda 0.079 0.124 0.156 0.109 0.095 0.085  

SWIR 

Wavelength (nm) 1548 1613 1628 2149 2199   

Tolerance 0.995 0.972 0.980 0.984 0.945   

Wilks’s Lambda 0.039 0.089 0.057 0.073 0.154   

 

  

4.8.2  Optimal thresholding of built-up indices (Level-1 and 2) 

The optimization of index images is carried out using Otsu’s thresholding approach. 

Using histogram representation of respective indices and various statistical 

parameters of target and background such as mean and standard deviation, a 

threshold is assigned to each index band, which is considered as optimal. Table 4.4 

shows the optimal thresholds along with statistical parameters of different indices, 

utilized for extraction of built-up surfaces (Level-1) and its subclasses (Level-2). 

These thresholds are also validated using histogram representation of different land 

cover classes in respective built-up indices shown in Figure 4.4, 4.5, and 4.6. Since 

NII, RDI, and NREI have been used two different combinations of wavelengths, and 
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hence having two different threshold values. 

 

     Table 4.4  Mapping of appropriate wavelength bands, statistical parameters and optimal 

thresholds for different built-up indices (Level- 1 and 2) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8.3  Extraction of built-up surfaces (Level-1)  

The optimal results of built-up extraction in hyperspectral imagery using NII along 

with existing VgNIR-BI and VrNIR-BI are shown in Figure 4.4 (a) to (d). Figure 4.4 

(e) to (h) represents the extraction results of a region of interest (ROI) inside the red 

Spectral  

Index 

Wavelength  

Combinations (nm) 

Mean Standard 

Deviation 

Optimal  

Threshold 

Built-up Surfaces (Level-1) 

NII1 631 (VIS), 842 (NIR) -0.241 0.145 -0.155 

NII2 631 (VIS), 1042 (NIR) -0.282 0.147 -0.175 

VrNIR-BI 656 (RED), 862 (NIR) -0.238 0.155 -0.150 

VgNIR-BI 560 (GREEN), 862 (NIR)  -0.281 0.125 -0.220 

Road (Level-2) 

RDI1 416 (VIS1), 1232 (NIR) -0.421 0.118 -0.295 

RDI2 416 (VIS1), 842 (NIR) -0.381 0.118 -0.247 

REI 466 (BLUE), 982 (NIR) -0.321 0.115 -0.162 

BAI 481 (BLUE), 867 (NIR) -0.369 0.121 -0.206 

Roof (Level-2) 

NREI1 486 (VIS), 1548 

(SWIR1), 1628 (SWIR2) 

-0.796 0.046 -0.710 

NREI2 631 (VIS), 1628 

(SWIR1), 2149 (SWIR2) 

-0.799 0.085 -0.662 

UI 867 (SWIR), 2199 (NIR) -0.161 0.073 -0.087 

NDBI 867 (NIR), 1613 (SWIR) -0.095 0.160 0.025 
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rectangle shown in Figure 4.4 (a) to (d). This ROI corresponds to various roof 

surfaces, which are used for a brief quantitative analysis of the results. Now, by 

superimposing output images onto a high-resolution satellite base map of ArcGIS 

10.4, it is observed that NII can extract most of the built-up surfaces while the 

detection rate appears to be slightly less in the case of VgNIR-BI and VrNIR-BI. The 

quantitative analysis of the roofs inside ROI suggests that out of 78 truth pixels, 70 

and 73 pixels are detected in NII1 and NII2 while VgNIR-BI and VrNIR-BI are 

capable of extracting 58 and 61 pixels of those rooftops, respectively. Therefore, NII 

may outperform VgNIR-BI and VrNIR-BI in AVIRIS-NG imagery. Although 

VgNIR-BI, VrNIR-BI, and NII utilize similar bands of remote sensing imagery for 

the development of built-up index but there is still a slight variation in the results, it 

may be due to the limitation of selection of significant wavelengths in discrete band 

multispectral imagery. 

     Figure 4.4 (i) to (l) describes the histogram representation of various urban land 

cover classes in different built-up indices (Level-1). These land cover classes are 

road, roof, vegetation, and soil. Histogram plot inside the black circle corresponds to 

the target class while other plots belong to the background. Road and roof surfaces 

are considered under built-up surfaces while rest of the classes is associated with 

non-built-up surfaces. It is observed from Figure 4.4 (i) to (l) that histogram of road 

and roof surfaces are almost same, it may be due to the similarity in spectral 

characteristics of the materials used for the construction of these two surfaces. For 

example, bituminous roof and asphalt road have similar spectral responses. These 

surfaces have almost similar composition of carbon, hydrogen, sulfur, nitrogen, and 

oxygen. It is also investigated that built-up surfaces are well separated from soil and 

vegetation in all the aforementioned indices used for the extraction of built-up 
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surfaces. 

       
      

0.18             -0.24        -0.75  0.57          -0.28           -0.75  0.20           -0.28         -0.70  0.19           -0.23          -0.77   

               

               (a) NII1                                (b) NII2                            (c) VgNIR-BI                         (d) VrNIR-BI    

   

          
              
               (e) NII1                                   (f) NII2                             (g) VgNIR-BI                         (h) VrNIR-BI 

 

    
          

      
   

                   (i) NII1                                    (j) NII2                            (k) VgNIR-BI                        (l) VrNIR-BI          

  
Figure 4.4  (a-d) Extraction results of urban built-up surfaces using different built-up indices in which 

the range of indices is shown along the x-axis of the respective index band (e-h) extraction results of 

ROI (i-l) histogram representation of different land cover classes in respective built-up indices 

 

4.8.4  Extraction of road surfaces (Level-2) 

Figure 4.5 (a) to (d) depicts the outcomes of road extraction in RDI followed by REI 

and BAI after the application of optimal threshold. Figure 4.5 (e) to (h) describes the 

extraction results of ROI inside the red rectangle shown in Figure 4.5 (a) to (d).  This 

ROI consists of five parallel road surfaces, which are utilized for a quantitative 

analysis of the road detection results. It is observed by overlaying output images into 



 

63 

 

a high-resolution imagery that, RDI detects most of the road pixels correctly while 

REI and BAI label these target pixels into background with more false alarms. 

Further, the quantitative analysis of the 62 truth pixels of roads inside ROI suggests 

that 56 and 54 pixels of those roads are highlighted in RDI1 and RDI2, while REI 

and BAI are capable of detecting only 37 and 41 target pixels, respectively. Thus, it 

appears that RDI can prove to be effective for the extraction of road surfaces in 

hyperspectral imagery in comparison to REI and BAI. 

     The histogram representation of various urban land cover classes, which are 

associated with different indices used for extraction of roads, is shown in Figure 4.5 

(i) to (l). The histogram plot inside the black circle corresponds to the roads while 

remaining plots is associated with non-road background. Water pixels have already 

been masked in the preprocessing stage, accordingly, the rest of the urban land cover 

classes such as road, roof, vegetation, and soil are used for the analysis. It is observed 

from Figure 4.5 (i) to (l) that, vegetation and soil can be easily discriminated from 

roads and roofs but some part of the road surfaces is still overlapping with roofs. 

Therefore, the separability of spectrally similar road and roof surfaces is still a 

challenging task. This problem may be further worsened by the issues connected 

with the occlusion of road surfaces by trees, shadow, and the presence of vehicles. It 

also appears that, the overlapping behavior of road and roof surfaces is more in REI 

and BAI while moderate in case of RDI. Therefore, the selection of significant bands 

and optimal thresholds play a major role in the extraction of road surfaces. It is also 

investigated that, indices used for extraction of roads may also be utilized for the 

detection of built-up surfaces by changing in the threshold. 
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 0.48            -0.42          -0.72   0.11          -0.38         -0.76  0.65           -0.32           -0.62  0.07          -0.37          -0.75  

              

              (a) RDI1                                 (b) RDI2                                  (c) REI                                 (d) BAI 

 

                                          
 
                 (e) RDI1                                 (f) RDI2                                (g) REI                                    (h) BAI 

  

    
 

 
 

                   (i) RDI1                              (j) RDI2                                  (k) REI                                    (l) BAI                   

  
Figure 4.5  (a-d) Extraction results of road surfaces using different built-up indices in which the range 

of indices is shown along the x-axis of the respective index image (e-h) extraction results of ROI (i-l) 

histogram representation of different land cover classes in respective built-up indices 

 

4.8.5  Extraction of roof surfaces (Level-2) 

The roof extraction results in AVIRIS-NG imagery using NREI and existing UI and 

NDBI are shown in Figure 4.6 (a) to (d). Figure 4.6 (e) to (h) represents the 

extraction results of ROI inside the red rectangle shown in Figure 4.6 (a) to (d). This 

ROI belongs to some specific roof surfaces, which are used for a brief quantitative 

analysis of the results. It is observed by a comparison of results with reference 
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imagery that, most of the roof pixels are detected in NREI while only a few pixels 

are highlighted in the case of UI and NDBI with more false alarms. Further, when the 

quantitative analysis of 68 true pixels of rooftops inside ROI is carried out, then it 

appears that 61 and 64 pixels are detected in the case of NREI1 and NREI2, while 

only 47 and 52 roof pixels are highlighted in UI and NDBI, respectively. Therefore, 

NREI may perform better in comparison UI and NDBI for the extraction of rooftops 

in AVIRIS-NG imagery.  

     Histogram representation of different urban land cover classes in roof extraction 

indices is shown in Figure 4.6 (i) to (l). It appears from Figure 4.6 (i) to (l) that non-

built-up surfaces such as vegetation and soil can easily be discriminated from roof 

surfaces in NREI while some portion of soil is overlapped with roof surfaces in case 

of UI and NDBI. Further, if the analysis is carried out for roads and roofs, then it is 

observed that, roof surfaces can easily be separated from road surfaces in case of 

NREI while overlapping between roofs and roads is more in case of UI and NDBI. It 

also appears that UI has most of the false alarms in the form of road surfaces while in 

NDBI, it is in the form of soil. Therefore, the whole analysis suggests that, NREI 

may perform better separation of roof surfaces from other non-roof classes in 

comparison to UI and NDBI. 

       

        
-0.44          -0.80          -0.86 -0.37           -0.8            -0.95  0.40           -0.16          -0.56  0.24           -0.09           -0.65 

            

            (a) NREI 1                             (b) NREI2                                  (c) UI                                  (d) NDBI 
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             (e) NREI1                             (f) NREI2                                   (g) UI                                    (h) NDBI 

 

    
    

 
 

                  (i) NREI1                            (j) NREI2                                  (k) UI                                     (l) NDBI                                               

  

Figure 4.6   (a-d) Extraction results of roof surfaces using different built-up indices in which the range 

of indices is shown along the x-axis of the respective index band (e-h) extraction results of ROI (i-l) 

histogram representation of different land cover classes in respective built-up indices 

 

4.8.6  Accuracy assessment and validation of results  

The detection results of built-up surfaces and its subclasses, shown in Figure 4.4, 4.5, 

and 4.6, are validated using a high-resolution satellite base map in addition to 2297 

field location information of different urban samples, out of which 1032 belong to 

built-up surfaces and 1265 to non-built-up surfaces. 1032 samples of built-up 

surfaces are further categorized into 500 roads and 532 roofs, respectively. The 

overall accuracy and kappa index of different built-up indices are tabulated in Table 

4.5. The overall accuracy is calculated by considering built-up surfaces (Level-1 and 

2) as target while other non-target classes as background. It is observed that proposed 

indices i.e. NII, RDI, and NREI outperform other existing built-up indices i.e. 

VrNIR-BI, VgNIR-BI, REI, BAI, UI, and NDBI for extraction of built-up surfaces 

(Level-1 and 2). It appears that the accuracies of NII, VrNIR-BI, and VgNIR-BI are 
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comparable. It may be due to utilization of similar spectral regions of different 

datasets for development of these built-up indices. Also, the overall accuracy of RDI 

and REI is comparable, as NIR and visible bands have been used by both of these 

indices for their formulation. Further, NREI utilizes a combination of SWIR and 

visible while UI and NDBI make use of SWIR and NIR regions. It has been 

previously discussed that due to the brighter tone of most of the roof surfaces, visible 

region may be a better choice for detection of roof surfaces. Therefore, the accuracy 

of roof extraction enhances in NREI while it gets worse in the case of UI and NDBI.   

     Table 4.5 also describes the quantification of built-up surfaces and its 

subcategories using proposed and existing built-up indices. In the study region, the 

actual percentage of built-up area is about 22.45%, out of which roads are 11.45% 

and roof surfaces of approximately 11% of the total area. The actual percentages and 

geographic locations of all these classes are verified from the ward map of Udaipur 

Municipal Corporation, Rajasthan, India (http://www.udaipurmc.org/HomePage.aspx 

accessed on 22
nd

 August 2019) along with high-resolution satellite imagery. It 

appears from Table 4.5 that the NII approaches towards an actual percentage of built-

up surfaces, while VrNIR-BI and VgNIR-BI are included some false alarms in the 

form of non-built-up surfaces. Similarly, RDI appears to have better extraction of 

road surfaces with slight confusion with roof surfaces. Also, it seems that the effect 

of false alarms in the form of roofs and soil is more in REI and BAI. In case of roof 

extraction indices, it is observed that NREI approaches perfectly towards the actual 

percentage of roof surfaces while UI and NDBI are over determined with more false 

alarms in the form of soil and roads.   

 

 

 

http://www.udaipurmc.org/HomePage.aspx
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Table 4.5  Accuracy assessment of various built-up indices (Level-1 and 2) based on different 

parameters 

 Spectral 

Index 

Overall 

Accuracy 

 (%) 

Kappa  

Index    

 (%) 

Target  

pixels 

Background 

pixels 

Area (%) Actual 

Area (%) 

Built-up 

surfaces 

(Level-1) 

NII1 95.83 87.27 35432 124568 22.15 22.45 

NII2 96.41 86.53 35580 124420 22.23 

VrNIR-BI 86.32 78.07 41559 118441 25.97 

VgNIR-BI 83.53 76.24 38370 121630 23.98 

Road  

(Level-2) 

RDI1 92.60 83.25 19056 140944 11.91 11.45 

RDI2 91.89 81.89 19560 140440 12.22 

REI 85.65 76.96 21248 138752 13.28 

BAI 78.25 71.20 19981 140019 12.48 

Roof  

(Level-2) 

NREI1 96.24 88.25 17696 142304 11.06 11% 

NREI2 93.30 84.63 17760 142240 11.10 

UI 76.89 68.64 18619 141381 11.63 

NDBI 81.14 72.18 18990 141010 11.86 

 

 

4.8.7  Inter and intra-class separability analysis of urban built-up 

surfaces 

Built-up surfaces and soil tend to share almost similar spectral characteristics, so the 

separability between built-up surfaces and soil is a major concern, as reported in 

most of the literature. Therefore, in this study, various statistical measures such as 

SDI, J-M distance, and T-D are utilized for the analysis of separability between built-

up surfaces and soil. If we assume SDI value to be greater than 3 for best 

separability, between 2 to 3 for moderate and less than 2 for worst separability, then 

from Table 4.6, it appears that NII can provide best separability between built-up 
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surfaces and soil and moderate separability is attained in case of VrNIR-BI and 

VgNIR-BI. Further, RDI, REI, and BAI are perfectly separated built-up surfaces 

from the soil. The NREI provides best separation, while the worst separation is 

obtained in case of UI and NDBI. Similarly, if we consider J-M distance to be greater 

than 1.6 for best separability, between 1.4 and 1.6 for moderate and less than 1.4 for 

worst separability, then it is observed from Table 4.6 that, NII can offer the best 

separability between built-up surfaces and soil while moderate separability is 

obtained in VrNIR-BI and VgNIR-BI. Also, all the road detection indices can 

provide the best separability. In case of roof extraction indices, NREI provides the 

best separability between built-up surfaces and soil while worst is obtained in case of 

UI and NDBI. Moreover, if the analysis is carried out using T-D approach by 

assuming T-D values to be greater than 1900 for best separability, between 1800 to 

1900 for moderate and less than 1800 for worst separability, then it is examined that 

NII is capable of providing best separability between built-up surfaces and soil while 

moderate is obtained in VrNIR-BI followed by worst in VgNIR-BI. Further, in road 

detection indices, best separability is achieved in RDI whereas moderate in case of 

REI and BAI. Finally, NREI generates the best separability between built-up surfaces 

and soil while worst in case of UI and NDBI.        

     Similar spectral characteristics of different types of road and roof surfaces such as 

concrete roofs and pavements, bitumen roads and roofs also affect the extraction 

results of built-up surfaces (Level-2). Therefore, in this study, separability analysis 

between road and roof surfaces has also been carried out as an accuracy measure for 

extraction of road and roof surfaces. The aforesaid statistical measures have been 

used for the analysis of separability, as shown in Table 4.6. The SDI analysis 

suggests that RDI can provide better separability while REI and BAI are worst in 
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terms of separability between road and roof surfaces. Finally, NREI appears to have 

the best separability whereas worst in case of UI and NDBI. When the separability 

analysis is performed using J-M distance and T-D based criteria then similar results 

are obtained as in SDI.      

  

        Table 4.6  Inter and intra-class separability measures of built-up surfaces (Level-1 and 2)   

Separability between    Built-up and Soil        Road and Roof 

 Spectral  

Index 

SDI J-M  

distance 

T-D SDI J-M  

distance 

T-D 

Built-up surfaces 

(Level- 1) 

NII1 2.95 1.65 1865      --------------------------- 

     --------------------------- 

     --------------------------- 

     --------------------------- 

NII2 3.48 1.82 1902 

VrNIR-BI 2.61 1.53 1825      

VgNIR-BI 2.29 1.41 1790 

Road (Level- 2) RDI1 3.86 1.89 1918 1.36 1.49 1793 

RDI2 3.48 1.84 1905 1.25 1.41 1769 

REI 3.08 1.72 1875 0.471 0.83 1422 

BAI 3.47 1.80 1895 0.670 0.92 1453 

Roof (Level- 2) NREI1 3.12 1.85 1910 4.17 1.91 1931 

NREI2 2.82 1.61 1845 4.14 1.85 1941 

UI 0.45 0.85 1425 1.29 1.52 1632 

NDBI 0.42 0.70 1403 1.13 1.21 1524 

 

4.9  Discussion 

The major aim of developing NII, RDI, and NREI, is to derive a simple and 

convenient spectral index based approach which can highlight the urban built-up 

surfaces along with its subcategories in AVIRIS-NG hyperspectral imagery. Due to 

high dimensionality of hyperspectral data, widely used mutual information and 
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divergence based approaches [111] have been used for dimensionality reduction 

followed by stepwise discriminant analysis for selection of most significant 

wavelengths. The analysis of the results suggests that, NII and RDI can prove to be 

effective for extraction of built-up and road surfaces, respectively. These indices are 

developed using visible and NIR bands of hyperspectral imagery. More importantly, 

NII and RDI showed their effectiveness in discriminating soil from built-up surfaces, 

which has proven to be a difficult problem [54] [126]. Also, RDI has shown its 

efficacy in intra-class separability of built-up surfaces i.e. between roads and roofs. 

Another advantage of NII and RDI is that, it may be applied to different narrow band 

imageries of small spectral range, as these are independent of SWIR bands. Further, 

NREI has also shown its effectiveness for the extraction of roof surfaces in 

hyperspectral imagery, which employs a combination of visible and SWIR bands for 

its development. The major advantage of NREI is that, it can perfectly separate roof 

surfaces from bare soil and roads. The utilization of narrower band spectrally rich 

hyperspectral imagery may be a reason for the better performance of all the proposed 

indices. Moreover, NII, RDI, and NREI may have the potential to assist in a large 

number of applications associated with urban remote sensing, which includes urban 

growth analysis, land use classification, urban target detection, urban heat island 

analysis, and image endmember extraction etc. Furthermore, NII performs slightly 

better when compared to the similar indices i.e. VgNIR-BI and VrNIR-BI [75], while 

RDI proves to be efficient when compared with REI [67] and BAI [74] and in case of 

roof extraction, NREI shows to be effective in comparison to UI [58] and NDBI [59]. 

Therefore, NII, RDI, and NREI may serve as a convenient spectral index based 

method, rather than an approach for extraction and estimation of built-up, road, and 

roof surfaces, respectively. The development of proposed indices is mainly 
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dependent on the spectral signatures of various urban land cover classes, which are 

vegetation, soil, road, and roof surfaces, as suggested by V-I-S model [80]. 

Therefore, the limitation of these indices is that they have not considered the effect of 

water as it has already been masked in the preprocessing stage of the study using 

unsupervised classification based approach [70]. 

 

4.10  Summary  

In this study, three new built-up indices i.e. NII, RDI, and NREI have been proposed 

for the extraction of built-up surfaces along with its subcategories i.e. roads and roofs 

by proper identification of significant wavelength bands. The divergence and mutual 

information based algorithms were utilized to reduce data redundancy between 

original bands of remote sensing imagery. Further, stepwise discriminant analysis 

was used to identify the most significant wavelengths, which resulted in improved 

built-up surface mapping. The NII has been utilized for extraction of built-up 

surfaces followed by RDI for detection of road and NREI for roof surfaces. The NII 

and RDI employed a combination of NIR and visible bands while NREI utilized a 

combination of SWIR and visible bands. These indices have been applied in 

AVIRIS-NG hyperspectral imagery of Udaipur, Rajasthan, India. Further, 

separability analysis between spectrally confused urban land cover classes such as 

between built-up surfaces and soil as well as between road and roof surfaces, has 

been performed using various statistical measures i.e. SDI, J-M distance, and T-D. 

The results of the proposed indices have been compared with mapping results 

obtained by other existing indices. The NII, RDI, and NREI showed an overall 

average accuracy of 96.12 %, 92.24 %, and 94.77 %, respectively, which is higher 

than all the other existing built-up indices. Therefore, the proposed indices found to 
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be effective for extraction of built-up surfaces (Level-1 and 2) in comparison to 

existing indices. The quantification of built-up surfaces and its subclasses using 

aforesaid indices has also been carried out. The quantification results suggested that 

the proposed indices can prove to be effective for estimation of built-up surfaces of 

different levels. Similarly, these indices have shown their effectiveness for separating 

built-up surfaces from soil as well as roads from roofs, when compared with other 

existing indices.  
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Chapter 5 
 

New Spectral Indices for Condition and 

Deterioration analysis of Road and Roof surfaces 
 

 
Comprehensive and precise information about the condition of road and deterioration 

of roof surfaces is required for effective planning and management of urban 

infrastructure. Some of the major problems associated with road condition are traffic 

congestion and reconstruction. Further, the weathered roof surfaces that emit various 

harmful toxins need to be monitored regularly [7] [30] [135] [136]. Therefore, in this 

study, condition analysis of road surfaces and deterioration analysis of roof surfaces 

are carried out using AVIRIS-NG image and field hyperspectral data of Udaipur, 

Rajasthan, India. Various significant bands are identified using spectral 

characteristics of roads and roofs of different condition and deterioration, 

respectively.  

