A Novel Multi-Level Inverter Topology Based on Low Voltage Single DC Source

THESIS

SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY IN POWER SYSTEMS

Submitted by:

SHIVAM KUMAR SUNDRAM 2K17 / PSY / 16

Under the supervision of

PROF. MUKHTIAR SINGH

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

2019

DEPARTMENT OF ELECTRICAL

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I, Shivam Kumar Sundram, Roll No. 2K17/PSY/16 student of M. Tech. (Power

System), hereby declare that the thesis titled "A Novel Multi-Level Inverter

Topology Based on Low Voltage Single DC Source" which is submitted by me to

the Department of Electrical Engineering, Delhi Technological University, Delhi in

partial fulfilment of the requirement for the award of the degree of Master of

Technology, is original and not copied from any source without proper citation. This

work has not previously formed the basis for the award of any Degree, Diploma

Associateship, Fellowship or other similar title or recognition.

Place: Delhi

Date: 21.06.2019

(SHIVAM KUMAR SUNDRAM)

DEPARTMENT OF ELECTRICAL

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled "A Novel Multi-Level Inverter

Topology Based on Low Voltage Single DC Source" by Shivam Kumar Sundram,

Roll No. 2K17/PSY/16 Electrical Engineering Department, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree

of Master of Technology, is a record of project work carried out by the student under

my supervision. To the best of my knowledge this work has not been submitted in part

or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi

Date: 21.06.2019

(Prof. Mukhtiar Singh)

Supervisor

Professor

Electrical Engineering Department

Delhi Technological University

ACKNOWLEDGEMENT

I would like to express my gratitude towards all the people who have

contributed their precious time and efforts to help me, without whom it would not

have been possible for me to understand and complete the project.

I would like to special thanks **Prof. Mukhtiar Singh**, Department of Electrical

Engineering, my project guide, support, motivation and encouragement throughout

the period this work was carried out. His readiness for consultation at all times, his

educative comments, his concern and assistance even with practical things have

been invaluable.

I would like to thanks **Power Electronics Lab** and its staff members for co-

operating with me and providing me with the best possible working environment

for the projects.

I would like to thank all the faculty members of department of Electrical

engineering, DTU, Delhi for their constant encouragement.

I would like to thank all my M.Tech friends.

Place: Delhi

Date: 21.06.2019

(SHIVAM KUMAR SUNDRAM)

iv

TABLE OF CONTENTS

CHAPTER 1: Introduction	
1.1: Introduction on Inverter	1
1.2: Types of Inverter	1
1.3: Introduction on Multi-Level Inverter	∠
1.4: Types of Multi-Level Inverter	∠
1.4.1: Diode-clamped multilevel inverter	
1.4.2: Flying capacitor-clamped multilevel inverter	9
1.4.3: Cascaded H-bridge multilevel inverter	11
CHAPTER 2: Literature Review	
2.1: Introduction on New MLI Topologies	13
2.2: MLI Topologies With Reduced Device Count	16
2.2.1: Cascaded Half-Bridge based Multilevel DC Link Inverter	17
2.2.2: T-Type Inverter	19
2.2.3: Switched Series/Parallel Sources based MLI	22
2.3: Conclusion	23
CHAPTER 3: Proposed Topology	
3.1: Introduction	24
3.2: Level Generation	26
3.2.1: Generate Positive Level 1	26
3.2.2: Generate Negative Level 1	27
3.2.3: Generate Positive Level 2	28
3.2.4: Generate Negative Level 2	29
3.2.5: Generate Positive Level 3	30

	3.2.7: Generate Positive Level 4	. 32
	3.2.8: Generate Negative Level 4	. 33
	3.2.9: Generate Positive Level N-1	. 34
	3.2.10: Generate Negative Level N-1	. 35
	3.2.11: Generate Positive Level N	. 36
	3.2.12: Generate Negative Level N	. 37
	3.2.13: Generate Positive Level N+1	. 38
	3.2.14: Generate Negative Level N+1	. 39
3.	3: Working	40
	3.3.1: Increasing Positive Half Wave	40
	3.3.2: Decreasing Positive Half Wave	40
	3.3.3: Increasing Negative Half Wave	41
	3.3.4: Decreasing Negative Half Wave	41
3.	4: Simulation & Result	. 42
	3.4.1: For N=1 Single Phase Inverter	. 42
	3.4.2: For N=1 Three Phase Inverter	. 44
	3.4.3: For N=9 Single Phase Inverter	46
	3.4.4: For N=9 Three Phase Inverter	48
3.	5: Hardware implementation and experimental results	. 50
	c .	ہ ہے

LIST OF FIGURES

Fig. No.	Name of Figure	Page No.
1.1	Two Level square wave output THD	2
1.2	Three Level square wave output THD	3
1.3	Sine Wave PWM output current THD	3
1.4	Controlling Scheme for n DC buses	6
1.5	Diode Clamped Five-Level Inverter	8
1.6	Flying Capacitor-Clamped Five level Inverter	10
1.7	Five Level Cascaded H-Bridge Inverter	12
2.1	Multi-Level DC link Inverter	18
2.2	T-Type inverter with four input sources	20
2.3	A Switched Series / Parallel Source MLI	22
3.1	Proposed Topology	25
3.2	Generate Positive Level 1	26
3.3	Generate Negative Level 1	27
3.4	Generate Positive Level 2	28
3.5	Generate Negative Level 2	29
3.6	Generate Positive Level 3	30
3.7	Generate Negative Level 3	31
3.8	Generate Positive Level 4	32
3.9	Generate Negative Level 4	33
3.10	Generate Positive Level N-1	34
3.11	Generate Negative Level N-1	35
3.12	Generate Positive Level N	36
3.13	Generate Negative Level N	37
3.14	Generate Positive Level N+1	38
3.15	Generate Negative Level N+1	39
3.16	Positive half wave for $N = 9$	40
3.17	Negative half wave for $N = 9$	41

3.18	Simulated Model for N=1 single phase inverter	42
3.19	Voltage Waveform for N=1 single phase inverter	43
3.20	THD in Voltage for N=1 single phase inverter	43
3.21	Simulated Model for N=1 Three phase inverter	44
3.22	Voltage Waveform for N=1 Three phase inverter	44
3.23	THD in Voltage for N=1 Three phase inverter	45
3.24	Simulated Model for N=9 single phase inverter	46
3.25	Voltage Waveform for N=9 single phase inverter	46
3.26	THD in Voltage for N=9 single phase inverter	47
3.27	Simulated Model for N=1 Three phase inverter	48
3.28	Voltage Waveform for N=1 Three phase inverter	49
3.29	THD in Voltage for N=1 Three phase inverter	49
3.30	Top View of 5 Level Single Phase Inverter	50
3.31	Lateral View of 5 Level Single Phase Inverter	51
3.32	Output Voltage Waveform in Oscilloscope	51
3.33	Output Voltage Waveform in Fluke Scope meter	52
3.34	Output Voltage THD in Fluke Scope meter	52
3.35	Output Current waveform in Fluke Scope meter	53
3.36	Output power THD in Fluke Scope meter	53