 

The tasks in this study are subdivided into:  

a) Develop a new spectral index for determining the condition of road surfaces 

using hyperspectral image and field spectrometry. 

b) Introduce a new spectral index for determining the deterioration status of roof 

surfaces using hyperspectral image and field data. 

c) Compare the results of spectral unmixing of road and roof surfaces on the 

basis of their condition and deterioration with proposed spectral indices.  
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5.1  AVIRIS-NG hyperspectral data and processing 

The original hyperspectral imagery of Udaipur, Rajasthan region of India with 

different regions of interest, is utilized for the study. The AVIRIS-NG sensor is 

equipped with multiple bands in ultra violet (UV), visible, NIR and SWIR regions, 

respectively. A total number of bands present in this imagery are 425, which have 

been reduced to 380 after removal of bad bands that are affected by water vapor, 

carbon dioxide, and detectors overlap.  

     Further, it is required to apply the mask to the natural land cover classes such as 

vegetation and water bodies. Therefore, this study uses green and red band along 

with NIR to apply the mask on vegetation and water, respectively. The NDVI [127] 

is used to extract vegetation in the image. NDVI identifies vegetation based on the 

positive values instead of the remaining pixels. These values are used to apply a 

mask by setting a proper threshold value.   
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To apply the mask to water bodies in hyperspectral imagery, the Normalized 

Difference Water Index (NDWI) [134] is used. 
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The elimination of water bodies is required because they may influence the detection 

of bitumen surfaces because both water bodies and road surfaces may tend to share 

similar spectral properties. 

 

5.2  Ground data acquisition and materials  

This study utilizes field spectroscopy data along with AVIRIS-NG hyperspectral 
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imagery. Field spectroscopy data has been collected using Spectral Evolution 

spectroradiometer with wavelengths in the interval of 350 – 2500 nm. Spectral 

measurements were conducted at Udaipur, Rajasthan, India in the year 2016. The 

reflectance measurements have been obtained from 10 am to 3 pm in ambience 

lighting conditions. The spectroradiometer utilized in this research was equipped 

with the detectors that covered the visible to short wave infrared spectra, with a 

spectral resolution of 1.5 nm at 350 – 1000 nm, 3.0 nm at 1500 nm and 3.8 nm at 

2100 nm, respectively. Apart from field spectral data, AVIRIS-NG hyperspectral 

imagery is also utilized in this study for the development of a spectral index for 

condition analysis of road surfaces followed by deterioration analysis of roof 

surfaces. 

     Ground spectral signatures have been collected for asphalt or bitumen road 

surfaces under new or good conditions and old or damaged conditions. These two 

classes of road surfaces have been considered for condition analysis. A total of 4 

spectral signatures have been collected per sample, and accordingly, 2000 spectral 

signatures of 500 samples have been obtained based on the aforementioned 

conditions of road surfaces. Further, out of these 500 samples, 378 samples are 

associated with new or good condition road surfaces while 122 are related to old or 

damaged condition road surfaces. Next, mean spectral signatures are extracted from 

378 and 122 samples of road surfaces, respectively, which are shown in Figure 5.1 

(c). Further, these spectral signatures are selected for condition analysis of road 

surfaces. Ground inspection has also been carried out across the study area to 

examine the condition of road surfaces based on the physical appearance. Accuracy 

assessment and validation of the mapping results are performed with the help of 

ground truth information of above mentioned 500 samples of road surfaces. 
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     In a similar way, ground spectral signatures have been collected for concrete roof 

surfaces under new or less deteriorated roofs and old or more deteriorated roofs. 

These two classes have been considered for deterioration analysis of roof surfaces. A 

total of 4 spectral signatures have been collected per sample of roof surface and 

accordingly, 2128 spectral signatures of 532 samples have been obtained based on 

the aforementioned deterioration status of concrete roof surfaces. Further, out of 

these 532 samples, 312 samples are associated with new or less deteriorated roof 

surfaces while 220 samples are related to old or more deteriorated roof surfaces. 

Next, mean spectral signatures are extracted from 312 and 220 samples of roof 

surfaces, respectively, as shown in Figure 5.2 (c). These spectral signatures are 

utilized for deterioration analysis of roof surfaces. Field inspection has also been 

carried out across the study area to observe the deterioration status of roof surfaces 

based on the physical appearance. Accuracy assessment and validation of the 

mapping results are carried out with the help of ground truth information of aforesaid 

532 samples of roof surfaces.   

 

5.2.1  Spectral characteristics of road surfaces 

Field spectral signatures captured in this research covered the spectral range over the 

interval of 350 – 2500 nm with 2151 channels. However, the preprocessing of these 

signatures is required to eliminate the noise caused by atmospheric absorption and 

detectors overlap. The ranges that are affected by water absorption and noise 

components include 1343 – 1418 nm (76 channels) and 1793 – 1954 nm (162 

channels), respectively. Hence, the remaining 1913 channels (2151 channels - 

(76+162) channels) are utilized in this study for condition analysis of road surfaces. 

Figure 5.1 (a) and (b) represent the images of road surfaces of different condition 
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along with their respective spectral signatures in Figure 5.1 (c). On the basis of these 

spectral signatures of road surfaces, condition analysis has been carried out in two 

different classes i.e. new or good condition and old or damaged condition. 

             

                                                              (a)                                     (b)                           

 

      (c) 

Figure 5.1  Images with respective spectral characteristics of bitumen or asphalt road surfaces of 

different condition (a) Old road damaged condition (b) New road good condition (c) spectral 

signatures of road surfaces shown in (a) and (b) 

     In the recent past, research has been carried out to determine the spectral 

characteristics of asphalt pavements using field spectroscopy, and it has been 

observed that deformed surfaces of asphalt reflect high degree of spectral values of 

NIR and SWIR bands in comparison to un-weathered or new asphalt surfaces [30]. 

The natural aging of bitumen or asphalt surfaces is caused by photochemical 

reactions with solar radiations and reaction with atmospheric oxygen followed by the 

influence of heat. It results in three major processes a) changes of the composition by 

oxidation b) loss of oily component by absorption and c) molecular structuring that 

influences the viscosity of bitumen mix [7]. Generally, the loss of oily component is 
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a short term process while the other two processes are long term [7] [30]. It is 

observed from the spectral characteristics shown in Figure 5.1 (c) that new bitumen 

or asphalt surfaces have the lowest reflectance with a linear increase in reflectance 

towards 2100 nm. Further, the hydrocarbon absorptions are generally evident at 1750 

nm and above 2100 nm with a significant absorption at 2310 and 2350 nm, 

respectively [135] [136]. As the condition of the road surfaces gets worse, the 

reflectance increases in all regions of the spectrum. The spectral characteristics of 

bitumen surface in NIR and SWIR region changes from a little concave or nearly flat 

for new bitumen surfaces to more concave for older bitumen surfaces as shown in 

Figure 5.1 (c). Exposing of the rocky component and the oxidation process in the 

road surfaces is generally due to the presence of iron oxide absorption features in the 

visible region at 520, 670 and 870 nm, respectively [7]. It also appears in Figure 5.1 

(c) that the hydrocarbon features are distinct for new bitumen surfaces and enhanced 

with age and damaged or poorer surfaces conditions. Further, if the analysis is 

carried out in SWIR region then it appears that for older road surfaces slope of 

spectral response increases between 2100 and 2200 nm while it decreases between 

2250 and 2300 nm, respectively [30]. 

     Spectral analysis of the road surfaces suggests various features in the form of iron 

oxide and hydrocarbon absorption for the analysis of bitumen or asphalt road 

condition. On the basis of these features, a spectral index is developed for road 

condition analysis in hyperspectral imagery. Herold et al. (2005) [135], suggests two 

different indices i.e. VIS2 ratio (the difference between reflectance at wavelengths 

830 and 490 nm) and SWIR ratio (the difference between reflectance at wavelengths 

2120 and 2340 nm), to analyze the spectral characteristics of bitumen or asphalt road 

surfaces in visible and SWIR regions.  
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5.2.2  Spectral characteristics of roof surfaces 

In a similar way, as in the case of road surfaces, 1913 out of 2151 channels are 

utilized for the deterioration analysis of roof surfaces. Figure 5.2 (a) and (b) represent 

the images of roof surfaces with different levels of deterioration along with their 

respective spectral signatures in Figure 5.2 (c). On the basis of these spectral 

characteristics of roof surfaces, deterioration analysis can be performed in two 

different ways i.e. new or less deteriorated surfaces and old or more deteriorated 

surfaces. 

     Variation in the spectral characteristics of concrete roof surfaces is shown in 

Figure 5.2 (c). It is observed from the spectral characteristics of concrete surfaces 

that, new concrete surfaces have the highest reflectance while degradation and 

material aging result in a decrease in reflectance in all the regions of spectra. The 

change in reflectance of concrete surfaces may be due to the continuous oxidation of 

these surfaces caused by the accumulation of dust and dirt followed by absorption of 

iron oxide components [135]. Therefore, the brightness of the concrete surfaces also 

decreases. If the analysis of spectral signatures of concrete roof surfaces is carried 

out in the SWIR region, then it shows minor change with clay absorption near 2200 

nm for older surfaces. Further, the hydrocarbon absorptions are also observed at 

1750 nm and above 2100 nm, specifically at 2310 and 2350 nm, respectively. If we 

consider the spectral response in visible region, then it appears that iron oxide 

absorption occurs between 520 and 670 nm, particularly at 550 nm [135].  

               

                                                                 (a)                                   (b)                        
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     (c)       

Figure 5.2  Images with respective spectral characteristics of concrete roof surfaces of different level 

of deterioration (a) New or less deterioration (b) Old or more deterioration (c) spectral signatures of 

roof surfaces shown in (a) and (b) 

 

5.3  Multiple endmember spectral mixture analysis 

(MESMA) 

Spectral Mixture Analysis (SMA) is based on the assumption that reflectance f 

measured at pixel i can be represented as a linear summation of M endmembers 

(spectrally pure materials) weighted by the fraction aki of each endmember within the 

pixel i [137] [138]. For a given wavelength λ, it is computed as:  
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Where eiλ is the residual component that explains the unmodeled portion of radiance/ 

reflectance. It also specifies the difference between the measured and modeled 

spectral signature. Modeled fractions are usually constrained by the following: 
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Model fit is assessed by calculating the root mean squared error (RMSE) of residuals 

for every pixel across all the bands i.e. between 1 to N [54]. 

                                               
 

1/2
2

1

N
i

i

e
RMSE

N





 
  
 
 
                                   (5.5)                                                   

     Endmember can be collected in the lab or field or may be extracted from the 

image itself. Constraints for selecting appropriate models for each pixel can be 

specified in terms of RMSE, the residuals for each wavelength and range of end 

member fractions [139]. 

     In standard SMA, a fixed number of endmembers, usually between two to five are 

used to model the entire image in terms of those spectrally pure components [137]. 

However, this method is limited because the selected endmember may not efficiently 

model all the elements in the image. These limitations of SMA are basically 

challenging in an urban environment. An algorithm that addresses all these 

limitations is Multiple Endmember Spectral Mixture Aanalysis (MESMA), which 

allows the type as well as number of endmembers to differ on per pixel basis [54]. 

     In this study, MESMA is utilized for condition analysis of bitumen or asphalt road 

surfaces followed by deterioration analysis of concrete roof surfaces. Various 

aforementioned mean spectral signatures of road and roof surfaces of different 

condition and deterioration are utilized as endmembers for the unmixing analysis 

using MESMA approach. Further, a comparative analysis is also carried out between 

proposed index based approach and existing MESMA unmixing results.   

 

5.4  Implementation  

Following steps are used for condition analysis of road surfaces and deterioration 
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analysis of roof surfaces: 

 AVIRIS-NG hyperspectral data acquisition and selection of a spatial subset 

of image data, which is dominated by urban built-up surfaces  

 Removal of the bad band from hyperspectral imagery followed by masking 

of vegetation and water classes using index based approach 

 Field hyperspectral data acquisition for road surfaces of different condition 

and roof surfaces of different deterioration subsequently removal of bad bands 

 Analysis of ground spectral signatures of various road surfaces of different 

condition, and identification of significant wavelengths followed by formulation 

of a spectral index for condition analysis of road surfaces   

 Analysis of ground spectral signatures of various roof surfaces based on their 

deterioration, and identification of significant wavelengths subsequently 

formulation of a spectral index for deterioration analysis of roof surfaces   

 Mapping of spectral indices based on road condition and roof deterioration 

using density slicing approach 

 Spectral unmixing of road and roof surfaces on the basis of their condition 

and deterioration using MESMA approach 

 Comparative assessment of the results obtained by proposed index based 

approach with existing MESMA unmixing   

 

5.5  Spectral index for condition analysis of road surfaces 

Statistical analysis of spectral signatures shown in Figure 5.1 (c) suggests that the 

band at 830 nm reflects the spectral peak between the two iron absorption bands 

while 490 nm is positioned in the middle of the iron absorption bands [7] [28]. There 

are some natural reasons that may significantly affect the spectral reflectance of road 
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surfaces. The effect of heat and reactions with solar radiation along with atmospheric 

oxygen are the main natural processes. In view of all the aforementioned facts, a 

spectral index is developed by considering the two wavelengths, which are 490 nm in 

the visible, and 830 nm in NIR region.  Further, this newly introduced spectral index, 

named as Condition Index- Road (CI- Road) for the condition analysis of road 

surfaces, is given in Equation 5.6. This index may be more helpful to determine the 

condition of road surfaces in a more efficient manner.  

                     830 490
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            (5.6) 

     Where B830 and B490 are the reflectances of bitumen road at 830 nm and 490 nm, 

respectively. Otsu’s thresholding [117] has been utilized to find out the range of 

spectral indices, which depicts the condition of road surfaces, as shown in Table 5.1. 

It appears from the range of spectral indices shown in Table 5.1 that the CI-Road will 

be low for new or good condition road while high for old or damaged condition road 

surfaces.  

 

5.6  Spectral index for deterioration analysis of roof 

surfaces 

Using the spectral characteristics of roof surfaces shown in Figure 5.2 (c), a spectral 

index is introduced for deterioration analysis of concrete roof surfaces, as given in 

Equation 5.7. When this index is applied on AVIRIS-NG imagery, then it results in a 

single band image which may be capable of differentiating deteriorated roof surfaces 

based on the various range of index values. The spectral index is expressed in terms 

of normalized difference index ratio, which is generated on the basis of most 

informative band combinations utilized for detecting concrete roof deterioration. 
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This index utilizes the advantage of hydrocarbon and iron oxide absorption in SWIR 

and visible regions of Electromagnetic (EM) spectrum for determining the 

deterioration of concrete roof surfaces.  
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Where B2120, B1750 and B550  are the reflectances of concrete roof surfaces at 2120 nm, 

1750 nm, and 550 nm, respectively. Otsu’s thresholding has been utilized to find out 

the range of spectral indices, which depicts the deterioration status of roof surfaces as 

shown in Table 5.1. DI-Roof will be low for old or more deteriorated roof surfaces 

while it will be high for new or less deteriorated roof surfaces.  

 

                   Table 5.1  The range of spectral indices for different road and roof surfaces 

          Category             Range 

                         CI-Road  

New or good condition      -0.0346 to 0.1245 

Old or damaged condition       0.1245 to 0.1882 

                           DI-Roof  

Old or more deteriorated      -0.7282 to -0.6864 

New or less deteriorated      -0.6864 to -0.4357 

 

5.7  Results 

5.7.1  Mapping of road surfaces of different condition  

Mapping of road surfaces of different condition is carried out using two approaches 

which are proposed index based approach and existing MESMA unmixing algorithm. 
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The analysis has been performed on original image along with three ROIs, as shown 

in Figure 5.3 (a), (d), (g) and (j). The results of the analysis are shown in Figure 5.3 

(b), (c), (e), (f), (h), (i), (k) and (l). The hyperspectral image is classified into two 

categories i.e. new or good condition, and old or damaged condition depending upon 

the condition of road surfaces. Further, for labeling the results of index based 

approach, density slicing strategy is utilized. In Figure 5.3 (b), (c), (e), (f), (h), (i), (k) 

and (l), pixels with magenta color represents new road surfaces with good condition 

while pixels with cyan color depicts old road with damaged or bad condition. As 

previously discussed, a sum of 500 samples or pixels of road surfaces have been used 

for accuracy assessment and validation of results. Further, out of these 500 pixels, 

378 pixels belong to new or good condition road surfaces and remaining 122 to old 

or damaged condition road surfaces. The quantitative analysis of the results is carried 

out for all three sites without considering the false alarms, as shown in Table 5.2. 

     It is observed that out of 378 pixels of new road surfaces with good condition, 

88.88 % of pixels are clearly detected in the outcomes of spectral index while 

MESMA unmixing is capable of detecting only 79.89 % of those pixels. Further, it is 

also investigated that out of 122 pixels of old road surfaces with the damaged 

condition, 83.60 % pixels are clearly highlighted in case of spectral index while 

76.22 % of those pixels are detected by MESMA approach. Geographical variability 

of endmembers of similar material may be one of the reason of degradation of 

MESMA results. Therefore, index based approach can prove to be effective for 

condition analysis of road surfaces in comparison to MESMA unmixing. 
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             Table 5.2  Quantitative analysis of road surfaces in all regions of interest 

Category Actual Pixels Detected Pixels Detection Percentage 

CI-Road 

New or good 

condition 

378 336 88.88 

Old or damaged 

condition 

122 102 83.60 

MESMA 

New or good 

condition 

378 302 79.89 

Old or damaged 

condition 

122 93 76.22 

 

 

     

                                (a)                                                      (b)                                                       (c) 

     

                              (d)                                                        (e)                                                       (f) 
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                               (g)                                                        (h)                                                      (i) 

     

                                (j)                                                       (k)                                                        (l) 

                                               New or good condition            Old or damaged condition 

Figure 5.3  Road condition analysis using hyperspectral imagery (a) original image (b) analysis using 

index based approach (c) analysis using MESMA unmixing (d) (g) (j) three regions of interest of 

original image (e) (h) (k) analysis of regions of interest using index based approach (f) (i) (l) analysis 

of regions of interest using MESMA unmixing 

 

5.7.2  Mapping of roof surfaces of different deterioration 

Mapping of deteriorated roof surfaces is performed using two different approaches, 

which are proposed index based approach and MESMA unmixing algorithm. The 

roof deterioration analysis has been carried out on original image along with three 

regions of interest, as shown in Figure 5.4 (a), (d), (g) and (j). The results of the 

analysis are shown in Figure 5.4 (b), (c), (e), (f), (h), (i), (k) and (l). The AVIRIS-NG 

imagery is classified into two categories i.e. new or less deteriorated and old or more 
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deteriorated roof surfaces. The labeling of index results has been carried out using 

density slicing approach. In Figure 5.4 (b), (c), (e), (f), (h), (i), (k) and (l), pixels with 

blue color represent the new and less deteriorated roof surfaces while green color 

pixels are associated with old roof surfaces with more deterioration. For accuracy 

assessment and validation of mapping results of roofs, 532 samples or pixels are 

used, out of which 312 pixels belong to new roof surfaces with less deterioration 

while 220 pixels to old roof surfaces with more deterioration. The quantitative 

analysis on the basis of deterioration of roof surfaces is performed for all the three 

regions of interest shown in Figure 5.4 (d), (g) and (j). 

 

     

                               (a)                                                        (b)                                                      (c) 

     

                                (d)                                                      (e)                                                       (f) 
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                               (g)                                                        (h)                                                       (i) 

     

                                (j)                                                       (k)                                                       (l)      

                                        New or less deteriorated                 Old or more deteriorated                                                     

Figure 5.4  Deterioration analysis of roof using hyperspectral imagery (a) original image (b) analysis 

using index based approach (c) analysis using MESMA unmixing algorithm (d) (g) (j) three regions of 

interest of original image (e) (h) (k) analysis of regions of interest using index based approach (f) (i) 

(l) analysis of regions of interest using MESMA unmixing algorithm    

                                     

     It is observed that out of 312 pixels of new or less deteriorated roof surfaces, 

90.38 % of pixels are clearly detected in outcome of index while 84.29 % of those 

truth pixels are highlighted in MESMA, as shown in Table 5.3. Further, if the 

analysis is carried out for old or more deteriorated roof pixels, then out of 220 pixels, 

85.90 % of those pixels are clearly extracted in the index results while only 75.45 % 

of those pixels are detected in MESMA outcomes. Hence, index based approach has 

proved its efficacy for deterioration analysis of roof surfaces. 
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                                 Table 5.3  Quantitative analysis of roof surfaces in all regions of interest 

Category Actual Pixels Detected Pixels Detection Percentage 

DI-Roof 

New or less 

deteriorated 

312 282 90.38 

Old or more 

deteriorated 

220 189 85.90 

MESMA 

New or less 

deteriorated 

312 263 84.29 

Old or more 

deteriorated 

220 166 75.45 

 

5.8  Summary 

In this study, the condition analysis of road surfaces and deterioration analysis of 

roof surfaces were carried out by utilizing AVIRIS-NG image along with field 

hyperspectral data. Further, using various significant wavelength bands, two spectral 

indices i.e. CI-Road and DI-Roof were formulated for condition analysis of road 

surfaces, and deterioration analysis of roof surfaces, respectively. The 

aforementioned analysis with respect to road and roof surfaces was also carried out 

using MESMA unmixing algorithm followed by a comparison with index based 

approach. The area under investigation belongs to the urban area of Udaipur, 

Rajasthan, India. The results of the analysis suggest that, as the condition of the road 

surfaces gets poor, the reflectance in all the regions of EM spectrum increases that 

may also depict that CI-Road will be larger for old or damaged condition road 

surfaces while less for new or good condition road surfaces. Further, as the 

deterioration increases for the roof surfaces, the reflectance of these surfaces 
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decreases, which depicts that DI-Roof will be larger for new or less deteriorated roof 

surfaces while less for old or more deteriorated roof surfaces. The comparison of 

indices results with MESMA unmixing suggests that, indices results may outperform 

MESMA, which may be due to more geographical variability of endmembers and 

model complexity of MESMA algorithm.      
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Chapter 6 
 

Extraction of Built-up surfaces and its Sub-categories 

using existing Built-up Indices in AVIRIS-NG 

Imagery 
 

 

In remote sensing, almost all the built-up indices have been developed for the 

multispectral dataset [3] [57] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] 

[70] [71] [72] [73] and there still exist immense scope to overcome aforesaid 

limitations using hyperspectral data by way of selection of most significant bands for 

detection of built-up surfaces and its subcategories. This research explores the most 

significant spectral bands in AVIRIS-NG hyperspectral imagery for detection of 

built-up surfaces and its subclasses i.e. roads and roofs. Further, this study utilizes 

existing built-up indices for detection of urban built-up surfaces in the first level 

followed by its subcategories in the second level. Finally, a separability analysis 

between spectrally mixed urban land cover classes using various measures is also 

addressed. As in previous case, this study has also been carried out using AVIRIS-

NG image and field hyperspectral data of Udaipur, Rajasthan region of India. 

 

The main task progressed in this research is to explore most of the existing built-up 

indices reported in the literature for multispectral dataset, and apply them on 

AVIRIS-NG hyperspectral dataset with a view to: 

a) Identify the most significant spectral bands for the detection of built-up 

surfaces and its subclasses i.e. roads and roofs. 

b) Extract built-up surfaces in the first level of detection followed by roads and 

roofs in its second level. 

c) Carry out a separability analysis of spectrally mixed urban land cover classes 
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i.e. between built-up surfaces and soil in Level-1 followed by roads and roofs 

in Level-2 to further validate the result of built-up extraction. 

 

6.1  Study area and Data 

The remote sensing data used in this study is AVIRIS-NG image, and field 

hyperspectral data. The area under investigation belongs to the Udaipur, Rajasthan 

region of India, which is an amalgamation of artificial i.e. roads and roofs, and 

natural surfaces i.e. vegetation and soil. The results of the study are validated using a 

high-resolution satellite base map of ArcGIS 10.4 in addition to 2297 known ground 

sample locations, out of which 1032 belong to built-up and 1265 to non-built-up 

surfaces. These built-up surfaces are further divided into 500 road and 532 roof 

surfaces. The complete description of study area and dataset is given in Chapter 4 

Section 4.1. 

 

6.2 Spectral indices for extraction of urban built-up 

surfaces 

The index-based classification and detection algorithms are designed based on the 

lowest and highest reflectance values in spectral bands, distinguishing the target 

present in remote sensing data. Therefore, the aim is to calculate the normalized 

difference between such bands to enhance the intensity contrast between a particular 

target and the background. If Bi and Bj are the reflectance corresponding to i
th 

and j
th 

bands of hyperspectral imagery, then the Normalized Difference Spectral Index 

(NDSI) can be represented as: 



 

95 

 

                                                   
( )

( )

i j

i j

B B
NDSI

B B





                                               (6.1) 

Blue, Green, Red, near-infrared (NIR) and short-wavelength infrared (SWIR) regions 

of remote sensing imagery are generally used for the calculation of spectral indices. 

Some of the well-known built-up spectral indices are listed in Table 6.1. 

     The spectral indices reported in the literature for extraction of built-up surfaces 

can be classified into three different categories: 

i) Band-ratio or normalized difference band-ratio approach using spectral 

bands as an element in the image directly [59] [62] [69]  

ii) Indices based on the correlation between the built-up index with other land 

cover indices [60] [63] 

iii) Indices using feature extraction approach [86] 

     Since the reflectance of built-up areas is higher in SWIR and NIR regions in 

contrast to other spectral regions, therefore a multitude of spectral indices have been 

proposed in the literature using these spectral regions. Based on the above three 

approaches and urban built-up surface reflectance, various spectral indices have been 

developed for multispectral imagery to extract different built-up surfaces, as listed in 

Table 6.1.  

     In this study, different existing built-up indices i.e. BSI, NBI, BAEI, BRBA, 

VIBI, REI, BUI, NDBI, NBAI, MBI, and IBI have been utilized for the extraction of 

built-up surfaces in AVIRIS-NG hyperspectral imagery using identification of most 

significant wavelengths. In the first level of detection, urban surfaces have been 

divided into built-up and non-built-up surfaces. The built-up surfaces are further 

categorized into road and non-road surfaces, and roof and non-roof surfaces in the 

second level of detection. Further, based on a statistical analysis of the mean spectral 
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signatures of 500 known samples of roads, 532 of roofs, 652 truth samples of 

vegetation and 613 of soil, in the respective spectral regions of different built-up 

indices, BSI, NBI, BAEI, BRBA, and VIBI are selected for extraction of urban built-

up surfaces (Level-1) while REI, BUI, and NDBI are identified for detection of roads 

(Level-2) followed by NBAI, MBI, and IBI for extraction of roofs (Level-2) in 

AVIRIS-NG imagery. Since, VIBI, BUI, and IBI make use of various non-built-up 

indices such as NDVI, SAVI, and MNDWI, therefore these have also been included 

in Table 6.1.              

        

      Table 6.1  Spectral indices utilized for extraction of built-up surfaces (Level-1 and 2) 

SN Details  Expression Reference 

                                              Indices for extraction of Non-built-up surfaces 

1 Normalized Difference 

Vegetation Index (NDVI) 

R

R

( )

( )

NIR ED

NIR ED

B B
NDVI

B B





 

[127] 

2 Soil Adjusted Vegetation 

Index (SAVI) 

R

R

( )(1 )

( )

NIR ED

NIR ED

B B L
SAVI

B B L

 


 
 

L= Background adjustment factor 

[76] 

3 Modified Normalized 

Difference Water Index 

(MNDWI) 

( )

( )

GREEN SWIR

GREEN SWIR

B B
MNDWI

B B





 

[77] 

Indices for extraction of Built-up surfaces (Level-1) 

4 Built-up Surface Index (BSI) ( 2* )

( 2* )

YELLOW NIR

YELLOW NIR

B B
BSI

B B





 

[69] 

5 New Built-up Index (NBI)  *RED SWIR

NIR

B B
NBI

B
  

 

[61] 

6 Built-up Area Extraction 

Index (BAEI) 

RED

GREEN SWIR

B L
BAEI

B B





 

L= Arithmetic constant depends on the 

[66] 
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percentage of vegetation cover 

7 Band Ratio for Built-up 

Area (BRBA)  

RED

SWIR

B
BRBA

B
  

[62] 

8 Vegetation Index Built-up 

Index (VIBI) 

( )

( )

NDVI
VIBI

NDVI NDBI



 

[63] 

Indices for extraction of Roads (Level-2) 

9 Road Extraction Index (REI) 

*

NIR BLUE

NIR BLUE NIR

B B
REI

B B B





 

[67] 

10 Built-up Index (BUI) ( )BUI NDBI NDVI   [60] 

11 Normalized Difference Built-

up Index (NDBI) 

( )

( )

SWIR NIR

SWIR NIR

B B
NDBI

B B





 

[59] 

Indices for extraction of Roofs (Level-2) 

12 Normalized Built-up Area 

Index (NBAI) 

1
2

1 2

1
2

,

SWIR
SWIR

GREEN

SWIR SWIR

SWIR
SWIR

GREEN

B
B

B
NBAI B B

B
B

B

 
  
  
 

  
 

 

[62] 

13 Modified Built-up Index 

(MBI)  

2*SWIR RED NIR

RED NIR SWIR

B B B
MBI

B B B




 
 

[65] 

14 Index-based Built-up Index 

(IBI) 

( ( ) / 2)

( ( ) / 2)

NDBI SAVI MNDWI
IBI

NDBI SAVI MNDWI

 


 
 

[86] 

 

6.3  Implementation  

In this study, different existing built-up indices have been utilized for the detection of 

built-up surfaces in the first level followed by road and roof surfaces in the second 

level using AVIRIS-NG and field hyperspectral data. The whole analysis has been 

carried out using ENVI 5.3, ArcGIS 10.4, MATLAB 2018B, SPSS, and a command 

prompt based band selection tool. A flow chart describing all the stages of 

implementation is represented in Figure 6.1.  
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Figure 6.1  Implementation steps for extraction of built-up surfaces (Level-1 and 2) using different 

built-up indices 

 

6.4  Results  

This section starts with the identification of most significant wavelengths for 

extraction of built-up surfaces and its subclasses in hyperspectral imagery followed 

by optimal thresholding of different built-up indices (Level-1 and 2). Accordingly, 

the optimal extraction of built-up surfaces using different built-up indices is carried 

out in first level subsequently road and roof surfaces in the second level. Further, the 
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accuracy assessment of built-up extraction results in different levels is performed. 

Finally, Section 6.4.6 discusses the separability analysis between spectrally mixed 

urban land cover classes i.e. between built-up surfaces and soil as well as between 

roads and roofs to further validate the results of detection. This is accomplished 

using histogram and statistical analysis. 

 

6.4.1  Identification of significant wavelengths for extraction of built-

up surfaces (Level-1 and 2) 

The mutual information and divergence based algorithms have been used to reduce 

data redundancy amongst hyperspectral image bands. These approaches are based on 

a hierarchical clustering to group bands of hyperspectral imagery to minimize the 

intra-cluster and maximize the inter-cluster variance. The final selected bands will be 

the best representative from each cluster. In this study, a band selection tool that 

reduces the number of bands using information and divergence based algorithms 

[128] [129] [130] has been used. In this command prompt based tool, 380 bands of 

hyperspectral imagery have been reduced using both of these criteria. On setting the 

number of output clusters as 100, and after execution using both the criteria, 40 

common bands have been identified.  

     During the ground data collection, 2297 spectral signatures of different urban 

surfaces and sub-surfaces have been collected. These urban samples consisted of 

1032 built-up and 1265 non-built-up surfaces. Next, resampled ground spectral data 

of 1032 built-up and 1265 non-built-up surfaces along with aforesaid 40 bands of 

AVIRIS-NG imagery have been utilized to obtain significant wavelengths using 

stepwise discriminant analysis.  

     The stepwise discriminant analysis [131] [132] is performed on the SPSS tool 
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(IBM Corporation) that identifies significant wavelengths based on Wilks’s Lambda 

parameter (Refer Chapter 4 Section 4.2.2). This parameter is a combination of the 

statistics of each variable that contributes to the discrimination function and it has a 

value range of 0-1. A smaller value of this variable indicates that it makes a greater 

contribution to the discriminant model. So, based on Wilks’s Lambda values, 4 

significant wavelengths of minimum Lambda values are selected from each region of 

hyperspectral data i.e. Visible, NIR, and SWIR. These wavelengths with respective 

regions are listed in Table 6.2.  

     Various indices utilize a combination of two to three spectral wavelengths to 

increase the contrast between target and background and for enhancing the accuracy 

of detection. Therefore, different wavelength combinations have been generated 

using Table 6.2 for each index mentioned in Table 6.1. Further, using histogram 

analysis of various urban land cover classes (mentioned in section 6.1) in each of the 

generated index band, the wavelength combination of maximum inter and intra-class 

separability is selected. The suitable wavelength combination of different built-up 

indices is tabulated in Table 6.3. Since, some of the built-up indices such as VIBI, 

BUI, and IBI make use of vegetation and water indices i.e. NDVI, SAVI, and 

MNDWI for their formulation, so suitable wavelength combinations for these non-

built-up indices along with built-up indices have also been mapped as shown in 

Table 6.3. These vegetation and water indices have been generated before the 

implementation of built-up indices (Level-1 and 2).   

     Further, using histogram representation of different built-up indices and various 

statistical parameters associated with targets and backgrounds, an optimal threshold 

is obtained for extraction of urban built-up surfaces (Level-1 and 2). Table 6.3 also 

depicts the optimal threshold values obtained as a result of Otsu’s optimization 
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approach (Refer Chapter 4 Section 4.4). 

 

Table 6.2  Significant wavelengths obtained using stepwise discriminant analysis 

Wavelength 

Region 

Wavelength 

 (nm) 

Wilks’s Lambda 

 

 

Visible 

466 0.405 

561 0.359 

606 0.155 

666 0.116 

 

 

NIR 

737 0.059 

837 0.028 

867 0.032 

982 0.069 

 

 

SWIR 

1548 0.321 

1608 0.219 

1999 0.185 

2189 0.205 

 

                  

              Table 6.3  Significant wavelength combination and optimal threshold for different spectral indices 

Spectral 

Index 

Wavelength combinations (nm) 

Mean  Standard 

Deviation 

Threshold 

                                                            Non-built-up extraction indices 

NDVI 867 (NIR), 666 (RED)      ------------------------------------------ 

SAVI 867 (NIR), 666 (RED)      ------------------------------------------ 

MNDWI 1608 (SWIR), 561 (GREEN)      ------------------------------------------ 

Built-up extraction indices (Level-1) 

BSI 837 (NIR), 606 (YELLOW) -0.535 0.101 -0.475 

NBI 1999 (SWIR), 867 (NIR), 666 (RED) -0.251 0.139 -0.150 

BAEI 2189 (SWIR), 666 (RED), 561 (GREEN) -0.281 0.125 -0.220 
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BRBA 1608 (SWIR), 666 (RED)  0.636 0.126  0.650 

VIBI 1608 (SWIR), 867 (NIR), 666 (RED)  0.509 0.139  0.525 

Road extraction indices (Level-2) 

REI 867 (NIR), 466 (BLUE)  0.493 0.124  0.375 

BUI 1548 (SWIR), 867 (NIR), 466 (BLUE)  0.369 0.121  0.254 

NDBI 1548 (SWIR), 737 (NIR)  0.259 0.124  0.138 

Roof extraction indices (Level-2) 

NBAI 1999 (SWIR2), 1548 (SWIR1), 561 (GREEN) -0.819 0.074  -0.720 

MBI 1548 (SWIR), 867 (NIR), 666 (RED) -0.040 0.048  -0.009 

IBI 2189 (SWIR), 867 (NIR), 666 (RED),  

561 (GREEN) 

 0.114 0.071   0.250 

 

 

 

6.4.2  Extraction of built-up surfaces (Level-1) 

The built-up extraction results of hyperspectral imagery using various spectral 

indices such as BSI, NBI, BAEI, BRBA, and VIBI are shown in Figure 6.2 (a) to (e), 

which demonstrate that the bright pixels are target pixels i.e. urban built-up surfaces 

while dark pixels are related to background. Two ROIs containing road and roof 

surfaces are considered for a brief assessment of the results. These surfaces are 

highlighted inside the two red rectangles in all the images. The following can be 

observed from built-up extraction results shown in Figure 6.2 (a) to (e): 

 Visually, using a high-resolution base map, it is observed that, inside the two 

red rectangles in each of the images, most of the roads and roofs are fully detected 

in the outcome of BSI, NBI, and BAEI while partially visible in BRBA and VIBI.  

 The quantitative analysis of the built-up surfaces inside these rectangles 

indicates that out of total 208 known pixels of built-up surfaces, BSI, NBI, and 

BAEI can detect 193, 181 and 169 pixels correctly while BRBA and VIBI are 
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detecting only 147 and 141 pixels of those known samples, respectively. This 

study assumes an index to be efficient if it detects more than 80 % of target pixels 

correctly. Therefore, this hypothesis makes BSI, NBI, and BAEI to be suitable for 

the extraction of built-up surfaces in comparison to BRBA and VIBI. 

 Further, VIBI appears to enhance the road surfaces by suppressing other 

urban land cover classes, therefore it may be used for extraction of the roads as 

well.  

 BSI utilizes NIR (730-1340 nm) and visible (450-690 nm), NBI uses SWIR2 

(1960-2490 nm), NIR, and visible while BAEI makes use of SWIR2 and visible 

bands of hyperspectral imagery for their formulation. Further, BRBA utilizes 

SWIR1 (1500-1790 nm) and visible while VIBI uses SWIR1, NIR, and visible 

wavelength bands for the detection of built-up surfaces. Therefore, it may be 

deduced that SWIR2, NIR, and visible bands can prove to be the most suitable for 

detection of built-up surfaces in AVIRIS-NG imagery. 

 

                  

                      
   -0.17                 -0.53                 -0.86     0.17                  -0.20                 -0.73    0.20                  -0.28                   0.70 

                          (a) BSI                                                   (b) NBI                                                   (c) BAEI 
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                                   6.18                   0.63                    0.28    2.0                   0.50                     0.15 

                                                        (d) BRBA                                               (e) VIBI 

  Figure 6.2  Urban built-up extraction using different built-up indices. The range of indices of 

grayscale image is shown along the x-axis 

 

 

6.4.3  Extraction of road surfaces (Level-2) 

The road extraction results in hyperspectral imagery using various built-up indices 

such as REI, BUI, and NDBI are shown in Figure 6.3. In Figure 6.3 (a) to (c), dark 

pixels are associated with road surfaces while bright pixels consist of background. A 

ROI from the study area consisting of five parallel road surfaces has been considered 

for a brief analysis of the results. This region is indicated with a red rectangle inside 

all the images. Following is observed from road extraction results shown in Figure 

6.3 (a) to (c): 

 It appears from the visual analysis using a high-resolution imagery that, 

inside the red rectangle in each of the images, five parallel road surfaces are 

present, these are perfectly detected in case of REI, and few surfaces are visible in 

BUI while NDBI can detect only very few pixels of these roads.  

 The quantitative analysis of the aforesaid road surfaces shows that, out of a 

total of 62 known pixels of roads, REI detects 57 pixels correctly while BUI and 
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NDBI detect only 46 and 36 pixels of those road surfaces, respectively. Therefore, 

REI can provide better detection results in comparison to BUI and NDBI.  

 It is also observed that in all the indices, specifically NDBI, along with 

highways, some walkway, and street roads are also detected with some false 

alarms. These false alarms may be due to the presence of bituminous roofs, as 

these roofs and asphalt roads tend to share similar spectral properties. This 

problem appears to have further worsened due to the occlusion of road surfaces by 

shadow, trees, and the presence of vehicles.  

 Since REI utilizes NIR (730-1340 nm) and visible (450-690 nm) bands of 

hyperspectral data for its formulation, therefore these bands can prove to be the 

most suitable for detection of road surfaces in AVIRIS-NG imagery.  

 The NDBI makes use of SWIR1 (1500-1790 nm) and NIR (730-1340 nm) 

bands for its formulation, which implies that the SWIR1 band may not be 

appropriate for the detection of the road surfaces. As BUI is based on NDBI, and 

NDBI results in greater false alarms, therefore, BUI also appears to worsen the 

detection results. 

            

          
0.8                        0.5                  -1.56     0.75                   0.38                     -0.4      0.67                   0.26                 -0.70 

                         

                       (a) REI                                                     (b) BUI                                                    (c) NDBI  

Figure 6.3  Extraction of road surfaces using various spectral indices. The range of indices of 

grayscale image is shown along the x-axis                      
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6.4.4  Extraction of roof surfaces (Level-2) 

The roof extraction results of various indices such as NBAI, IBI, and MBI are shown 

in Figure 6.4.  In Figure 6.4 (a) to (c), bright pixels are associated with roof surfaces 

while dark pixels are related to background. A ROI containing different rooftops is 

considered for a brief evaluation of these results. These roofs are highlighted inside a 

red rectangle in all the images. The following can be observed from roof extraction 

results shown in Figure 6.4 (a) to (c): 

 Visually, using a high-resolution satellite base map, it is investigated in each 

of the images that, inside red rectangle a metal roof is present, which is detected in 

NBAI and MBI while partially rather not visible in case of IBI.  

 The quantitative analysis of different rooftops inside ROI depicts that, out of 

a total of 78 truth pixels of roofs, NBAI and MBI detect 71 and 59 pixels correctly 

while IBI is able to detect only 45 pixels of those roof surfaces, respectively. 

Therefore, NBAI appears to have better detection result in comparison to MBI and 

IBI.  

 The roof surfaces contain the maximum probability of detection with a very 

small amount of false alarms in comparison to the extraction of road surfaces. It 

may be due to more contrast of roof surfaces in comparison to other urban land 

cover classes. Further, road surfaces may have maximum chances of mixing with 

non-road surfaces but this problem may lessen in case of roof surfaces, as most of 

the roof surfaces show clustered behavior.     

 The whole analysis of roof extraction results in hyperspectral imagery found 

NBAI to be suitable for the extraction of roof surfaces. Since, NBAI utilizes 

SWIR2 (1960-2490 nm), SWIR1 (1500-1790 nm) and visible (450-690 nm) bands 
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for its formulation, therefore, these bands can prove to be effective for detection 

of roof surfaces in AVIRIS-NG imagery.  

 

            

          
   -0.40                 - 0.82                      - 1    0.06                  -0.04                 -0.32    0.77                   0.11                        0 
                        

                        (a) NBAI                                                 (b) MBI                                                    (c) IBI    

Figure 6.4  Roof extraction using different built-up indices. The range of indices of grayscale image is 

shown along the x-axis 

 

6.4.5  Accuracy assessment 

This study has been considered an overall accuracy of more than 80% and kappa 

index (normalized between 0 to 100 %) greater than 70% for the spectral index to be 

efficient in the extraction of built-up surfaces (Level-1 and 2). The built-up 

extraction results of various indices shown in Figure 6.2, 6.3, and 6.4, are validated 

using a high-resolution satellite imagery base map of ArcGIS 10.4 along with 2297 

known ground locations of different urban samples, out of which 1032 belong to 

built-up surfaces and 1265 to non-built-up surfaces. Further, out of 1032 samples of 

built-up surfaces, 500 are associated with roads while the remaining 532 are related 

to roofs. The overall accuracy and kappa index have been calculated by considering 

the built-up surfaces (Level-1 and 2) as target and rest of the non-target classes as 

background. The accuracy measures of various built-up indices used for detection of 

built-up surfaces at first level followed by roads and roofs in the second level are 
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given in Table 6.4.  

 

                                            Table 6.4  Accuracy assessment of built-up indices (Level-1 and 2) 

Spectral Index Overall Accuracy 

 (%) 

Kappa Index 

(%) 

Built-up extraction indices (Level-1) 

BSI 93.89 87.66 

NBI 90.11 82.14 

BAEI 85.15 76.44 

BRBA 75.24 66.65 

VIBI 69.40 60.35 

Road extraction indices (Level-2) 

REI 94.40 83.59 

BUI 76.20 65.25 

NDBI 65.40 56.29 

Roof extraction indices (Level-2) 

NBAI 95.00 89.32 

MBI 75.74 64.25 

IBI 56.34 46.39 

 

The following can be observed from Table 6.4: 

 The BSI, NBI, and BAEI give an overall accuracy of 93.89 %, 90.11 %, and 

85.15 % with a kappa index of 87.66 %, 82.14 %, and 76.44 %, respectively. 

Further, BRBA and VIBI provide an overall accuracy of 75.24 % and 69.40 % 

with a kappa index of 66.65 % and 60.35 %. Therefore, BSI, NBI, and BAEI 

appear to be the suitable indices for the extraction of built-up surfaces in 

hyperspectral imagery.  
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 The REI, BUI, and NDBI provide an overall accuracy of 94.40 %, 76.20 %, 

and 65.40 % with a kappa index of 83.59 %, 65.25 %, and 56.29 %, respectively. 

Thus, REI can be suitable for the detection of road surfaces in AVIRIS-NG 

imagery. 

 The roof extraction indices i.e. NBAI, MBI, and IBI offer an overall accuracy 

of 95.00 %, 75.74 %, and 56.34 % with a kappa index of 89.32 %, 64.25 %, and 

46.39 %, respectively. Hence, NBAI appears to provide better roof extraction 

result in comparison to other indices. 

 

 

6.4.6  Separability analysis between spectrally mixed urban land 

cover classes 

The bare soil is the major background factor that may affect the performance of 

built-up indices due to spectral similarity with built-up surfaces [3] [59] [67] [133]. 

Therefore, in this study, the assessment of the separability between bare soil and 

built-up surfaces (Level-1 and 2) is performed using the histogram representation of 

different land cover classes followed by various statistical measures. Since road and 

roof surfaces also show poor separability due to similarity in the materials used in the 

construction of these surfaces, thus, in Level-2 the separability analysis is also 

carried out between these two classes. 

 

6.4.6.1  Separability analysis using histogram representation (Level-1 and 2) 

Figure 6.5 (a) to (e) depict the histogram representation of different urban land cover 

classes such as road, roof, vegetation, and soil in built-up extraction indices i.e. BSI, 

BAEI, BRBA, NBI, and VIBI. These histograms have been generated using 500, 
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532, 652, and 613 known samples of roads, roofs, vegetation, and soil, respectively. 

Further, in these histograms, the plot inside the circle represents the histogram of the 

desired target i.e. built-up surface while other plots are associated with background.  

      

 

                            (a) BSI                                     (b) BAEI                                   (c) BRBA 

    

                           (d) NBI                                     (e) VIBI                                        (f) REI 

  

                            (g) BUI                                      (h) NDBI                                  (i) NBAI 

  

                                                     (j) MBI                                        (k) IBI 

 

Figure 6.5  Histogram representation of different urban classes in various built-up indices used for (a-

e) built-up extraction (Level-1) (f-h) road extraction (Level-2) (i-k) roof extraction (Level-2) 
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The following can be observed from histogram plots shown in Figure 6.5 (a) to (e). 

 The vegetation and soil can easily be separated from urban built-up surfaces 

in all the aforesaid indices for built-up extraction while a slight overlap is 

observed between built-up and non-built-up surfaces.  

 The BRBA and VIBI may also be used for the extraction of road surfaces 

along with built-up surfaces by proper selection of threshold while there appears 

no scope of separation of road and roof surfaces in BSI, NBI, and BAEI due to 

large overlap. 

 It is further observed that, roof surfaces can also be extracted in BRBA and 

VIBI by using a multi-thresholding approach. 

     Figure 6.5 (f) to (h) describe the histogram plot of different urban land cover 

classes in road extraction indices i.e. REI, BUI, and NDBI. As mentioned earlier, 

these histograms have been produced using various known samples of different 

urban surfaces. In such histograms, the plot inside the circle corresponds to the 

histogram of road surfaces while other plots are associated with background i.e. roof, 

vegetation, and soil. The following observations are derived from Figure 6.5 (f) to 

(h): 

 The non-built-up surfaces such as vegetation and soil can easily be separated 

from roads in all the road extraction indices with some overlapping between road 

and roof surfaces. This overlapping may be due to the similarity in the materials 

used for the construction of these man-made surfaces.  

 All the aforementioned indices for road detection may also be utilized for the 

extraction of built-up surfaces (Level-1) by selection of a suitable threshold.   

     Figure 6.5 (i) to (k) show the histogram representation of different urban land 

cover classes in roof extraction indices i.e. NBAI, MBI, and IBI. In these histograms, 
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the plot inside the circle represents the histogram of roof surfaces while other plots 

are related to non-roof background. The following can be investigated from Figure 

6.5 (i) to (k): 

 The background classes i.e. road, vegetation, and soil can easily be separated 

from the roof in all the indices while NBAI appears to be the best in terms of 

separation with other urban land cover classes.  

 In the case of MBI, roof surfaces are confused with road and soil both while 

in IBI, roofs are confused with soil. Therefore, MBI and IBI may worsen the 

detection by including more false alarms. 

 

6.4.6.2  Separability analysis using statistical measures (Level-1 and 2) 

Table 6.5 depicts the statistics of separability measures between urban built-up 

surfaces (Level-1 and 2) and bare soil. Since SDI values of all the built-up indices 

are larger than one, hence, it is difficult to ascertain the better of indices in case of 

AVIRIS-NG imagery. Therefore, two other approaches i.e. J-M distance and T-D 

along with SDI [122] [124] [125], are used for separability analysis between 

spectrally mixed urban land cover classes. The statistical results of these three 

approaches for different built-up indices (Level-1 and 2) are tabulated in Table 6.5. 

The following can be observed from these results:   

 The examination of separability of soil with built-up surfaces using the T-D 

approach investigates that BSI, BAEI, NBAI, and MBI have a high degree of 

separation with T-D values greater than 1900. Further, NBI, BRBA, VIBI, REI, 

BUI, NDBI, and IBI depict moderate separability with T-D values between 1700 

to 1900.  
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 The J-M distance criteria suggests that in all the built-up indices, built-up 

surfaces are separated very well from the soil. Therefore, based on J-M distance 

results, if we assume J-M distance to be greater than 1.7 for best separation while 

1.4 to 1.7 for moderate and less than 1.4 for poor separation with more overlap, 

then it is observed that BSI, BAEI, REI, NBAI, and MBI are suitable in terms of 

separation between built-up surfaces and soil while rest of the indices in Level-1 

and 2 depict moderate separation. 

 The assessment of separability using SDI describes that in all the indices, 

built-up surfaces are effectively separated from the bare soil. So, if we assume 

SDI to be greater than 2.0 for best separation while 1.0 to 2.0 for moderate 

separation with a slight overlap followed by less than 1.0 for worst separation 

with more overlap. Then, it is observed that BSI, NBI, BAEI, BRBA, NBAI, MBI 

and IBI can prove to be effective to separate built-up surfaces from the bare soil 

while rest of the indices in Level-1 and 2 i.e. VIBI, REI, BUI, and NDBI represent 

moderate separation with a slight overlap between built-up surfaces and bare soil.   

 All the indices used for roof extraction differentiate built-up surfaces and soil 

very effectively. It may be due to the high contrast of roof surfaces in comparison 

to other urban land cover classes. Also, the chances of spatial mixing of roofs with 

other backgrounds may be less due to their clustered behavior.          

     Further, Table 6.5 also represents the outcome of separability analysis between 

road and roof surfaces (Level-2) using similar statistical measures. The following can 

be observed: 

 Since, the T-D values of BUI, NBAI, and MBI are higher than 1900, thus 

these indices result in the best separation between road and roof surfaces while 
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rest of the indices in Level-2 depict moderate separation with T-D values between 

1700 to 1900.  

 If the analysis is carried out using J-M distance criteria with the previously 

mentioned range, then NBAI, MBI, and IBI show the better separation between 

road and roof surfaces with values greater than 1.7 while the rest of the indices 

depict moderate separation with values in the range between 1.4 to 1.7.  

 When the separability analysis is performed using SDI with the same range 

of values mentioned above, then it is observed that indices used for roof extraction 

i.e. NBAI, MBI and IBI represent a better separation of road and roof surfaces 

with values greater than 2.0 while road detection indices such as REI, BUI, and 

NDBI denote moderate separation with SDI values between 1.0 and 2.0.  

 The lower separability of road extraction indices may be due to the similarity 

in the materials such as bitumen, asphalt, and concrete, which have been used for 

the construction of road and roof surfaces both.  

 

       Table 6.5  Separability measures between built-up surfaces and soil, and road and roof surfaces 

Separability 

between 

  Built-up surfaces and soil    Road and roof surfaces 

Spectral Index SDI J-M  

distance 

T-D SDI J-M  

distance 

T-D 

Built-up extraction indices (Level-1) 

BSI 6.161 1.880 1920        -------------------------- 

NBI 3.095 1.680 1833        -------------------------- 

BAEI 4.881 1.780 1905        -------------------------- 

BRBA 2.644 1.605 1855        -------------------------- 

VIBI 1.119 1.402 1782        -------------------------- 

Road extraction indices (Level-2) 
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REI 1.769 1.928 1805 1.605 1.560 1873 

BUI 1.990 1.521 1852 1.823 1.652 1908 

NDBI 1.451 1.435 1813 1.516 1.425 1682 

Roof extraction indices (Level-2) 

NBAI 5.794 1.943 1925 3.568 1.835 1935 

MBI 5.566 1.889 1902 2.951 1.752 1912 

IBI 3.198 1.689 1890 2.365 1.725 1886 

 

 

6.5  Discussion 

This study extends the applicability of different existing built-up indices, which have 

been utilized for the detection of built-up surfaces in multispectral imagery, to the 

narrow band AVIRIS-NG hyperspectral imagery. Further, as part of the image data 

collection campaign, field data of different built-up and non-built-up surfaces have 

also been simultaneously collected. In field data collection, the main focus was on 

the collection of spectral signatures of different types of roads, roofs, pavements, 

parking lots, vegetation, and soil. These samples of different land cover classes have 

been utilized for validation of extraction results of built-up surfaces (Level-1 and 2) 

along with high-resolution imagery. The most of the major and minor roads, 

pavements and parking lots in the study region were made up of bitumen and 

concrete while major and minor roof surfaces used concrete and bitumen as 

construction materials. In this study, highways, walkways, street roads, parking lots, 

and pavements have been considered under road surfaces (Level-2) while metallic 

and non-metallic roofs have been considered under roof surfaces (Level-2). 

Accordingly, the combination of road and roof surfaces have been taken under built-

up surfaces (Level-1). Further, due to the heterogeneity of urban built-up and non-
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built-up surfaces, this study has been considered mean spectral signatures of different 

urban land cover classes with some standard deviation for the analysis. Next, using 

ground and image data, extraction of built-up surfaces has been carried out in Level-

1 while road and roof surfaces have been extracted in Level-2. It is observed that 

most of the built-up indices used for the multispectral dataset can also prove to be 

effective for hyperspectral data. In AVIRIS-NG imagery, these indices not only 

effectively extracted built-up surfaces but many of them are well suited for the 

extraction of road and roof surfaces by proper selection of significant bands and 

suitable thresholds. Various techniques for dimensionality reduction and significant 

band selection have been used, which include mutual information and divergence 

based approaches for dimensionality reduction while stepwise discriminant analysis 

for selection of significant bands. Next, Otsu’s thresholding approach has been 

utilized for the optimization of various built-up indices. It has been found that visible 

(450-690 nm), NIR (730-1340 nm) and SWIR2 (1960-2490 nm) regions are most 

suitable for detection of built-up surfaces while visible (450-690 nm) and NIR (730-

1340 nm) regions found to be most appropriate for extraction of road surfaces 

subsequently visible (450-690 nm), SWIR1 (1500-1790 nm) and SWIR2 (1960-2490 

nm) for detection of roofs. The major problem of separation between built-up 

surfaces and bare soil can be eliminated by using hyperspectral imagery followed by 

a proper selection of significant wavelengths. The NBAI provides the best 

separability amongst bare soil and built-up surfaces in terms of T-D and J-M distance 

measures while BSI produces the best separation in terms of SDI. The fully 

separation of road and roof surfaces is still a challenge, it may be due to the within-

class similarity in the built-up surfaces e.g. bitumen and concrete are the commonly 

used materials for construction of roads and roofs both in Indian regions. In all the 
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aforesaid separability measures, NBAI produces the best separation between roads 

and roofs. Further, all the indices used for road detection may also be used for 

extraction of built-up surfaces by using multi-thresholding approach but all the roof 

extraction indices may not be utilized for extraction of other urban built-up classes. 

Moreover, some of the indices used for extraction of built-up surfaces may be used 

for the extraction of road and roof surfaces as well by proper selection of thresholds.  

 

6.6  Summary  

In this study, different multispectral built-up indices were taken from previous 

studies and utilized them for detection of built-up surfaces in first level followed by 

road and roof surfaces in the second level by identification of most significant 

wavelength bands in AVIRIS-NG hyperspectral imagery. Further, separability 

analysis between spectrally mixed urban land cover classes (Level-1 and 2) was 

performed using various plots and statistical measures. The AVIRIS-NG imagery 

and ground spectral data of Udaipur, Rajasthan, India, were used for the precise 

detection of urban built-up surfaces (Level-1) and its subclasses (Level-2). As part of 

preprocessing, different bad bands were removed from the imagery followed by 

masking of water pixels using unsupervised classification, and finally, 

dimensionality reduction using mutual information and divergence based algorithms. 

Further, the stepwise discriminant analysis was utilized for the identification of 

significant wavelengths using image and ground data. The BSI, NBI, BAEI, BRBA, 

and VIBI were used for the extraction of urban built-up surfaces while REI, BUI, and 

NDBI were implemented for the detection of road surfaces followed by NBAI, MBI, 

and IBI for extraction of roof surfaces. The validation of extraction results was 

carried out using a high-resolution satellite imagery base map and 2297 ground 
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samples collected from different locations, out of which 1032 belong to built-up 

surfaces and 1265 to non-built-up surfaces. Further, the separability analysis between 

built-up surfaces and bare soil, and roads and roofs was performed using histogram 

representation and multiple statistical measures, which are SDI, J-M distance, and T-

D. The overall results of the study illustrate that BSI, NBI, and BAEI can prove to be 

the most suitable indices for extraction of urban built-up surfaces. Further, REI can 

be appropriate for detection of the roads followed by NBAI for the roofs. It can also 

be concluded that hyperspectral data is a rich source of spectral information, which is 

capable of reducing data redundancy between original bands, thereby enhancing the 

inter-class separability of built-up surfaces and soil subsequently intra-class 

separability between road and roof surfaces.  
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Chapter 7 
 

Extraction of Impervious Surfaces using Index based 

RGB and NIR Band Combinations 
 

 
The recently developed high spatial and spectral resolution hyperspectral sensors are 

capable of extracting impervious or engineered surfaces with very high accuracy in 

comparison to coarse resolution sensors. Therefore, this study utilizes AVIRIS-NG 

hyperspectral data of Jodhpur, Rajasthan region of India for the analysis. Further, 

based on existing literature, various spectral bands such as Red-Green-Blue (RGB) 

and NIR are selected for generation of Normalized Difference Spectral Indices, 

which have been used for extraction of impervious or engineered surfaces. 

 

The tasks of this study are:  

a) To create different index based combinations of RGB and NIR bands for 

extraction of impervious surfaces in AVIRIS-NG hyperspectral imagery.  

b) To analyze the separability between different land cover classes to further 

validate the extraction results of impervious surfaces.  

 

 

7.1  Study area and dataset 

The Jodhpur city in Rajasthan, India is selected as study area for the analysis. This 

city was selected for AVIRIS-NG data collection, jointly organized by SAC-ISRO 

and JPL-NASA in the second phase of the campaign. This study utilizes a spatial 

subset of AVIRIS-NG data with pixel dimension, spatial, and spectral resolution of 

(410 sample x 1732 lines), 3 m, and 5 nm, respectively, as shown in Figure 7.2 (a). 
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Further, taking advantage of Support Vector Machine (SVM) algorithm, SVM 

classified result has been used for accuracy assessment, in which total 1482 pixels 

were randomly selected from the image, wherein 864 belong to impervious / 

engineered while 618 to pervious / natural surfaces. 

          

7.2  Spectral index based band combinations 

The major objective of this study is to investigate the behavior of RGB and NIR 

bands for mapping of impervious surfaces in AVIRIS-NG imagery. As suggested 

from the existing spectral indices, already developed using visible and NIR bands of 

multispectral imageries for extraction of impervious or engineered surfaces, this 

study generates three spectral indices named as Impervious Surface Index (ISI). ISI 

is formulated using three combinations of RGB and NIR bands of AVIRIS-NG 

imagery, as shown in Equation 7.1, 7.2, and 7.3.  

 

1

(Re )
    

(Re )

d NIR
Impervious Surface Index

d NIR




                                                                 

 

2

( )
   

( )

Green NIR
Impervious Surface Index

Green NIR





 

3

( )
   

( )

Blue NIR
Impervious Surface Index

Blue NIR





 

 

7.3  Results and Discussion 

7.3.1 Separability analysis between various land cover classes 

Histogram representation of various major urban land cover classes such as 

vegetation, soil, road and roof along with plot of different impervious indices, are 

   (7.1) 

   (7.2) 

   (7.3) 



 

121 

 

shown in Figure 7.1, in which Figure 7.1 (a), (b), and (c) represent the plots 

associated with Red-NIR, Green-NIR and Blue-NIR band combinations, 

respectively. It is observed that the vegetation can be very easily segregated from all 

the classes in all the combinations, while only few samples of soil are overlapped 

with road and roof surfaces in Green-NIR and moderate in Blue-NIR. Further, more 

overlapping between impervious surfaces and soil is observed in Red-NIR. 

Thresholding has been carried out using Otsu’s thresholding approach and the results 

of the thresholding are shown in the bottom part of Figure 7.1 (a), (b), and (c). In 

bimodal histogram plots, Otsu’s approach work well, therefore Green-NIR and Blue-

NIR appear to be perfect in terms of separation of different land cover classes. Table 

7.1 depicts the statistical analysis of aforesaid band combinations. It is observed that 

on moving from Red-NIR to Blue-NIR, mean shifts towards negative value and 

therefore threshold is more negative for Blue-NIR and less for Red-NIR.    

     

 

                                       (a)                                         (b)                                       (c)                           

Figure 7.1  Histogram plot of various urban classes and ISIs (a) Red-NIR (b) Green-NIR (c) Blue-

NIR 

 

Table 7.1  Statistical analysis of various ISIs  

Band  

Combination 

Min Max Mean Standard 

Deviation 

Threshold 

Red-NIR -0.764349 0.342346 -0.179779 0.138265 -0.09 
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Green-NIR -0.758927 0.475223 -0.298476 0.116040 -0.24 

Blue-NIR -0.905113 0.483855 -0.474860 0.138700 -0.41 

 

 

7.3.2  Extraction of impervious surfaces 

Figure 7.2 represents the extraction results of impervious surfaces in AVIRIS-NG 

hyperspectral imagery, wherein Figure 7.2 (a) depicts 380 bands original AVIRIS-

NG imagery while Figure 7.2 (b) is the classified results of SVM classifier, which 

has been used for the accuracy assessment and validation of the extraction results. 

Figure 7.2 (c), (d) and (e) are the extraction results of index based Red-NIR, Green-

NIR and Blue-NIR band combinations, respectively. It appears that, there is a 

maximum correlation between SVM and Green-NIR with moderate in Blue-NIR and 

least correlation is observed between SVM and Red-NIR band combinations. 

Further, the detection rate of impervious surfaces is lager in case of Green-NIR while 

it is least for Red-NIR. Therefore, spectral index based on Green-NIR band 

combination appears to be suitable for extraction of impervious surfaces in AVIRIS-

NG imagery.    

 

7.3.3  Accuracy assessment 

Table 7.2 represents the accuracy assessment of the extraction results of impervious 

surfaces in hyperspectral imagery. As discussed earlier, random pixel locations of 

864 impervious and 618 pervious surfaces are used for the accuracy assessment and 

validation. It is observed that maximum Overall Accuracy (OA) of 95.20 % is 

obtained in case of Green-NIR while moderate as 90.28 % for Blue-NIR. Further, 

due to confusion with soil samples, least accuracy is obtained in case of Red-NIR. 
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Therefore, Green-NIR band combination outperforms the other two.   

            

             (a)                             (b)                              (c)                              (d)                              (e) 

 Figure 7.2  Extraction results of impervious surfaces in AVIRIS-NG imagery (a) Original imagery 

(b) SVM classified results for accuracy assessment, in which red and green pixels are impervious 

surfaces and black pixels are related to pervious surfaces (c) Red-NIR (d) Green-NIR (e) Blue-NIR  

                         

Table 7.2  Accuracy assessment of extraction results of impervious surfaces 

Band 

Combination 

Class  Impervious  Pervious  Producer 

Accuracy (%) 

OA (%) Kappa 

Index (%) 

Red-NIR Impervious  708 62 91.94 85.29 70.40 

Pervious  156 556 78.09 

User Accuracy 

(%) 

81.94 89.96  

Green-NIR   Impervious Pervious    
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Impervious  826 33 96.15 95.20 90.20 

Pervious 38 585 93.90 

User Accuracy 

(%) 

95.60 94.60  

Blue-NIR   Impervious Pervious   

90.28 

 

80.20 Impervious  776 56 93.26 

Pervious 88 562 86.46 

User Accuracy 

(%) 

89.81 90.93  

 

7.4  Summary 

This study formulated three spectral indices based on existing approaches using RGB 

and NIR band combinations in AVIRIS-NG hyperspectral imagery. The three indices 

named as ISI1, ISI2, ISI3, have been applied in AVIRIS-NG hyperspectral imagery 

for extraction of impervious surfaces. Further, random 1482 labeled pixels selected 

from SVM classified image, is used for accuracy assessment and validation of the 

extraction results. A separability analysis between major urban land cover classes has 

been carried out to further validate the results of impervious extraction. It is observed 

that, index based Green-NIR band combination generates better inter-class 

separability with an OA of 95.20 %, Blue-NIR produces moderate OA as 90.28 % 

while least OA as 85.29 % is obtained for Red-NIR.     

 

 

 

 

 



 

125 

 

Chapter 8 

 

Extraction and Estimation of Built-up surfaces and 

Its Categories using Feature Combination based 

Approach 
 

 

The high dimensionality of hyperspectral data increases the system and time 

complexity for the image analysis [5] [22] [82] [83]. In this chapter, a new method is 

proposed, in which different combinations of feature bands have been utilized for 

extraction of built-up surfaces, sub-surfaces and materials in different levels (Level-

1, 2 and 3) using high resolution AVIRIS-NG hyperspectral imagery of Jodhpur, 

Rajasthan region of India. The features identified in this study are based on spectral 

indices, major principal components, and fractional abundances, in which the first 

combination is developed using spectral indices and fractional abundances while 

second is made using spectral indices and major principal components and finally 

third using combination of all the aforesaid features. 

 

The tasks of this study are: 

a) To identify different significant features for extraction of built-up surfaces, 

sub-surfaces, and materials. 

b) To extract built-up surfaces (Level-1), sub-surfaces (Level-2), and materials 

(Level-3) using combination of different features in AVIRIS-NG imagery. 

 

8.1  Study area and Data 

Jodhpur city is the second largest city in the Rajasthan state of India, and officially 
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the second largest metropolitan city of the state. It is located at latitude of 26.28
o
 

North and longitude of 73.02
o
 East and is located in the mid of the Thar Desert of 

western Rajasthan, which is about 250 km from the Pakistan border. Its general 

geography is characterized by the hills located in the North and North-west region. 

The mid of the city is covered with different types and patterns of urban built-up 

surfaces and materials. 

      AVIRIS-NG Level-2 (atmospherically corrected reflectance) hyperspectral data 

captured on 31
st
 March 2018, consisting of 425 bands of aforesaid region (UTM zone 

43N) is used to extract different urban built-up surfaces and to estimate the 

proportion of those surfaces. Further, in the preprocessing stage, bands affected by 

atmospheric gases, water vapor, detectors overlap and poor data quality have been 

removed. A total of 14 wavelength bands (1343-1418 nm) in NIR region as well as 

31 bands (1793-1954 nm) in the SWIR region are investigated as bad bands, which 

after removal results in 380 bands hyperspectral imagery. The spatial and spectral 

resolution of image data is 3 m and 5 nm, respectively. In this study an image subset 

of size 400 samples x 400 lines is used for the analysis, which is shown in Figure 8.1 

(a). The ground data of different built-up and non-built-up surfaces have been 

simultaneously collected during the AVIRIS-NG phase-2 data collection campaign, 

using Spectral Evolution spectroradiometer over the wavelength range of 350 to 

2500 nm. Spectroradiometer is having spectral resolution of 1 nm with 2151 

channels. Ground spectral signatures of 518 samples of different built-up and non-

built-up surfaces have been collected using both contact probe and gun in cloud free 

atmospheric condition between 11 am to 3 pm. Also, the white reference is recorded 

after capturing of each 4 to 5 spectral signatures. Some of the field photographs of 

data collection campaign are shown in Figure 8.1 (c) as well as mean spectral 
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signatures of various land cover classes mentioned in Table 8.1, are shown in Figure 

8.1 (d). In the field spectra, bands in the wavelength range 1846 to 1956 nm affected 

by noise have been removed. The field spectral signatures of different land cover 

classes have been utilized for extraction of spectral index and fractional abundance 

based features from the imagery. Further, the re-sampling of ground spectra has been 

carried out with respect to 380 bands image using nearest neighbor algorithm. Next, 

as suggested by V-I-S model, water has been masked from the imagery using 

Normalized Difference Water Index (NDWI) approach [140] based on spectral 

index. The water mask band is shown in Figure 8.1 (b). The accuracy assessment and 

validation of results has been carried out using known location of 518 samples as 

well as high resolution satellite imagery base map of ArcGIS 10.4 along with ward 

map of the study region. Table 8.1 depicts the total number of samples taken in each 

category of built-up and non-built-up surfaces for accuracy assessment and 

validation of the results.          

Table 8.1  Number of known samples of different classes 

Class  Concrete 

Roof 

Metallic 

Roof 

 

Bitumen 

Road 

Concrete 

Pavement 

Vegetation  Soil                   

No. of known 

Samples 

   118    67 76 71 61  125 

 

         

                      (a)                                    (b)                                                                      (c)                                                             
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(d) 

Figure 8.1  (a) Hyperspectral image of the study area of size 400 samples x 400 lines (b) Water mask 

band (c) Field photographs of ground data collection campaign (d) Mean spectral signatures of 

different built-up and non-built-up classes  

 

8.2  Experimental feature band combination  

8.2.1  Principal Components 

Principal Component (PC) transformation is found to be an efficient tool in feature 

extraction and dimensionality reduction as the number of features are drastically 

reduced when compared with the original bands [84] [85]. This method is able to 

predict whether the target land cover class is characterized by bright or dark pixels in 

the relevant PC image according to the magnitude and sign of the eigenvectors. As 

an approach that transforms the original high dimensional remotely sensed imagery 

into a substantially smaller and easier to interpret data set with un-correlated 

variables, PCA can prove to be an effective technique for reducing the 

dimensionality of hyperspectral data sets having so many spectral bands. In most of 

the literature, major principal components have been selected as features for 
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extraction of various land cover classes [141] [142] [143] [144].  

 

8.2.2  Spectral Indices 

To map built-up surfaces, some spectral indices have been developed in recent past 

and applied in different remote sensing imageries [62] [64] [75] [86] [145] [146]. 

The IBI is proposed for fast extraction of built-up surfaces in satellite imagery, which 

has been formulated using three thematic index derived bands i.e. SAVI, MNDWI 

and NDBI [86]. NBAI is developed for mapping built-up surfaces in urban areas 

through identifying the significantly different spectral profiles between built-up and 

other background classes [62]. This index utilized Landsat-TM imagery for mapping 

of built-up surfaces.  Further, REI was proposed to automatically extract asphalt road 

surfaces using World View (WV)-2 imagery, which has high spatial resolution [67]. 

To determine the significant bands for WV-2, in-situ spectral data collected using a 

field spectroradiometer were also used. SAVI was developed to generate a global 

model for monitoring soil and vegetation from remote sensing imagery [76]. Further, 

MNDWI has been proposed to extract water bodies from satellite imageries, which 

utilized Green and NIR band of multispectral imagery [77]. In some of the studies 

MNDWI has also been used for extraction of built-up surfaces. Since, all the 

aforesaid indices are specifically designed for extraction of a particular land cover 

class with low separability between target and background. Therefore, these indices 

may be utilized as features for extraction of various built-up surfaces and its sub-

categories in AVIRIS-NG imagery.  

 

8.2.3  Fractional Abundances 

The linear spectral unmixing has proved to be a standard algorithm for Spectral 



 

130 

 

Mixture Analysis (SMA) [104] [147] [148] [149], that infers a set of pure spectral 

signatures, called as endmembers, and the fractions of these endmembers, called as 

fractional abundances, in each pixel of the scene. The SMA model assumes that the 

spectral signature of a particular pixel can be expressed in the form of a linear 

combination of endmembers, weighted by their respective abundances [150] [151]. It 

is because each observed spectral signal is the result of an actual mixing process, 

which assumes that the fractional abundances satisfy two constraints i.e. they should 

be non-negative as well as the sum of abundances for a given pixel should be unity. 

Although the linear SMA model has practical advantages like ease of implementation 

and flexibility in various applications but the non-linear mixture always creates 

problem [152] [153]. Therefore, the fractional abundances of different urban land 

cover classes and materials may be selected as features for the analysis.  

     Finally, different images have been created using various combinations of 

aforesaid features, as suggested from the previous literature [72] [85] [145] [149] 

[154] [155] [156] [157] [158] [159] [160] [161]. The first image combines spectral 

indices with fractional abundances while second image contains spectral indices 

along with PCs, and the last image combines all the features i.e. spectral indices, 

fractional abundances and PCs. The brief detail of all the aforesaid features is given 

in Table 8.2, while Table 8.3 depicts about different levels of urban targets such as 

built-up surfaces (Level-1), sub-surfaces (Level-2) and materials (Level-3), which 

have been extracted from AVIRIS-NG hyperspectral imagery. Further, rest of the 

non-target classes have been considered as background.  
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Table 8.2  Different significant features used for extraction of built-up surfaces, sub-surfaces and 

materials 

Feature Class  Details Expression / Remark 

 

 

 

 

 

Spectral Indices 

Index Based built-up Index (IBI) 

[86]  

( ) / 2

( ) / 2

NDBI SAVI MNDWI
IBI

NDBI SAVI MNDWI

  
  

  

 

Road Extraction Index (REI) [67]  

*

NIR BLUE

NIR BLUE NIR

B B
REI

B B B

 
  

 
 

Normalized Built-up Area Index 

(NBAI) [62] 

2
1

2 1

2
1

,

SWIR
SWIR

GREEN

SWIR SWIR

SWIR
SWIR

GREEN

B
B

B
NBAI B B

B
B

B

  
  
   

  
  

   

 

Soil Adjusted Vegetation Index 

(SAVI) [76]  

R

R

( )(1 )

( )

NIR ED

NIR ED

B B L
SAVI

B B L

  
  

  
 

L= Background adjustment factor 

Modified Normalized Difference 

Water Index (MNDWI) [77] 

( )

( )

GREEN SWIR

GREEN SWIR

B B
MNDWI

B B

 
  

 
 

 

 

Principal Components 

 

PC-1 

Bright built-up surfaces have a high albedo in 

PC-1 while PC-2 in negatively correlated with 

PC-1. PC-3 is the intermediate stage of PC-1 

and PC-2. 

PC-2 

PC-3 

 

 

 

 

Fractional 

Abundances  

Abundance estimation has been 

carried out for following classes 

and sub-classes: 

 Bitumen road 

 Concrete pavement 

 Concrete roof 

 Metallic roof 

 Vegetation  

 Soil 

According to LSMA: Reflectance R 

measured at pixel i can be represented as a 

linear summation of K endmembers weighted 

by the fraction ani of each endmember within 

the pixel i. For a wavelength λ, it is given as,  

1

R
K

i ni n i

n

a f e  


    

Where eiλ is the residual, which describes the 

unmodeled portion of reflectance R. Modeled 

fractions are usually constrained by the 
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following equations, 

   1

1
K

ni

n

a


   and     0nia   

 

 

              Table 8.3  Different levels of extraction of built-up surfaces  

Level -1 Level -2 Level -3 

 

Built-up Surfaces 

Road Surfaces Bitumen 

Concrete Pavement 

Roof Surfaces Concrete 

Metallic Roof 

 

8.3  Support Vector Machine 

In recent years, kernel based methods, such as Support Vector Machine (SVM) 

particularly, has become more and more popular for target detection and 

classification in remotely sensed imagery [162] [163] [164] [165] [166] [167]. SVM 

is an advanced and extensively used target detection as well as a regression approach 

proposed by Vapnik and his group at Bell Laboratories in 1990s. As a representative 

kernel based approach, SVM relies on the definition of a distance measure between 

data points in a proper sample space. Further, SVM does not only minimize the cost 

function but also controls the intricacy of the target detection function. This property 

improves the SVM’s strength to noises in training samples, thus, target detection 

based on SVM could be more precise than the other commonly used methods such as 

maximum likelihood, decision tree and neural network-based algorithms. SVM is a 

nonlinear model and the nonlinear mapping of SVM is achieved by different kernel 
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functions. As explained in Table 8.1, a total of 518 samples or pixels of different 

built up and non-built-up surfaces have been used as truth pixels, these pixels are 

divided into the ratio of 65:35 for training and testing of SVM model to avoid 

overfitting. So, total 337 pixels are used for training and remaining 181 pixels have 

been utilized for testing. Next, each pixel is characterized by 11 element feature 

vector for combination of spectral indices and fractional abundances, 8 element 

feature vector for PCs and spectral indices as well as 14 element feature vector for 

combination of all the features. It is evident from the literature that SVM technique is 

a two class problem, thus, this study has been utilized SVM approach as target 

detection instead of classification. Further, as this study deals with 7 different classes 

(Level- 1 to 3), as tabulated in Table 8.3, therefore, each SVM consist of 7 two-class 

classifier. The SVM models have been created by selecting various kernels such as 

Linear, Polynomial, Gaussian Radial Basis Function (GRBF) and Sigmoid [168] 

[169]. The parameters for these models have been selected on the basis of existing 

literature based on SVM target detection and classification [162] [163] [170] [171] 

[172] [173] [174], these parameters are listed in Table 8.4. Further, after execution of 

each model in each of the 7 two-class classifier for all the aforesaid feature band 

combinations, the maximum average training accuracy of built-up target detection is 

obtained in case GRBF, as shown in Table 8.4. Therefore, in view of aforesaid 

analysis, the extraction of target in this study has been carried out using SVM by 

selecting GRBF as kernel function with different parameters listed in Table 8.4. 
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                   Table 8.4  Parameters of SVM kernel  

Kernel Parameter Value Average Training 

Accuracy 

Linear Penalty 100 78.69 

Polynomial Degree of Kernel 2 80.52 

Bias in Kernel 1.0 

Gamma in Kernel 0.03 

Penalty parameter 100 

GRBF Gamma in Kernel 0.03 86.75 

Penalty parameter 100 

Sigmoid Bias in Kernel 1.0 82.36 

Gamma in Kernel 0.03 

Penalty parameter 100 

 

 

8.4  Results and Discussion 

8.4.1  Features identified for extraction of urban built-up surfaces 

and materials 

Table 8.5 depicts the Eigen values along with percentage variance of different 

principal components i.e. from PC1 to PC5, out of which three major components 

with maximum Eigen values are selected for the analysis, as these three PCs also 

accounted for 99.42 % of total variance. The rest of the PCs have been discarded. 

Further, Figure 8.2 shows that, the PC1 can be used as a feature band for high-albedo 

materials while PC2 can be utilized for low-albedo materials and the properties of 

PC3 lie between PC1 and PC2. Moreover, the correlation between PC1, PC2 and 

PC3 is also less. Therefore, these three components are found to be suitable to use as 

feature bands for extraction of built-up surfaces and materials. 
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Table 8.5  Eigen values and percentage variance of PCs 

Principal 

Components 

PC1 PC2 PC3 PC4 PC5 

Eigen Values 2.2185 0.3584 0.0587 0.0180 0.0032 

Percentage 

Variance 

89.76 6.68 2.98 0.34 0.18 

    

 

                        
                                                    (a)                                       (b)                                      (c) 

Figure 8.2  Major principal components having maximum eigen values and variance (a) PC1 (b) PC2 

(c) PC3 

     Further, in this study IBI, REI, NBAI, SAVI and MNDWI have been utilized with 

most appropriate band combination in AVIRIS-NG hyperspectral imagery. The most 

significant bands in respective regions have been identified using histogram plot of 

different land cover classes mentioned in Table 8.1 along with stepwise discriminant 

analysis using mean spectral signatures of those land covers [175] [176] [177]. These 

band combinations with respective wavelengths are given in Table 8.6, while the 

outcomes of respective indices are shown in Figure 8.3. 

 

    Table 8.6  Appropriate band combinations for different spectral indices 

Spectral Index IBI REI NBAI SAVI MNDWI 

Band 

Combinations 

862 (NIR), 663 

(Red), 1613 (SWIR), 

556 (Green) 

987 (NIR), 

461 (Blue) 

1999 (SWIR1), 

1543 (SWIR2), 

556 (Green) 

862 (NIR), 

663 (Red) 

1613 (SWIR), 

556 (Green) 
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                (a)                                   (b)                                  (c)                                  (d)                                  (e) 

Figure 8.3  Thematic spectral index based features (a) IBI (b) REI (c) NBAI (d) SAVI (e) MNDWI 

 

      

     The study area is an amalgamation of different built-up and non-built-up classes 

with majority of bitumen road, concrete pavement, concrete roof and metallic roof as 

built-up surfaces while vegetation and soil as non-built-up classes. Therefore, 

endmembers of these built-up and non-built-up classes have been selected for 

spectral mixture analysis. Further, due to having heterogeneity of  different urban 

land cover classes specifically for different built-up surfaces, mean spectral 

signatures of all the classes mentioned in Table 8.1, are used for extraction of 

fractional bundance based features. Figure 8.4 shows unmixing results of fractional 

abundances of different urban land cover classes and sub-classes.   

 

                         

                                       (a)                                  (b)                                   (c)                                  (d) 
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                                                                          (e)                                 (f)       

Figure 8.4  Fractional abundances of difference built-up and non-built-up classes (a) Bitumen road (b) 

Concrete pavement (c) Concrete roof (d) Metallic roof (e) Vegetation (f) Soil 

 

      The standard deviation of the all the previously discussed individual feature bands 

are used to assess the amount of information contained in each band. The higher 

standard deviation indicates higher information content within the band [178] [179] 

[180]. Table 8.7, and Figure 8.5 (b) and (c) depict the mean and standard deviation of 

different individual feature bands extracted from hyperspectral imagery. The 

statistical analysis has been carried out after scaling all the feature band values 

between 0 to 255. It is observed that spectral index based features provide maximum 

standard deviation due to belonging to a particular theme. Principal component based 

features generate moderate values of standard deviation while lesser is obtained in 

case of fractional abundance features. Standard deviation of SAVI and MNDWI are 

comparable with abundance maps of vegetation and soil, respectively. 

      The correlation coefficient is calculated to examine the correlations between 

various feature bands. A higher correlation coefficient depicts a higher overlapping 

of the values of two different feature bands and therefore greater similarity between 

the feature information in those two bands. To get more feature information, band 

combinations with smaller correlation coefficients must be selected. The correlation 

analysis between various feature bands shown in Table 8.8, and Figure 8.5 (a) 

suggests that, PC1 is least correlated with SAVI and fractional abundance map of 
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vegetation while maximum correlation is obtained in case of NBAI and abundance 

map of concrete roof. PC2 is having least correlation with MNDWI and REI while 

high correlation is obtained for SAVI and fractional abundance map of vegetation. 

Next, PC3 is less correlated with SAVI and fractional abundance of soil while highly 

correlated with REI, NBAI and fractional map of asphalt road. Further, IBI depicts 

less correlation with SAVI, PC2 and vegetation abundance map while highly 

correlated with REI and MNDWI. Further, REI shows least correlation with PC2, 

SAVI and vegetation abundance while high correlation is achieved in case of IBI and 

MNDWI. Similarly, NBAI shows least correlation with PC2, SAVI and abundance 

map of vegetation while maximum is obtained in case of PC1, MNDWI and IBI. 

SAVI is least correlated with all the features except PC2. Finally, MNDWI is having 

high correlation with PC3, IBI, REI, NBAI and abundance map of asphalt road. 

Moreover, fractional abundance of concrete roof is moderately correlated with all the 

other bands while less correlation is obtained with asphalt road. Abundance map of 

metal roof is moderately correlated with spectral index based features while more 

correlation is obtained with PCs and abundance based features. Further, asphalt road 

is less correlated with PC2, SAVI, fractional abundances of vegetation and soil while 

high with IBI and REI. Fractional abundance of concrete pavement is less correlated 

with PC1 and NBAI while highly correlated with abundances of concrete roof, metal 

roof and soil. Vegetation abundance is highly correlated with PC2 and SAVI while 

least with IBI, REI, NBAI and MNDWI. Further, abundance map of soil is least 

correlated with index based features whereas moderately correlated with rest of the 

feature bands.       
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                           Table 8.7  Mean and Standard deviation of different feature bands 

 Principal Components Spectral Indices 

PC1 PC2 PC3 IBI REI NBAI SAVI MNDWI 

Mean 120.61 95.15 110.18 179.67 134.88 92.60 85.91 126.75 

Standard 

Deviation 

58.68 57.63 58.24 69.61 64.48 60.06 65.30 61.14 

                                  Fractional Abundances    

Bitumen 

Road 

Concrete 

Pavement 

Concrete 

Roof 

Metallic 

Roof 

Vegetation Soil   

Mean 159.51 124.46 104.93 149.91 68.43 117.40   

Standard 

Deviation 

52.31 45.10 48.04 48.34 62.71 62.59   

 

Table 8.8  Correlation between different feature bands in which major principal components are B1- 

PC1, B2- PC2 and B3- PC3, spectral indices are B4- IBI, B5- REI, B6- NBAI, B7- SAVI and B8- 

MNDWI, and fractional abundances of different surfaces are B9- Concrete Roof, B10- Metal Roof, 

B11- Asphalt Road, B12- Concrete Pavement, B13- Vegetation and B14- Soil  

Feature 

Bands 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 

B1 1 0.58 0.62 0.83 0.70 0.89 0.39 0.70 0.81 0.70 0.76 0.57 0.49 0.76 

B2 0.58 1 0.58 0.40 0.32 0.39 0.93 0.29 0.68 0.80 0.54 0.67 0.96 0.75 

B3 0.62 0.58 1 0.75 0.81 0.78 0.41 0.81 0.71 0.73 0.77 0.64 0.56 0.47 

B4 0.83 0.40 0.75 1 0.96 0.86 0.25 0.92 0.74 0.73 0.87 0.69 0.38 0.67 

B5 0.70 0.32 0.81 0.96 1 0.81 0.20 0.94 0.67 0.66 0.86 0.65 0.32 0.51 

B6 0.89 0.39 0.78 0.86 0.81 1 0.15 0.83 0.76 0.60 0.74 0.48 0.30 0.52 

B7 0.39 0.93 0.41 0.25 0.20 0.15 1 0.14 0.53 0.67 0.48 0.64 0.93 0.66 

B8 0.70 0.29 0.81 0.92 0.94 0.83 0.14 1 0.68 0.67 0.83 0.69 0.31 0.53 

B9 0.81 0.68 0.71 0.74 0.67 0.76 0.53 0.68 1 0.80 0.61 0.83 0.70 0.82 

B10 0.70 0.80 0.73 0.73 0.66 0.60 0.67 0.67 0.80 1 0.67 0.86 0.83 0.90 

B11 0.76 0.54 0.77 0.87 0.86 0.74 0.48 0.83 0.61 0.67 1 0.64 0.49 0.56 
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B12 0.57 0.67 0.64 0.69 0.65 0.48 0.64 0.69 0.83 0.86 0.64 1 0.78 0.85 

B13 0.49 0.96 0.56 0.38 0.32 0.30 0.93 0.31 0.70 0.83 0.49 0.78 1 0.79 

B14 0.76 0.75 0.47 0.67 0.51 0.52 0.66 0.53 0.82 0.90 0.56 0.85 0.79 1 

 

     

                                       (a)                                                                                             (b) 

 

                                                                                            (c) 

Figure 8.5  Graphical representation of different statistical parameters (a) Correlation between various 

feature bands (b) Mean, and (c) Standard Deviation of individual feature bands   

      

      Figure 8.6 (a) and (b) describe the mean and standard deviation of various 

artificial and natural land cover classes mentioned in Table 8.1, in each of the feature 

bands. It is observed from the mean plot shown in Figure 8.6 (a) that, bitumen road 

can easily be separated from rest of the classes in PC1 while vegetation is more 

highlighted in case of PC2. Further, in PC3, soil can be easily extracted, as mean 

value of soil in PC3 is lowest amongst other classes. IBI perfectly separates built-up 
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surfaces from vegetation while some overlap is observed with soil. REI seems to be a 

better approach for separating built-up surfaces from vegetation and soil, as less 

mean values can be observed for natural surfaces while high values for built-up 

surfaces. The NBAI may be observed as best approach for extraction of different 

roofing surfaces, which are concrete and metallic roofs. Further, SAVI can prove to 

be an effective index for extraction of low and high density vegetation cover of urban 

area with very high mean values. MNDWI can easily separate built-up surfaces from 

non-built-up surfaces i.e. vegetation and soil. Further, in abundance map of bitumen 

road, vegetation and metallic roof can easily be separated from rest of the classes. 

Next, fractional map of concrete pavement seems to be highly complex with large 

overlap between all the classes. Finally, in abundance map of metallic roof, 

vegetation, and soil, the target classes can easily be separated from the respective 

backgrounds. 

     Figure 8.6 (b) depicts about standard deviation of various land cover classes in 

different feature bands. It is observed that PC1 shows maximum information about 

two land cover classes, which are concrete roof and pavements. Similarly, PC2 and 

PC3 provide maximum information about vegetation and concrete roof, respectively. 

The IBI gives almost similar standard deviation for all the classes while for bitumen 

road and concrete pavement, it provide slightly more information. Similarly, REI 

offers more information content of bitumen road while NBAI and abundance map of 

metallic roof have highest information about concrete roof and pavement. Further, 

SAVI and MNDWI provide almost same information about all the land cover classes 

while slightly more is observed for bitumen road, concrete pavement and vegetation. 

Abundance map of bitumen road shows high information about concrete roof and 

soil while fractional maps of concrete pavement and soil have highest information 
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about metallic roof surfaces. Finally, fractional maps of concrete roof and vegetation 

provide highest information about soil. 

    

 

(a) 

 

(b) 

Figure 8.6  Statistical analysis of different urban land cover classes using (a) Mean, and (b) Standard 

deviation  
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8.4.2  Extraction of built-up surfaces, sub-surfaces and materials 

(Level-1 to 3) 

The extraction analysis has been carried out using histogram representation of 

various land cover classes mentioned in Table 8.1, in different resulting images. 

Further, for brief analysis of the results, all the georeferenced output images with 

shape files of all the classes mentionded in Table 8.1, are overlapped in high 

resoultion satellite imagery base map of ArcGIS 10.4 by assuming there is no 

temporal change between AVIRIS-NG and high resoltuion imagery. The extraction 

results have also been verfied with the ward map of Jodhpur, Rajasthan, India 

(http://jodhpurmc.org/HomePage.aspx accessed on 10th December 2019).  

     Figure 8.7 (a) to (g) depict the extraction results of built-up surfaces (Level-1 to 

3) using combination of spectral  index and fractional abundance based features. It is 

observed from the aforesaid analysis that, in case of built-up surfaces (Level-1), 

roofs are perfectly extracted while detection rate of road surfaces is not up to the 

mark. In level-2, roof surfaces are better detected with more overlap with soil pixels. 

Further, in level-3, concrete roofs are extracted with some overlap with concrete 

pavements and false alarms due to soil appear to be less in this case. Moreover, 

metallic roofs in level-3 are detected well with some confusion in the form of soil 

and bitumen roads. Road surfaces in level-2 are detected perfectly while some part of 

bitumenous roofs are still confused with roads. In level-3, the detection and false 

alarm rate of bitumen road is less as minor roads and pavements are not perfectly 

extracted. Also, the same is happened in extraction of concrete pavements.  

http://jodhpurmc.org/HomePage.aspx
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                                      (a)                                 (b)                                   (c)                                  (d)                                                                         

                                     

                                                  (e)                                 (f)                                   (g) 

    Figure 8.7  Extraction of built-up surfaces (Level-1 to 3) using combination of Spectral Index and 

Fractional Abundance based features, in which bright pixels are target and darks pixels are 

background (a) Built-up Surfaces (b) Roofs (c) Concrete Roofs  (d) Metallic Roofs (e) Roads (f) 

Bitumen Roads (g) Concrete Pavements 

     Figure 8.8 (a) to (g) describe the detection results of built-up surfaces (Level-1 to 

3) using combination of spectral index and major principal component based 

features. On the basis of aforementioned analysis, it is investigated that, in extraction 

of built-up surfaces (Level-1), rate of detection of roof surfaces is fine but some part 

of soil is also included in those roofs. In this case major road surfaces are not 

perfectly extracted but some pavements are highlighted in the extraction results as 

shown in Figure 8.8 (a). Further, in level-2, roof surfaces are extracted with less 

significance, as detection rate seems to be slighly less than the previous case of 

combination of spectral index and fractional abundance. In level-3, concrete roofs are 

extracted with less detection rate and some overlap with concrete pavement, false 

alarms due to soil and other backgrounds are least in this case. Further, most of the 

metallic roofs are extracted well but more overlapping is observed with soil and 

mixed bitumen surfaces. Road surfaces in level-2 are detected with more confusion 
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with bitumenous roofs, and some pixels of wet soil are also included and detected as 

road in this case. It may be due to low albedo of road and wet soil. In level-3, the 

detection rate of bitumen roads is satisfactory as highway and pavements made-up of 

bitumen are perfectly extracted. Moreover, in case of concrete pavements, detection 

and false alarm rates both are high. The false alarms may be due to presence of two 

classes, which are concrete roof and soil.  

     Figure 8.9 (a) to (g) represent the extraction results of built-up surfaces (Level-1 

to 3) using combination of all the features, which are spectral index, fractional 

abundance and major principal component. The aforesaid analysis has been carried 

out for this combination as well. It is examined that, built-up surfaces (Level-1) are 

extracted perfectly as roofs, and along with that roads are hightlighted more in 

comparison to previous two cases. Also, a very few pixels of soil are included in the 

built-up surfaces. In level-2, roof surfaces are perfectly extracted with more detection 

rate and less false alarm. The major problem of separability of soil with roof surfaces 

has been resolved for this feature combination. In the level-3, concrete and metallic 

roofs are perfectly detected with better separability from respective backgrounds. 

Further, concrete and metallic roofs are slightly confused with concrete pavements 

and bitumen roads, respectively. Road surfaces in level-2 are extracted perfectly with 

better detection rate and less confusion with other background classes. It appears that 

all the highways, street roads and small pavements are perfectly highlighted in this 

case. In level-3, the detection rate of bitumen roads is very high but very few pixels 

of these roads are still confused with bitumenous roofs. Futher, in case of concrete 

pavements, the target detection rate is better with less false alarms. These false 

alarms may be due to confusion of concrete pavement with concrete roof surfaces.   
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                                      (a)                                  (b)                                  (c)                                  (d)                                                                                       

                                      

                                                     (e)                                   (f)                                   (g) 

Figure 8.8  Extraction of built-up surfaces (Level-1 to 3) using combination of Spectral Index and 

Major Principal Component based features, in which bright pixels are target and darks pixels are 

background (a) Built-up Surfaces (b) Roofs (c) Concrete Roofs  (d) Metallic Roofs (e) Roads (f) 

Bitumen Roads (g) Concrete Pavements 

                           

                                      (a)                                    (b)                                    (c)                                   (d)                                                                                      

                                      

                                                     (e)                                   (f)                                   (g) 

Figure 8.9  Extraction of built-up surfaces (Level-1 to 3) using combination of Spectral Index, 

Fractional Abundance and Major Principal Component based features, in which bright pixels are 

target and darks pixels are background (a) Built-up Surfaces (b) Roofs (c) Concrete Roofs (d) Metallic 

Roofs (e) Roads (f) Bitumen Roads (g) Concrete Pavements 
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     The analysis of results (shown in Figure 8.7 to 8.9) on the basis of histogram 

representation of various urban land cover classes as well as comparison with high 

resolution imagery base map of ArcGIS 10.4, and ward map of study region suggest 

that, combination of spectral index, fractional abundance and major principal 

component may be more useful for precise extraction of urban built-up surfaces, sub-

surfaces, and materials. It is also deduced that feature combination of spectral index 

and fractional abundance may be a better choice for extraction of aforesaid classes in 

comparison to combined form of spectral index and major principal component.       

 

8.4.3  Accuracy Assessment 

Accuracy asssessment of the built-up extraction results shown in Figure 8.7 to 8.9 

has been carried out using field information of 518 samples out of which 332 

samples are associated with built-up surfaces while remaining 186 with natural 

surfaces such as vegetation and soil. High resolution satellite imagery base map of 

ArcGIS 10.4 has also been utilized for validating the extraction results by 

considering an assumption that there is no temporal change between high resolution 

base map and AVIRIS-NG imagery. The Overall Accuracy (OA) and Kappa Index 

(KI) (normalized between 0-100 %) are the two accuracy measures, which have been 

used for accuracy assessment. Table 8.9 describes the accuracy assessment of 

different target classes, which are built-up surface in level-1, road (bitumen and 

concrete pavement) and roof surfaces (concrete and metallic) in level-2, concrete 

roof, metallic roof, bitumen road and concrete pavement in level-3 while rest of the 

non-target classes have been considered as background. It is observed from Table 8.9 

that, for extraction of built-up surfaces highest OA i.e. 94.59 % is obtained in case of 

combination of all the features, which are spectral index, fractional abundance and 
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major principal component. Similarly, for extraction of road and roof surfaces, 

highest OA i.e. 89.76 %, 91.12 % is achieved for combined form of all the features. 

Finally, sub-classes of roof surfaces i.e. concrete and metallic roofs produce 

maximum OA as 89 % and 92.27 %, respectively, which is also for the combination 

of all the aforesaid features while sub-classes of road surfaces, which are bitumen 

road and concrete pavement, give highest OA as 91.12 %, 93.24 %, respectively for 

same set of features. Further, all the aforesaid results have also been verified using 

KI. Figure 8.10 illustrates about a comparative assessment between various feature 

combinations, which have been used for extraction of built-up surfaces, sub-surfaces 

and materials. It is observed from Figure 8.10 (a) and (b) that combined form of 

spectral index, fractional abundance and major principal component may be more 

useful for extraction of built-up surfaces (Level-1 to 3), while spectral index with 

fractional abundance may generate better results in comparison to combined form of 

spectral index and major principal component. 

 

                 Table 8.9  Accuracy assessment of extraction of built-up surfaces and materials (Level-1 to 3) 

Feature 

Combination 

                                                            Level-1 

Class Built-up 

Surfaces 

Background Producer 

Accuracy (%) 

  OA (%) Kappa 

Index (%) 

Spectral Index + 

Fractional 

Abundance 

Built-up Surfaces 298 27 91.69 88.24 74.60 

 

 

Background 34 159 82.38 

User Accuracy (%) 89.75 85.48  

                                                            Level-2 

 Roof Background    

Roof 162 47 77.51 86.48 71.40 

Background 23 286 92.55 

User Accuracy (%) 87.56 85.88  
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 Road Background   

Road 126 82 60.57 80.11 56.50 

Background 21 289 93.22 

User Accuracy (%) 85.71 77.90  

                                                            Level-3 

 Concrete  

Roof 

Background    

Concrete Roof 96 57 62.74 84.75 60.80 

Background 22 343 93.97 

User Accuracy (%) 81.35 85.75  

 Metallic  

Roof 

Background    

Metallic Roof 52 61 46.01 85.32 49.60 

Background 15 390 96.30 

User Accuracy (%) 77.61 86.47  

 Bitumen 

Road 

Background    

Bitumen Road 63 56 52.94 86.68 56.90 

Background 13 386 96.74 

User Accuracy (%) 82.89 87.33  

 Concrete 

Pavement 

Background    

Concrete Pavement 61 39 61.00 90.54 65.90 

Background 10 408 97.60 

User Accuracy (%) 85.91 91.27  

Spectral Index + 

Major Principal 

Component 

 

                                                            Level-1 

 Built-up 

Surfaces 

Background    

Built-up Surfaces 279 33 89.42 83.40 64.80 
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Background 53 153 74.27 

User Accuracy (%) 84.03 82.25  

                                                           Level-2 

 Roof Background    

Roof 153 64 70.50 81.70 61.10 

 Background 32 269 89.37 

User Accuracy (%) 82.70 80.78  

 Road Background    

Road 119 63 65.38 82.43 59.70 

Background 28 308 91.66 

User Accuracy (%) 80.95 83.02  

                                                            Level-3 

 Concrete  

Roof 

Background    

Concrete Roof 92 81 53.17 79.34 49.60 

Background 26 319 92.46 

User Accuracy (%) 77.96 79.75  

 Metallic  

Roof 

Background    

Metallic Roof 48 79 37.79 81.08 39.02 

Background 19 372 95.14 

User Accuracy (%) 71.64 82.48  

 Bitumen 

Road 

Background    

Bitumen Road 59 62 48.76 84.75 51.10 

Background 17 380 95.71 

User Accuracy (%) 77.63 85.97  

 Concrete 

Pavement 

Background    
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Concrete Pavement 56 58 49.12 85.90 52.50 

Background 15 389 96.28 

User Accuracy (%) 78.87 87.02  

Spectral Index + 

Fractional 

Abundance + 

Major Principal 

Component 

 

                                                          Level-1 

 Built-up 

Surfaces 

Background    

Built-up Surfaces 315 11 96.62 94.59 88.30 

Background 17 175 91.14 

User Accuracy (%) 94.88 94.08  

                                                           Level-2 

 Roof Background    

Roof 173 34 83.57 91.12 81.20 

 Background 12 299 96.14 

User Accuracy (%) 93.51 89.79  

 Road Background    

Road 131 39 77.06 89.76 75.90 

Background 14 334 95.98 

User Accuracy (%) 90.34 89.54  

                                                           Level-3 

 Concrete  

Roof 

Background    

Concrete Roof 103 42 71.03 89.00 71.10 

Background 15 358 95.97 

User Accuracy (%) 87.28 89.50  

 Metallic  

Roof 

Background    

Metallic Roof 61 34 64.21 92.27 70.90 

Background 6 417 98.58 

User Accuracy (%) 91.04 92.46  
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 Bitumen 

Road 

Background    

Bitumen Road 66 36 64.70 91.12 68.90 

 Background 10 406 97.60 

User Accuracy (%) 86.84 91.85  

 Concrete 

Pavement 

Background    

Concrete Pavement 65 29 69.15 93.24 74.90 

Background 6 418 98.58 

User Accuracy (%) 91.55 93.51  

 

 

8.4.4  Area estimation of built-up surfaces, sub-surfaces and 

materials (Level-1 to 3) 

Table 8.10 explains about the area estimation of built-up surfaces (Level-1 to 3) for 

different feature combinations. The actual area of various built-up surfaces and 

materials in the image has been calculated collectively using high resolution satellite 

imagery base map of ArcGIS 10.4, ground sample information and ward map of 

municipal coorparation of Jodhpur, Rajasthan, India 

(http://jodhpurmc.org/HomePage.aspx accessed on 10
th
 December 2019), which 

results in 1.32 km
2
 area of built-up surfaces while roof and road surfaces have area as 

1.05 and 0.27 km
2
, respectively. Further, the actual area of sub-classes of roof 

surfaces i.e. concrete and metallic is 0.96 and 0.12 km
2
,
 
respectively while sub-

categories of road surfaces i.e. bitumen road and concrete pavement are having 

actual area as 0.17 and 0.06 km
2
,
 
respectively. This information has been utilized to 

further validate the extraction results. It is observed from Table 8.10 that, 

combination of spectral index, fractional abundance and major principal component 

http://jodhpurmc.org/HomePage.aspx
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may be more useful for estimation or quantification of built-up surfaces (Level-1 to 

3), as area calculated for this combination tends nearly equal to the actual value of 

built-up surfaces and materials while spectral index with fractional abundance 

generates better results in comparison to combined form of spectral index and major 

principal components.   

 

 
                  (a) 

 

                  (b) 

Figure 8.10  Comparative assessment of different combinations of features on the basis of (a) Overall 

Accuracy and (b) Kappa Index 
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                     Table 8.10  Area estimation of built-up surfaces and materials in different levels 

 Area (m
2
)        

Level-1 

   Area (m
2
)  

     Level-2 

                           Area (m
2
)  

                             Level-3 

Feature Combination Built-up 

Surface                                   

Roof  Road Concrete 

Roof 

Metallic 

Roof 

Bitumen 

Road 

Concrete 

Pavement 

Spectral Index + 

Fractional Abundance 

1219158 1012203 238671 940095 125820 160389 49185 

Spectral Index + 

Major Principal 

Component 

1165077 911538 236565 801000 100800 157455 59868 

Spectral Index + 

Fractional Abundance 

+ Major Principal 

Component 

1350144 1077228 253998 999000 132300 164439 53775 

 

 

8.5  Summary 

Timely and accurate information about urban environment is very important for 

diverse applications. Due to significant spectral heterogeneity and spectral confusion 

of urban built-up surfaces with other land cover classes and high dimensionality of 

hyperspectral data, the urban built-up extraction is become a challenging task. This 

study indentified different significant features and proposed a method that combines 

these features based on thematic spectral index, fractional abundance and major 

principal component. Three combinations have been created for extraction of built-

up surfaces, sub-surfaces and materials, which are spectral index and fractional 

abundance, spectral index and major principal component as well as combination of 

all aforesaid features. Further, using all these combinations, and training and testing 

samples extracted from ground, SVM binary classifier has been used for detection of 
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built-up surfaces in level-1, road and roof surfaces in level-2, sub-categories of roofs 

i.e. concrete and metallic roofs as well as sub-classes of roads i.e. bitumen road and 

concrete pavement in level-3. The urban built-up extration has been carried out using 

AVIRIS-NG hyperpsectral data of Jodhpur, Rajasthan region of India. It is observed 

that in all the three aforesaid combinations, the combined form of thematic spectral 

index, fractional abundance and major principal component generate better 

extraction and estimation results for built-up surfaces, sub-surfaces and materials. It 

has also been examined using high resolution base map of ArcGIS 10.4 and ward 

map of study region that, in case of combined form of all the features, detection rate 

is high with less false alarm for most of the built-up classes. Further, combination of 

spectral index and fractional abundance can prove to be effective in comparison to 

spectral index and major principal component. 
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Chapter 9 
 

Evaluation of Spectral Indices based Approach for 

Extraction of Road and Roof Surfaces in different 

Sensor Imageries 
 

 
This chapter presents a performance evaluation of Sentinel-2B, Landsat-8 

multispectral, and AVIRIS-NG hyperspectral imagery for extraction of road and roof 

surfaces using proposed spectral index based, and various other conventional 

algorithms. The New Road Extraction Index (NREI) and New Building Extraction 

Index (NBEI) have been proposed for extraction of road and roof surfaces, 

respectively. Moreover, existing Spectral Angle Mapper (SAM), Spectral 

Information Divergence (SID), Matched Filtering (MF), and Support Vector 

Machine (SVM) are utilized as angle, information, filtering, and machine learning 

based algorithms, respectively, for detection of both the surfaces. 

 

The tasks performed under this objective are: 

a) To carry out a performance evaluation of Sentinel-2B, Landsat-8 and 

AVIRIS-NG sensor imageries for extraction of road and roof surfaces on the 

basis of proposed and existing approaches.  

b) To perform a comparative analysis between proposed indices and existing 

conventional SAM, SID, MF, and SVM algorithms for extraction of road and 

roof surfaces in different sensor imageries. 

 

9.1  Study area and Dataset 

The study area belongs to the Udaipur, Rajasthan region of India, which is an 
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amalgamation of artificial and natural surfaces. The remote sensing imagery used in 

this study was captured from space-borne Sentinel-2B and Landsat-8 multispectral 

sensors, and AVIRIS-NG hyperspectral sensor. This image data is shown in Figure 

9.1 (a) to (c) while the complete description of data is tabulated in Table 9.1. The 

ground data of the similar geographical area has been collected using Spectral 

Evolution spectroradiometer over the wavelength range of 350 nm to 2500 nm. The 

locations of field data collection of different urban land cover classes are shown in 

Figure 9.1 (d). The field data collection has been carried out using gun and contact 

probe in cloud free atmospheric condition between 1000 hrs to 1500 hrs (10 am to 03 

pm). Some of the field photographs of field data collection are shown in Figure 9.1 

(e). The results of the study have been validated using ground location information of 

2297 samples out of which 1032 are associated with built-up surfaces while 1265 to 

non-built-up surfaces. Built-up surfaces are further categorized into 500 road and 532 

roof surfaces. Further, high resolution satellite imagery base map of ArcGIS 10.4 has 

also been utilized for the assessment of accuracy and validation of results along with 

shape files of different target and background classes. 

 

Table 9.1  Remote Sensing data specification of different sensors 

SN Parameters                                        Description 

1 Image Location Udaipur, Rajasthan, 

India 

Udaipur, Rajasthan, 

India 

Udaipur, 

Rajasthan, India 

2 Name of Sensor  Sentinel-2B Landsat-8  AVIRIS-NG 

3 Date of Data 

acquisition 

02/06/2018 30/11/2017 02/02/2016 

4 Spatial Resolution  60, 10, 20 meter 30 meter 8.1 meter 

5 Wavelength Range 443 nm – 2190 nm 430 nm – 2290 nm 376 nm – 2500 
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                            (a)                                                          (b)                                                        (c)        

   

                               (d)                                                                                        (e) 

Figure 9.1  Remote sensing images captured from various sensors (a) Sentinel- 2B (b) Landsat-8 (c) 

AVIRIS-NG (d) Locations of ground data collection (e) Field photographs of data collection 

campaign                                    

 

nm 

6 Number of Samples,  

Lines and Bands 

400, 400 ,13 400, 400, 7  400, 400, 380 

7 Level of data Level 2 Level 2 Level 1 and Level 

2 

8 Coordinate system WGS-84 /  UTM 

Zone 43N 

WGS-84 /  UTM 

Zone 43N 

WGS-84 /  UTM 

Zone 43N 
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9.2  Performance evaluation of different sensor imageries on 

the basis of spectral profile of road and roof surfaces 

It is observed from the spectral characteristics of road and roof surfaces in different 

sensor imageries, shown in Figure 9.2 (a) to (c) that, the intensity of roof surfaces in 

all the wavelength bands is more in comparison to roads. It may be due to more 

brightness and fine composition of aggregates of concrete roof surfaces in 

comparison to asphalt or bituminous roads [46] [135]. Following is observed from 

Figure 9.2 (a) to (c): 

 It appears from the spectral signatures of roads and roofs in Sentinel- 2B 

imagery, shown in Figure 9.2 (a) that, these surfaces can be differentiated in 

the visible and NIR regions, as roof surfaces have increasing reflectance 

while a concavity is observed in the spectra of road surfaces in those regions. 

Further, a major water absorption band is also observed near 1400 nm.  

 It is depicted from the spectral characteristics of roads and roofs in Landsat-8 

imagery, shown in Figure 9.2 (b) that, NIR and SWIR regions can prove to be 

effective for separating road and roof surfaces, as the signature of road 

surfaces is almost constant in both the regions while for roofs, it gradually 

increases and decreases in these two regions, respectively.  

 The spectral signatures shown in Figure 9.2 (c) are related to road and roof 

surfaces derived from AVIRIS-NG hyperspectral imagery. There are different 

absorptions and peaks are present in various narrow bands of hyperspectral 

imagery. Reflectance of road surfaces is very low and almost constant in all 

the regions while it is high for roof surfaces. Spectra of roof surfaces 

increases in visible and NIR regions while it appears to be almost constant in 

SWIR. Also, different iron oxide absorption features can be observed in the 
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visible and NIR regions near 490 and 830 nm while some hydrocarbon 

absorption bands exist near 1700 nm and between 2200 to 2400 nm. These 

absorption features dominate in roof surfaces while in case of roads, a slight 

absorption due to iron oxide and clay can be seen near 690 and 2050 nm, 

respectively. Therefore, visible and SWIR regions can prove to be the more 

suitable for extraction of roofs followed by visible and NIR for detection of 

roads in AVIRIS-NG imagery.  

     It is further observed that, Sentinel-2B and Landsat-8 may be capable of 

extracting sub-categories of built-up surfaces i.e. roads and roofs with less 

significance while these can easily separate built-up from non-built-up surfaces by 

proper selection of wavelength bands with some better accuracy. The AVIRIS-NG is 

an advanced hyperspectral sensor, which can easily detect built-up surfaces and its 

sub-categories by proper selection of significant bands. Also, due to large number of 

narrow bands, sub-categories of road and roof surfaces can also be extracted.     

       
                                            (a)                                                                            (b) 

 
  (c) 

Figure 9.2  Spectral characteristics of roads and roofs in different sensor imageries (a) Sentinel- 2B 

(b) Landsat-8 (c) AVIRIS-NG 
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9.3  Proposed spectral indices 

9.3.1  New Road Extraction Index (NREI) 

NREI is proposed to automatically extract bitumen and asphalt road networks in 

different remote sensing imageries. This index is tested on low to high spatial 

resolution multispectral and hyperspectral imageries such as Landsat-8, Sentinel-2B 

and AVIRIS-NG. To determine the significant bands in all the imageries, image data 

along with field spectral data have been used. Among the various bands, the best 

results have been obtained with the NIR and Green bands. Therefore, NREI is 

developed using the band combination of NIR and Green bands, as given in Equation 

9.1. In a similar study an index named as REI has been proposed, but that index was 

suitable for extraction of road surfaces only in high spatial resolution WV- 2 

multispectral imagery [67].  

 

                                               

NIR Green
NREI

NIR NIR Green




 
                                     (9.1) 

 

9.3.2  New Building Extraction Index (NBEI) 

NBEI is developed for extraction of roof surfaces in different remote sensing images. 

This index extracts roof surfaces over a small range of reflectance values, but after 

applying contrast stretch, this small range can be stretched to available dynamical 

range. Such contrast stretch enhances the roof surfaces clearly and suppresses the 

other background. The NBEI has been utilized a combination of SWIR2, SWIR1 and 

Green bands for extraction of roof surfaces, as given in Equation in 9.2. In this 

research, NBEI has been tested on Sentinel-2B, Landsat-8 and AVIRIS-NG imagery 

for extraction of roof surfaces using appropriate wavelength band combination. A 
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similar study has been carried out in recent past for extraction of built-up surfaces 

using NBAI, but it was only applicable for Landsat-7 multispectral imagery [62]. 

 

                                            

1
2

1
2

SWIR
SWIR

GreenNBEI
SWIR

SWIR
Green







                                           (9.2) 

 

Where SWIR2 is greater than SWIR1. 

 

9.4  Existing approaches 

9.4.1  Spectral Angle Mapper (SAM) 

SAM is a physically-based spectral classification approach that utilizes an n-

dimensional angle to match target pixels with the reference spectra. SAM compares 

the angle between the endmember vector of target and each reference pixel vector 

in n-D space. Smaller angles represent closer matches to the target spectrum. Pixels 

farther away than the specified maximum angle threshold are not classified [181] 

[182] [183]. If K is the number of spectral bands, t is the target pixel, and r is the 

reference pixel, then spectral angle between target and reference pixel is given as, 

                               

1 1

1/2 1/2

2 2

1 1

cos

K

i i

i

K K

i i

i i

t r

t r

  

 

 
 
 
    
    
     



 
                                    (9.3) 

In this study K varies from 13 for Sentinel-2B to 7 and 380 for Landsat-8 and 

AVIRIS-NG, respectively.     
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9.4.2  Spectral Information Divergence (SID) 

SID is a spectral classification approach that utilizes a divergence measure to match 

the target pixel with reference spectra. The smaller the divergence, the more likely 

the pixels are similar. Pixels with a measurement greater than the specified maximum 

divergence threshold are not classified [184] [185] [186]. If we consider spectral 

vector of target as T= (T1, T2, T3,…….,TN) and reference as R= (R1, R2, R3,…….,RN) 

with K number of bands, then SID can be given as, 

 

                                        
( , ) ( , ) ( , )SID T R D T R D R T                                 (9.4) 
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D (T , R) is the relative entropy of target with respect to reference pixel while D(R , 

T) is the relative entropy of R with respect to T.  Also pi
 
is the desired probability 

vector resulting from target vector T while qi denotes the probability distribution of 

reference pixel.  

 

9.4.3  Matched Filter (MF) 

MF generates from binary hypothesis test, it can also be described from the 

perspective of filter output energy. MF detector can be considered as an optimal 

solution for the detection of target, when the data origin is positioned at the mean 

vector [187] [188] [189]. The normalized expression of MF detector can be written 
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as,  
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Where, 
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 is the mean vector with K number of bands, 
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 is a scalar quantity.    

 

9.4.4  Support Vector Machine (SVM) 

The SVM classification is based on finding an optimal separation hyperplane 

performing the minimum distance. The optimal hyperplan is defined by a subset of 

feature vectors from the learning database named support vectors. The classification 

problem is equivalent to a quadratic optimization with different constraints. The 

optimization problem is parameterized by a penalty parameter that describes the 

separation complexity and the classification error [99] [100]. When the separability 

is nonlinear, nonlinear transform from the feature space to new space with greater 

dimension allows a linear separability. There is no requirement to find the 

transformation function, only a kernel function K is required. The kernel choice is 

determinative for the separability and depends on the classification application. 

Normally used kernel functions in SVM are radial basis function (RBF) and sigmoid 

function [190] [191] [192] [193], which are given by, 
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2

22
( , ) exp

m n

K m n


 
 
 
                                       (9.6) 

                                        ( , ) tanh( )TK m n m n r                                       (9.7) 

 

     In Equation 9.6, σ is the adjustment parameter, which plays a main role in the 

development of a kernel. Further, in Equation 9.7, γ and r are the slope and intercept 

constant, respectively, which are used as adjustment parameters in sigmoid function. 

In this study the extraction has been carried out using RBF and sigmoid function 

both but the best training accuracy has been achieved in case of RBF, therefore this 

study only utilizes RBF as kernel for extraction of roads and roofs. The accuracy 

assessment is carried out using overall accuracy i.e. combination of training and 

testing accuracy.  

 

9.5  Implementation  

The whole analysis has been carried out in ENVI 5.3, MATLAB 2018B and ArcGIS 

10.4 software environment. Implementation has been performed in four parallel data 

processing stages for Sentinel-2B, Landsat-8, AVIRIS-NG imagery and field data, 

respectively. After implementation of all the stages, performance evaluation and 

comparative assessment between different sensor imageries and simultaneously 

between various algorithms have been carried out. Different stages of 

implementation are represented by a flowchart, as shown in Figure 9.3. 
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Figure 9.3  Flowchart describing implementation steps of the study 
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9.6  Results and Discussion 

9.6.1  Road Extraction in different sensor imageries 

9.6.1.1  Sentinel-2B 

Road extraction results in Sentinel-2B satellite imagery using various approaches are 

shown in Figure 9.4 (a) to (e). These results are compared with high resolution 

imagery along with shape files of different land cover classes shown in Figure 9.1 

(d). It is observed from the result shown in Figure 9.4 (a) that, NREI is capable of 

extracting major and minor road surfaces with few false alarms in the form of soil, as 

spectral characteristics of soil and roads show almost similar behavior. Further, it 

appears from the extraction result of SAM that, fewer pixels of road surfaces are 

highlighted with less false alarms, as shown in Figure 9.4 (b). SID and NREI appear 

to be superior in terms of probability of detection of road surfaces while slightly 

more false alarms in the form of roofs and soil are observed in SID. MF is having 

some better detection rate with more false alarms in the form of roofs and soil. In 

case of SVM, most of the soil and roof surfaces are detected as roads due to similar 

spectral behavior of these surfaces. The outcomes of MF and SVM appear to be 

similar. 

 

                  

                                (a)                                                      (b)                                                    (c) 
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                                                       (d)                                                     (e) 

Figure 9.4  Road extraction in Sentinel-2B imagery using various algorithms, in which bright pixels 

are related to roads while dark pixels to non-road (a) NREI (b) SAM (c) SID (d) MF (e) SVM    

 

9.6.1.2  Landsat-8  

Road extraction results in Landsat-8 imagery using various approaches are shown in 

Figure 9.5 (a) to (e). It appears from Figure 9.5 (a) that, NREI is able to detect most 

of the road surfaces appropriately but a large number of soil and roof pixels are 

included in the category of roads. Further, SAM and SID extract road surfaces with 

some better detection rate while most of the roads are confused with soil and roof 

surfaces. This confusion seems to be more in case of SID in comparison to SAM. 

The similarity in the materials composition utilized for construction of road and roof 

surfaces may be a reason for mixing between these surfaces [135]. Further, MF 

seems to be better in terms of false alarms in Landsat-8 but there appears less 

probability of detection. The false alarms in MF come out in the form of soil and roof 

surfaces. Finally, a worst performance is observed in SVM for detection of road 

surfaces, as maximum part of non-road surfaces are included in the category of 

roads, as shown in Figure 9.5 (e).   
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                               (a)                                                      (b)                                                      (c) 

                                       

                                               (d)                                                      (e) 

Figure 9.5  Road extraction in Landsat-8 imagery using various algorithms, in which bright pixels are 

related to roads while dark pixels to non-road (a) NREI (b) SAM (c) SID (d) MF (e) SVM 

 

 

9.6.1.3  AVIRIS-NG 

Extraction results of road surfaces using different algorithms in AVIRIS-NG 

hyperspectral imagery are shown in Figure 9.6 (a) to (e). Visually, it is observed 

from Figure 9.6 (a) that, NREI is capable of detecting all the major and minor road 

surfaces with very less false alarms. The road extraction results of SAM and SID 

appear to be same while more false alarms in the form of roofs are observed in case 

of SAM. Further, there appears fewer false alarms with better probability of 

detection in case of SID. MF is observed to be a better algorithm for extraction of 

road surfaces, as major and minor road surfaces are clearly highlighted with less 

false detection. Finally, SVM emerges as a better classifier for extraction of roads in 
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AVIRIS-NG imagery. The extraction results of NREI and SVM may be comparable 

in terms of probability of detection and false alarms.  

 

                 

                            (a)                                                      (b)                                                    (c) 

                             

                                           (d)                                                      (e) 

Figure 9.6  Road extraction in AVIRIS-NG imagery using different algorithms, in which bright pixels 

are related to roads while dark pixels to non-road (a) NREI (b) SAM (c) SID (d) MF (e) SVM 

 

     The overall analysis of the road extraction results suggests that AVIRIS-NG is 

capable of extracting all the major and minor road surfaces in comparison to 

Sentinel-2B and Landsat-8 multispectral imageries. Further, Sentinel-2B imagery 

appears to be better in comparison to Landsat-8 for extraction of road surfaces. If we 

compare the extraction results of different algorithms, then NREI and SID are 

observed to be suitable for extraction of road surfaces in Sentinel-2B imagery, while 

moderate performance is observed in case of SAM, MF and SVM. In case of 

Landsat-8 imagery, NREI and MF can prove to be effective for extraction of road 

surfaces while average performance is observed in SAM, SID and SVM. Finally, 
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NREI and SVM appear to be the best approaches for extraction of road surfaces in 

AVIRIS-NG imagery while satisfactory performance is observed in case of SAM, 

SID and MF. It is also examined from the aforesaid analysis that due to narrower 

band width of hyperspectral imagery, a minute detail about any surface can be 

extracted while due to wider band width and discrete channels of multispectral 

imagery, it may not be possible to extract most of the sub-categories of built-up 

surfaces effectively. Therefore, AVIRIS-NG is performed better than Sentinel-2B 

and Sentinel-2B appears to be better in comparison to Landsat-8. It is also examined 

that the higher spatial resolution of imagery leads to better extraction of road surfaces 

as there exists a little scope of mixing of various classes inside the pixels. Hence, 

high spatial resolution hyperspectral imagery outperforms other multispectral 

imageries such as Sentinel-2B and Landsat-8. The similar conclusion can be drawn 

for Sentinel-2B, which is having moderate spatial resolution.      

 

9.6.2  Roof Extraction in different sensor imageries 

9.6.2.1  Sentinel-2B 

Roof extraction results using various algorithms in Sentinel-2B satellite imagery are 

shown in Figure 9.7 (a) to (e). As in case of road extraction results, the roof 

extraction results are also compared with high resolution base map along with shape 

files of different land cover classes shown in Figure 9.1 (d). The roof extraction 

index NBEI appears to be better in terms of probability of detection with less false 

alarms, as shown in Figure 9.7 (a). The extraction results of SAM and SID are almost 

similar with an excellent probability of detection while slightly more false alarms are 

observed in case of SAM in comparison to SID. Further, it is observed from the roof 

extraction result of MF that, most of the roof surfaces are effectively extracted with 
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more overlapping with soil while less detection of roofs with fewer false alarms are 

observed in case of SVM, as shown in Figure 9.7 (d) and (e), respectively.  

             

                              (a)                                                      (b)                                                       (c) 

                                        

                                                       (d)                                                       (e) 

Figure 9.7  Roof extraction in Sentinel-2B imagery using various algorithms, in which bright pixels 

are related to roofs while dark pixels to non-roof (a) NBEI (b) SAM (c) SID (d) MF (e) SVM 

 

9.6.2.2  Landsat-8  

The roof extraction results using various approaches in Landsat-8 imagery are shown 

in Figure 9.8 (a) to (e). It is observed that, NBEI is efficiently extracting roof 

surfaces with better probability of detection and slight overlapping with soil. The 

results obtained from SAM and SID are almost similar while more false alarms 

appear in case of SID, as shown in Figure 9.8 (b) and (c). In both of these algorithms, 

majority of false alarms are observed due to spectrally similar bare soil. Further, the 

probability of detection of roof surfaces is less in case of MF with fewer false alarms. 

Finally, SVM can prove to be an effective algorithm for extraction of roof surfaces in 
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Landsat-8 imagery with better probability of detection and comparatively less false 

alarms. The performance of MF and SVM appears to be almost similar.  

                   

                             (a)                                                      (b)                                                      (c) 

         

                                                   (d)                                                    (e) 

Figure 9.8  Roof extraction results in Landsat-8 imagery using different algorithms, in which bright 

pixels are related to roofs while dark pixels to non-roof (a) NBEI (b) SAM (c) SID (d) MF (e) SVM 

 

9.6.2.3  AVIRIS-NG 

The extraction results of roof surfaces using various algorithms in AVIRIS-NG 

hyperspectral imagery are shown in Figure 9.9 (a) to (e). In case of NBEI, the roof 

surfaces are perfectly extracted with very less false alarms. In roof extraction results 

of SAM and SID, there appear a high probability of detection with more false alarms. 

The most of the false alarms are observed due to road surfaces of similar 

construction materials as roof surfaces. Further, MF and SVM produce almost 

similar roof extraction results while more false alarms are observed in case of SVM 

in comparison to MF. The major advantage of NBEI and MF is that, the probability 
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of detection of these two algorithms is high with less false detection rate in 

comparison to other approaches.    

           

                        (a)                                                    (b)                                                     (c) 

       

                                                     (d)                                                     (e) 

Figure 9.9  Roof extraction in AVIRIS-NG imagery using various algorithms, in which bright pixels 

are related to roofs while dark pixels to non-roof (a) NBEI (b) SAM (c) SID (d) MF (e) SVM 

      

     The overall observation of roof extraction results is that, due to brighter tone as 

well as maximum tonal variation of roof surfaces in comparison to other classes, 

these surfaces can easily be extracted from non-roof surfaces. So, if a comparison is 

carried out between the extraction of road and roof surfaces, then roofs can easily be 

separated from non-roof surfaces while road and non-road surfaces may not be easily 

separated. Further, if a comparison between different sensor’s performances is 

carried out, then it is observed that, AVIRIS-NG is capable of extracting the minute 

details from the imagery due to narrower band width of hyperspectral data. In this 

study, some better roof extraction results are obtained in AVIRIS-NG hyperspectral 
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imagery in comparison to wider band Sentinel-2B and Landsat-8 multispectral 

imageries. Similarly, Sentinel-2B produces better roof extraction results in 

comparison to Landsat-8 sensor imagery due to slightly more number of bands. 

Moreover, it can also be concluded that higher spatial resolution results in better 

extraction of roof surfaces due to less mixing of roof and non-roof surfaces. If a 

comparison is performed between various algorithms used for extraction of roof 

surfaces in different multispectral and hyperspectral imageries, then it is observed 

that, NBEI and SID produce better roof extraction results while a moderate 

extraction is obtained in case of SAM, MF and SVM algorithms in Sentinel-2B 

imagery. Further, in Landsat-8, NBEI and SAM generate some better outcomes but 

rest of the algorithms such as SID, MF and SVM produce average roof extraction 

results. Finally, in case of AVIRIS-NG imagery, best results are obtained in case of 

NBEI and MF while better or satisfactory results are produced by SAM and SID 

followed by moderate in case of SVM. 

 

9.6.3  Accuracy Assessment 

Accuracy assessment of the extraction results of road surfaces has been carried out 

using in-situ information of 500 road and 1797 non-road pixels as target and 

background, respectively.  In a similar manner, roof surfaces are validated using 

ground information of 532 roof and 1765 non-roof pixels. Further, along with ground 

information, a high resolution satellite imagery base map of ArcGIS 10.4 with shape 

files of respective target and background classes, as shown in Figure 9.1 (d), are also 

used to further validate the results of extraction of road and roof surfaces in different 

sensor imageries. The accuracy assessment of road extraction results in Sentinel-2B, 

Landsat-8 and AVIRIS-NG imagery using various algorithms is tabulated in Table 
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9.2 to 9.4, respectively. Similarly, accuracy assessment of roof extraction in same set 

of imageries and using similar approaches is shown in Table 9.5 to 9.7. The Overall 

Accuracy (OA) and Kappa Index (KI) have been divided into different categories on 

the basis of percentage range, as shown in Table 6.8 and 6.9, which may be helpful 

to identify the suitable approach for extraction of road and roof surfaces in different 

multispectral and hyperspectral imageries.       

 

9.6.3.1  Road surfaces 

It is observed from Table 9.2 that, NREI, SID and SAM are able to extract road 

surfaces with an OA of 84.54 %, 82.58 % and 80.54 %, while MF and SVM generate 

an OA of 78.75 % and 74.01 %, respectively. Therefore, NREI, SID and SAM may 

be suitable for extraction of road surfaces in Sentinel-2B imagery. Further, in case of 

Landsat-8 imagery, NREI and MF produce an OA of 83.32 % and 80.58 %, while 

rest of the approaches i.e.  SAM, SID and SVM show an OA of 75.57 %, 72.92 % 

and 70.60 %, respectively, as shown in Table 9.3. Thus, NREI and MF may be the 

suitable approaches for extraction of road surfaces in Landsat-8 imagery. Finally, 

when the assessment of accuracy is carried out for AVIRIS-NG imagery, then it 

appears that NREI, SAM, SID, MF and SVM show an OA of 94.90 %, 90.55 %, 

89.64 %, 92.51 % and 93.80 %, respectively, as shown in Table 9.4. Therefore, all 

the approaches are found to be suitable for extraction of road surfaces in 

hyperspectral imagery, while the best performance is achieved in case of NREI and 

SVM. When the assessment of accuracy is carried out using KI, then the similar 

results have been obtained as found in case of OA. Further, if we compare the 

performance of the sensor imagery on the basis of road extraction results, then it 

appears that, AVIRIS-NG sensor can prove to be effective for extraction of road 
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surfaces in comparison to Sentinel-2B and Landsat-8. Also, Sentinel-2B can prove be 

better for extraction of road surfaces in comparison to Landsat-8.  

 

                    Table 9.2  Accuracy assessment of road extraction using various algorithms in Sentinel-2B imagery 

Algorithm Sentinel-2B 

Class Road Non- road Producer 

Accuracy 

(%) 

OA (%) Kappa 

Index 

(%) 

NREI   Road 378 233 61.86 84.54 58.00 

Non-road 122 1564 92.76 

User Accuracy (%) 75.60 87.03  

SAM Road 339 286 54.24 80.54 47.60 

Non-road 161 1511 90.37 

User Accuracy (%) 67.80 84.08  

SID Road 405 305 57.04 82.58 55.60 

Non-road 95 1492 94.01 

User Accuracy (%) 81 83.02  

MF Road 417 405 50.73 78.75 49.40 

Non-road 83 1392 94.37 

User Accuracy (%) 83.40 77.46  

SVM Road 426 523 44.88 74.01 42.40 

Non-road 74 1274 94.51 

User Accuracy (%) 85.20 70.89  

 

 

                      Table 9.3  Accuracy assessment of road extraction using various algorithms in Landsat-8 imagery 

Algorithm                                                             Landsat-8  

Class Road Non-road Producer 

Accuracy 

(%) 

 OA (%) Kappa 

Index 

(%) 

NREI   Road 402 285 58.51 83.32 56.90 
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Non-road 98 1512 93.91 

User Accuracy (%) 80.40 84.14  

SAM Road 376 437 46.24 75.57 41.50 

Non-road 124 1360 91.64 

User Accuracy (%) 75.20 75.68  

SID Road 345 467 42.48 72.92 35.10 

 Non-road 155 1330 89.56 

User Accuracy (%) 69 74.01  

MF Road 395 341 53.66 80.58 51.30 

Non-road 105 1456 93.27 

User Accuracy (%) 79 81.02  

SVM Road 353 558 38.75 70.60 30.50 

Non-road 147 1239 89.39 

User Accuracy (%) 70.60 68.95  

 

                   Table 9.4  Accuracy assessment of road extraction using various algorithms in AVIRIS-NG imagery 

Algorithm AVIRIS-NG 

Class Road 

 

Non-road Producer 

Accuracy 

(%) 

OA (%) Kappa 

Index 

(%) 

NREI   Road 485 102 82.62 94.90 85.90 

Non-road 15 1695 99.12 

User Accuracy (%) 97 94.32  

SAM Road 453 170 72.71 90.55 74.50 

Non-road 47 1627 97.19 

User Accuracy (%) 90.60 90.54  

SID Road 440 178 71.19 89.64 72.00 

Non-road 60 1619 96.42 

User Accuracy (%) 88 90.09  

MF Road 423 95 81.66 92.51 78.30 
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Non-road 77 1702 95.67 

User Accuracy (%) 84.60 94.71  

SVM Road 469 148 76.01 93.80 78.90 

 Non-road 31 1649 98.15 

User Accuracy (%) 93.80 91.76  

        

     Figure 9.10 depicts the comparison of various algorithms on the basis of sensor 

performance. Here, two measures are utilized for investigating the performance, 

which are OA and KI [22] [194]. It is observed from Figure 9.10 (a) and (b) that, 

AVIRIS-NG can prove to be effective for extraction of road surfaces in comparison 

to Sentinel-2B and Landsat-8 multispectral sensors. Further, Sentinel-2B appears to 

be better in comparison to Landsat-8.    

 

                    

                                                       (a)                                                                                  (b) 

    Figure 9.10  Comparison on the basis of sensor performance using (a) Overall Accuracy (b) 

Kappa Index 

     Figure 9.11 describes the performance of various algorithms in different sensor 

imageries using similar measures. It is observed from Figure 9.11 (a) that, proposed 

NREI can prove to be suitable for extraction of road surfaces in all the imageries 

while SID, MF and SVM show some better results in Sentinel-2B, Landsat-8 and 

AVIRIS-NG images, respectively, which are comparable with NREI. It is further 

investigated from Figure 9.11 (b) that, NREI produces better results for all the 
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imageries. As in previous case, here also, SID, MF and SVM show some better 

results in Sentinel-2B, Landsat-8 and AVIRIS-NG images, respectively. Further, the 

performance of all the algorithms is found to be satisfactory in case of AVIRIS-NG.  

 

                          

                                                    (a)                                                                                   (b) 

    Figure 9.11  Comparison on the basis of different algorithms using (a) Overall Accuracy (b) Kappa 

Index 

 

9.6.3.2  Roof surfaces 

It is examined from Table 9.5 that, NBEI, SID and SAM produce an OA of 86.72 %, 

84.59 % and 81.28 %, while OA of 79.23 % and 78.97 % are obtained in case of 

SVM and MF, respectively. Therefore, NBEI, SID and SAM are observed to be the 

effective approaches for extraction of roof surfaces in Sentinel-2B imagery. Further, 

in Landsat-8, NBEI and SAM extract roof surfaces with an OA of 82.45 % and 80.88 

%, while OA of 77.10 %, 76.66 % and 75.53 % are obtained in case of SID, SVM 

and MF, respectively, as shown in Table 9.6. Thus, NBEI and SAM can prove to be 

the appropriate algorithms for extraction of roof surfaces in Landsat-8. Finally, in 

case of AVIRIS-NG imagery, NBEI, MF and SVM offer an OA of 95.43 %, 92.42 % 

and 90.33 %, while SAM and SID produce an OA of 88.59 % and 87.24 %, 

respectively, as shown in Table 9.7. Therefore, NBEI, MF and SVM are found to be 

the best suitable approaches for extraction of roof surfaces in AVIRIS-NG imagery, 
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while the performance of SAM and SID is also satisfactory. Further, the similar 

results have been obtained, when the analysis is carried out using KI as accuracy 

measure. Moreover, if a comparison is performed between different sensors, then it 

appears that AVIRIS-NG hyperspectral sensor can prove to be effective for 

extraction of roof surfaces in comparison to Sentinel-2B and Landsat-8 multispectral 

sensors. It may be due to narrower spectral bands of hyperspectral imagery in 

comparison to multispectral imageries. Also, Sentinel-2B imagery performed well in 

comparison to Landsat-8 for extraction of roof surfaces.  

 

               Table 9.5  Accuracy assessment of roof extraction using various algorithms in Sentinel-2B imagery 

Algorithm Sentinel-2B 

Class Roof Non-roof Producer 

Accuracy 

(%) 

OA (%) Kappa 

Index 

(%) 

NBEI   Roof 453 226 66.17 86.72 66.00 

Non-roof 79 1539 95.11 

User Accuracy (%) 85.15 87.12  

SAM Roof 414 312 57.02 81.28 53.30 

Non-roof 118 1453 92.48 

User Accuracy (%) 77.82 82.32  

SID Roof 490 312 61.10 84.59 63.20 

Non-roof 42 1453 97.19 

User Accuracy (%) 92.10 82.32  

MF Roof 410 361 53.17 78.97 48.90 

Non-roof 122 1404 92.00 

User Accuracy (%) 77.06 79.54  

SVM Roof 304 249 54.97 79.23 42.40 

Non-roof 228 1516 86.92 

User Accuracy (%) 57.14 85.89  
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                   Table 9.6  Accuracy assessment of roof extraction using various algorithms in Landsat-8 imagery 

Algorithm                                                            Landsat-8  

Class Roof Non-roof Producer 

Accuracy 

(%) 

OA (%) Kappa 

Index 

(%) 

NBEI   Roof 316 187 62.82 82.45 49.80 

Non-roof 216 1578 87.96 

User Accuracy (%) 59.39 89.40  

SAM Roof 373 280 57.12 80.88 50.30 

Non-roof 159 1485 90.32 

User Accuracy (%) 57.33 89.40  

SID Roof 361 355 50.41 77.10 42.60 

Non-roof 171 1410 89.18 

User Accuracy (%) 67.85 79.88  

MF Roof 305 335 47.65 75.53 35.80 

Non-roof 227 1430 86.30 

User Accuracy (%) 57.33 81.02  

SVM Roof 317 321 49.68 76.66 38.70 

Non-roof 215 1444 87.04 

User Accuracy (%) 59.58 81.81  

 

                  Table 9.7  Accuracy assessment of roof extraction using various algorithms in AVIRIS-NG imagery 

Algorithm AVIRIS-NG 

Class Roof Non-roof Producer 

Accuracy 

(%) 

OA (%) Kappa 

Index 

(%) 

 

NBEI   

Roof 512 85 85.76  

95.43 

 

87.70 Non-roof 20 1680 98.82 

User Accuracy (%) 96.24 95.18  

 

SAM 

Roof 503 233 68.34  

88.59 

 

71.70 Non-roof 29 1532 98.14 
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User Accuracy (%) 94.54 86.79  

 

SID 

Roof 495 256 65.91  

87.24 

 

68.70 Non-roof 37 1509 97.60 

User Accuracy (%) 93.04 85.49  

 

MF 

Roof 477 119 80.03  

92.42 

 

79.60 Non-roof 55 1646 96.76 

User Accuracy (%) 89.66 93.25  

 

SVM 

Roof 498 188 72.59  

90.33 

 

75.30 Non-roof 34 1577 97.89 

User Accuracy (%) 93.60 89.34  

 

     Figure 9.12 describes the comparison of various algorithms based on the sensor 

performance. It appears from Figure 9.12 (a) and (b) that all the algorithms have 

been performed well in AVIRIS-NG imagery for extraction of roof surfaces. Further, 

Sentinel-2B is investigated to be a better sensor in comparison to Landsat-8 for 

extraction of rooftops. It is also examined that OA is not perfectly able to 

differentiate between all the sensors but KI did the same very well. 

 

                          

                                                     (a)                                                                                   (b) 

                    Figure 9.12  Comparison on the basis of sensor performance using (a) Overall Accuracy (b) Kappa 

Index   
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     Figure 9.13 depicts the performance of various algorithms in different sensor 

imageries using similar measures. It is examined from Figure 9.13 (a) that, proposed 

NBEI can prove be an effective algorithm for extraction of roof surfaces in all the 

imageries, while SID, SAM and MF produce some better results in Sentinel-2B, 

Landsat-8 and AVIRIS-NG imageries, respectively, which are almost similar to 

NBEI. The performance of rest of the algorithms is satisfactory in AVIRIS-NG 

imagery, while better in Setinel-2B and average in Landsat-8. Further, when the 

analysis is carried out using KI, the similar results are obtained as found using OA, 

but the differentiation between all the algorithms are clearly observed, as shown in 

Figure 9.13 (b).  

 

                         

                                                   (a)                                                                                     (b) 

                  Figure 9.13  Comparison on the basis of different algorithms using (a) Overall Accuracy (b) Kappa 

Index   

     It can be deduced from the overall analysis that, in extraction of road and roof 

surfaces, as the number of spectral bands of remote sensing imagery increases, the 

separability between different classes can be increased by proper selection of 

dimensionality reduction and band selection algorithms. The increase in separability 

increases the target detection rate and decreases the false alarm rate and therefore 

enhances the accuracy. Moreover, due to coarse spatial resolution Landsat-8, there 

may be the maximum chances of overlapping with other background classes, while 
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in medium resolution Sentinel-2B, chances of mixing of target and background may 

be less. Similarly, in fine resolution AVIRIS-NG, the mixing may be the least. 

Therefore, AVIRIS-NG can prove to be effective for extraction of road and roof 

surfaces, while Sentinel-2B may be a better choice than Landsat-8. If we compare the 

extraction results of road and roof surfaces, then higher OA and KI are obtained in 

all the algorithms used for extraction of roof surfaces in comparison to approaches 

used for road extraction in all the imageries. It may be due to higher brightness and 

tonal variation of roof surfaces, while low tone road surfaces are generally confused 

with water, shadow and wet soil [195] [196]. Further, in case of roof surfaces, there 

may be the maximum chances of occupancy inside the spatially fine, medium and 

coarse resolution pixels due to their clustered behavior [197] [198] [199], while in 

case of road surfaces, chances of occupancy inside the pixels of aforesaid resolution 

may be less due to un-even dimensionality or non-clustered behavior, which results 

in high mixing of roads with non-road background [200] [201] [202].        

     Table 9.8 and 9.9 describe the overall performance of all the sensor imageries and 

algorithms using different categories. These are divided into three different groups, 

which are best (OA > 90 % and KI > 75 %), better (80 % < OA < 90 % and 55 % < 

KI < 75 %) and moderate (OA < 80 % and KI < 55 %). Table 9.8 describes the 

performance on the basis of OA while Table 9.9 depicts the same on the basis of KI. 

It can be observed from Table 9.8 and 9.9 that best roads and roofs extraction results 

are obtained only in case of AVIRIS-NG imagery. NREI, MF and SVM can prove to 

be the best approaches for extraction of road surfaces in AVIRIS-NG, while SAM 

and SID may produce better extraction results. Similarly, NBEI, MF and SVM are 

found to be the best algorithms for extraction of roofs in AVIRIS-NG imagery with 

some better performance in case of SAM and SID. Further, if a comparison is carried 
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out on the basis of OA and KI both, NREI can prove to be effective for extraction of 

roads in Landsat-8. Next, OA makes NBEI and SAM to be the better algorithms for 

extraction of roof surfaces in Landsat-8 imagery while KI put all the algorithms in 

the moderate category. Finally, NREI and SID can prove to be efficient for extraction 

of road surfaces followed by NBEI and SID for roofs in Sentinel-2B imagery.  

                       

        Table 9.8  Performance of various algorithms in different sensor imageries on the basis of overall accuracy 

 Sensor imagery Best 

(>90 %) 

Better  

(80-90 %) 

Moderate 

(<80 %) 

 

Road 

Extraction  

 

 

Sentinel-2B  NREI, SAM, 

SID 

MF, SVM 

Landsat-8   NREI, MF SAM, SID, SVM 

AVIRIS-NG NREI, SAM, 

MF, SVM 

SID  

 

Roof 

Extraction 

 

Sentinel-2B  NBEI, SAM, 

SID 

MF, SVM 

Landsat-8   NBEI, SAM SID, MF, SVM 

AVIRIS-NG NBEI, MF, 

SVM 

SAM, SID  

           

              Table 9.9  Performance of various algorithms in different sensor imageries on the basis of kappa index 

 Sensor imagery Best 

(>75 %) 

Better  

(55-75 %) 

Moderate 

(<55%) 

 

Road 

Extraction  

Sentinel-2B  NREI, SID SAM, MF, SVM 

Landsat-8   NREI SAM, SID, MF, 

SVM 

AVIRIS-NG NREI, MF, 

SVM  

SAM, SID  

 Sentinel-2B  NBEI, SID SAM, MF, SVM 
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Roof 

Extraction 

 

Landsat-8    NBEI, SAM, SID, 

MF, SVM  

       AVIRIS-NG NBEI, MF, 

SVM 

SAM, SID  

 

9.7  Summary 

This study has been carried out with performance evaluation and a comparative 

assessment of various multispectral and hyperspectral sensors, used for extraction of 

road and roof surfaces in respective imageries using various algorithms. Sentinel-2B 

and Landsat-8 imageries have been used as multispectral with 13 and 7 bands, while 

AVIRIS-NG as hyperspectral with 380 narrow bands, respectively. Further, along 

with comparative assessment of different sensor’s performance, a comparative 

analysis has also been performed between different algorithms used for extraction of 

road and roof surfaces in all the aforesaid imageries. In view, two spectral indices 

named as NREI and NBEI have been proposed for extraction of road and roof 

surfaces, respectively. Moreover, existing angle, information, filtering and machine 

learning based approaches i.e. SAM, SID, MF and SVM, have been used for 

extraction of road and roof surfaces both.   

     The results of the study suggested that, due to narrower spectral bands and fine 

spatial resolution of AVIRIS-NG sensor, it can be possible to extract the minute 

details from the imagery in terms of built-up surfaces and sub-surfaces at different 

levels. Therefore, best extraction results of road and roof surfaces have been 

produced in case of AVIRIS-NG in comparison to Sentinel-2B and Landsat-8 

multispectral sensors. Further, the overall performance of Sentinel-2B has been 

found to be superior in comparison to Landsat-8 for extraction of road and roof 

surfaces. Next, when a comparison has been carried out between various approaches 
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used for extraction of road and roof surfaces in different imageries, then it was 

observed that NREI, MF and SVM generate excellent results for extraction of roads, 

while SAM and SID were found to be superior algorithms in AVIRIS-NG imagery. 

Moreover, for extraction of roofs in the same imagery, only NBEI replaced NREI. 

Further, NREI and MF were found to be suitable for extraction of roads followed by 

NBEI and SAM for extraction of roofs in Landsat-8. Finally, NREI, SAM and SID 

were investigated as better approaches for extraction of road surfaces, while NBEI, 

SAM and SID for roofs in Sentinel-2B imagery.  
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Chapter 10 
 

Conclusions and Contributions 
 

 
In this research, the detection and identification of engineered or built-up surfaces 

have been carried out under four different objectives using imaging spectrometry: 

i. The first objective deals with the creation of a spectral library of urban built-

up surfaces and materials, and analysis of spectral signatures of these surfaces 

and materials. 

ii. The second objective of the research has been carried out under four different 

sub-objectives: 

a. In first sub-objective, three new spectral indices i.e. NII, RDI, and NREI 

have been proposed for detection of built-up (Level-1), road and roof 

surfaces (Level-2), respectively. 

b. In second sub-objective, two new spectral indices are introduced, in 

which CI-Road is utilized for condition analysis of road surfaces while 

DI-Roof is used for deterioration analysis of roof surfaces. 

c. The third sub-objective utilizes existing built-up indices for detection of 

urban built-up surfaces in the first level followed by its subcategories in 

the second level. 

d. Finally, extraction of impervious or engineered surfaces has been carried 

out using index based RGB and NIR band combinations in AVIRIS-NG 

imagery. 

iii. In the third objective, a new method is proposed, in which different 

combinations of feature bands have been created for extraction of built-up 

surfaces, sub-surfaces and materials in different levels (Level-1, 2 and 3). 
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iv. The final objective of the research presented a performance evaluation of 

Sentinel-2B, Landsat-8 multispectral, and AVIRIS-NG hyperspectral 

imageries for extraction of road and roof surfaces using proposed spectral 

index based, and other conventional algorithms. 

     This chapter highlights the conclusion drawn from this research based on 

theoretical or experimental contributions made, research contribution and the 

limitations. 

 

10.1  Conclusions 

Several important conclusions appear to emerge from the research, which are: 

i. The spectral analysis of built-up surfaces and materials using hyperspectral 

data suggests that, these surfaces and materials can be extracted by identifying 

various significant wavelengths in different spectral regions of a particular built-

up class. These wavelengths are identified based on the different major absorption 

features. The absorption features have been calculated using various statistical 

parameters such as relative depth, area of absorption, and asymmetry factor.  

ii. The proposed spectral indices NII, RDI, and NREI show an overall average 

accuracy of 96.12 %, 92.24 %, and 94.77 %, respectively, which is higher than all 

the other existing built-up indices. These indices have been found to be effective 

in extraction of built-up surfaces (Level-1 and 2) in comparison to existing 

indices. The quantification of built-up surfaces and its subclasses using aforesaid 

indices have also been carried out. The quantification results suggest that, the 

proposed indices can prove to be effective in estimation of built-up surfaces of 

different levels. Similarly, these indices have shown their effectiveness in 
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separating built-up surfaces from soil as well as roads and roofs, when compared 

with other existing indices. 

iii. The comparison of proposed road condition index CI-Road and roof 

deterioration index DI-Roof results with MESMA unmixing suggests that indices 

results may outperform MESMA, which may be due to more geographical 

variability of endmembers and model complexity of MESMA algorithm. 

iv. The existing BSI, NBI, and BAEI can prove to be effective in extraction of 

built-up surfaces with an overall accuracy (OA) of 93.89 %, 90.11 %, and 85.15 

%, respectively. Further, REI with OA of 94.40 % appears to be suitable for 

extraction of road surfaces while NBAI with 95 % OA appears to be effective in 

extraction of rooftops in AVIRIS-NG imagery. It is also concluded that, for 

aforesaid indices, built-up surfaces (Level-1 and 2) can be effectively separated 

from the bare soil in hyperspectral imagery with slight confusion between road 

and roof surfaces. 

v. It is observed that, index based Green-NIR band combination generates better 

inter-class separability with an OA of 95.20 %, Blue-NIR produces moderate OA 

as 90.20 % while least OA as 80.20 % is obtained for Red-NIR.     

vi. It is observed that, the combined form of thematic spectral index, fractional 

abundance and major principal component based features generate better 

extraction results of built-up surfaces, sub-surfaces and materials. It has also been 

examined that, in case of combined form of all the features, detection rate is high 

with less false alarm for most of the built-up classes. Further, combination of 

spectral index and fractional abundance can prove to be effective when compare 

with combined form of spectral index and major principal component. 
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vii. The performance of imageries obtained from AVIRIS-NG sensor is found to 

be the best in comparison to Sentinel-2B and Landsat-8 multispectral sensors 

while Sentinel-2B performed better in comparison to Landsat-8 in extraction of 

road and roof surfaces. The comparison of various algorithms suggests that, 

proposed NREI, NBEI, and existing MF, and SVM produce best results for 

extraction of road and roof surfaces, while SAM and SID are superior algorithms 

for extraction of both the surfaces in AVIRIS-NG imagery. Further, NREI and 

MF are performed well for extraction of roads followed by NBEI and SAM for 

roofs in Landsat-8. Finally, NREI, SAM, and SID are found to be efficient for 

extraction of roads subsequently NBEI, SAM, and SID for roofs in Sentinel-2B 

imagery.  

 

10.2  Research contributions 

The outcome of this research by way of several experiments discussed in this thesis 

lead to the following major contributions: 

i. This research deals with the creation of a spectral library of urban built-up 

surfaces and materials for Indian Regions and reveals its applications in the 

analysis of urban surfaces. Field measurement has been carried out by using 

Spectroradiometer over the wavelength range of 350 to 2500 nm. Further, this 

research investigates the unique spectral characteristics and complexity of 

heterogeneous urban environments using spectral signatures of major urban built-

up surfaces and materials in Indian regions. 

ii. In this research, three new spectral indices i.e. NII, RDI, and NREI have been 

developed for detection of built-up (Level-1), road and roof surfaces (Level-2), 

respectively, followed by a separability analysis between spectrally confused 
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urban land cover classes. Further, this research explores the most significant 

spectral bands in AVIRIS-NG hyperspectral imagery for detection of built-up 

surfaces and its subclasses i.e. roads and roofs.  

iii. In this research, condition analysis of road surfaces and deterioration analysis 

of roof surfaces have been carried out using AVIRIS-NG image and field 

hyperspectral data. Various significant bands are identified using spectral 

characteristics of roads and roofs of different condition and deterioration, 

respectively. Accordingly, two new spectral indices are introduced, in which CI-

Road is utilized for condition analysis of road surfaces while DI-Roof is used for 

deterioration analysis of roof surfaces. 

iv. In this research, existing multispectral built-up indices have been applied on 

AVIRIS-NG imagery for detection of urban built-up surfaces in the first level 

followed by its subcategories in the second level. Finally, a separability analysis 

between spectrally mixed urban land cover classes using various measures is also 

addressed. 

v. In this research, a new method is proposed, in which different combinations 

of knowledge based features have been utilized for extraction of built-up surfaces, 

sub-surfaces and materials in different levels (Level-1, 2 and 3) using AVIRIS-

NG hyperspectral imagery. Features identified in this study are based on spectral 

indices, major principal components and fractional abundances, in which first 

combination is developed using spectral indices and fractional abundances while 

second is made using spectral indices and major principal components and finally 

third using combination of all the aforesaid features. 

vi. Finally, this research presented a performance evaluation of Sentinel-2B, 

Landsat-8 multispectral, and AVIRIS-NG hyperspectral imageries for extraction 
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of road and roof surfaces using proposed spectral index based, and other 

conventional algorithms. The NREI and NBEI are developed for extraction of 

road and roof surfaces, respectively. Moreover, existing SAM, SID, MF, and 

SVM are utilized as angle, information, filtering, and machine learning based 

algorithms, respectively, for detection of both the surfaces. 

 

10.3  Limitations  

The limitation of this research is that it has not considered the effect of water in the 

urban environment, as water has already been masked in the preprocessing stage. 

The seasonal sensitivity has also not been considered for the extraction of built-up 

surfaces and its subcategories.  
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Chapter 11 
 

Future Scope  
 

 

This chapter explains the future scope of this research, which may be carried out to 

further extend the work of this research.  

 

11.1  Future scope of the research 

In this research, the extraction of built-up surfaces has been performed in first level, 

roads and roofs in the second level followed by sub-categories of roads such as 

bitumen road and concrete pavement as well as sub-classes of roofs such as concrete 

and metallic roofs, in third level of detection. Further research may be carried out to 

develop the built-up spectral indices for the detection of sub-classes of built-up 

surfaces in the fourth level with their condition and deterioration analysis using 

narrower bands AVIRIS-NG hyperspectral imagery. In future, the development of 

spectral indices may also be carried by considering the effect of water, and seasonal 

sensitivity in the image and field data. 

     Overall, the findings of this research would also raise awareness about the 

differences between Sentinel-2B, Landsat-8 multispectral sensors as well as 

AVIRIS-NG hyperspectral sensor. This study may be further carried out by utilizing 

sensors with similar spectral and spatial characteristics, such as SPOT, ETM+, 

ASTER and Hyperion. It would be supportive to the seamless integration of 

historical remote sensing images, and to build long term time series for dynamic 

monitoring in a synergistic scientific application based on more than one remote 

sensor. 
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