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Abstract

Estimation of instantaneous features of a signal such as instantaneous
frequency, phase, and amplitude is found sensitive in the presence of noise. The
instantaneous features of the signal can be calculated using the analytic signal.
This work presents two different applications of instantaneous parameters using
wavelet transform (1) Detection of instantaneous flicker level using Prony
analysis and analytic signal (2) decomposition of amplitude modulated-
frequency modulated signal. We propose wavelet transform based analytic
signal calculation for the detection of voltage envelope of the flicker and
decomposition of amplitude modulation and frequency modulation of time
varying sinusoidal model in the presence of white Gaussian noise and compared
the results using Hilbert transform based analytic signal calculation. MATLAB
simulation results show that analytic signal using wavelet transform performs

better in terms of anti noise performance and precision.
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CHAPTER 1: INTRODUCTION

1.1 Objective

Estimation of various signal features such as instantaneous frequency, phase, and
amplitude of the signal is found sensitive in the presence of noise. This work presents (1)
detection of instantaneous flicker level by extracting magnitude, frequency and phase
angle by Prony method and (2) computation of frequency, phase and amplitude using
vector interpretation of analytic signal. We calculated analytic signal using wavelet based
method and implemented for voltage envelope detection and decomposition of AM-FM
signal as a vector interpretation of the analytic signal. Then we compared the proposed
method for the detection of voltage envelope and decomposition of AM-FM signals using
the analytic signal by Hilbert transform [1]-[3].

1.2 Background

Voltage flicker:

Fluctuations of voltage (VF) are the variations of voltage envelope. These variations
are random in nature. The unsteadiness in the optical sensation is due to the fluctuations
of spectral distributions of the light source. Reciprocating compressors, arc furnaces, and
large motors are typical sources of voltage fluctuations. The quality of the energy
distributed by power companies are highly affected due to these voltage fluctuations. Thus
it is very important to estimate the amplitude and frequency of the voltage flicker
waveform. These fluctuations occur when the inter-harmonic components are not
synchronous with the component of the fundamental frequency, then the disturbances in
peak magnitudes and root mean square magnitude in voltage waveform takes place [4].
This is the reason that voltage flicker envelope is also called as instantaneous flicker level
(IFL). The IFL may be comprised of single frequency as well as multiple or band of
frequencies.

AM-FM decomposition:

Time-varying models provide higher resolution representation of natural systems/signals
than the time-invariant models. Speech/audio signals are common examples of the output
of time-varying systems whose subtle variations are perceived and utilized effectively. The
human ability to perceive changes in speech/audio signals is remarkable and speech/audio
communication are excellent instances of highly evolved systems for communicating
information, emotion, entertainment etc. One of the basic models for signals with time-
varying properties is in terms of varying amplitude (amplitude modulation (AM) or



envelope) and/or frequency of oscillation (or frequency modulation, FM). Such signals are
called AM-FM signals. Extracting the envelope and frequency from such signals is called
AM-FM decomposition.

Analytic signal:

Estimation of instantaneous parameters such as instantaneous frequency,
instantaneous amplitude, and instantaneous phase is useful in many applications and is
still in interest in many areas of research for example in communication systems, seismic
signal processing, radar signal processing etc. [5]-[6]. The most commonly used method is
Hilbert transform. The analytic signal is formed combining the real valued signal and its
corresponding Hilbert transform.

1.2 Organization of The Thesis
The organization of the thesis is as follows:

Chapter 1 provides an introduction to the analytic signal and instantaneous parameter
estimation. It also presents a brief introduction to voltage flicker and AM-FM models.

Chapter 2 presents a brief introduction to some recent developments in the measurement
of voltage flicker and AM-FM decomposition and its applications.

Chapter 3 presents processing techniques used in this work namely Hilbert transform,
continuous wavelet transform, Prony decomposition technique and amplitude modulated-
frequency modulated model.

Chapter 4 presents the proposed method for the estimation of voltage envelope of the
flicker waveform and decomposition of AM-FM signal with the help of analytic signal
constructed using wavelet transform.

Chapter 5 presents implementation and simulation results.

Chapter 6 presents discussion and future scope.



CHAPTER 2: RELATED ARTICLES

Decomposition of AM-FM signal is important for music and speech applications.

In 2004, Li and Atlas [7], proposed the estimation of AM-FM model of the over-
modulated signal in a two-step process. The analysis was based on coherent demodulation.
The algorithm consists of calculation of conventional AM and FM as the first step. The next
step was FM-to-AM transduction block which was followed by a coherent demodulator.
The evaluation of source sensitivity for the algorithm showed that the estimation errors
generally increase with AM and FM frequencies, but are insensitive to the carrier
frequency. The algorithm had a limitation that it does not work properly if the AM is
complex.

In 2008, Marco Grimaldi et al. [8], presented parameterization of the speech signal
based on the amplitude modulation-frequency modulation model of the speech signal. The
parameters were used for the speaker identification. To predict the identity of a speaker
different instantaneous frequency were formed by the same AM-FM framework. Three
decompositions of the voiced speech were done. The first step followed the method for
tracking the speech formants, the second step was to calculate similar resonances below 4
kHz, and the third step was the scaling of the bandwidth. Using all three steps, different
parameters were extracted and utilized for identification of the speaker. The results
showed the speaker identification using AM-FM models performed better compared to
Mel-frequency cepstral coefficients (MFCC) and Gaussian mixture model (GMM)
classification system.

In 2014, Arun Venkitaraman et al. [9] presented a method for amplitude
modulation and frequency modulation separation using the input signal and its
corresponding phase-shifted signal. Two all pass filters were used and the impulse
response of all pass filters was related by Fractional Hilbert transform. The all pass filter
was formed using cosine modulated flat top low pass filter. The outputs of the two all pass
filter were joined together to create an analytic signal. From this analytic signal, the AM
and FM were calculated. In this paper, the concept of demodulation of multi component



AM-FM signal using the all pass filter, cosine modulated filterbank and constant Q-
filterbank was also considered. The results showed that the cosine modulated filterbank
approach performed better as compared to other techniques such as the Gabor’s analytic
signal approach, the Teager-energy-based approach, and the linear transduction filter
approach. One of the disadvantages of this method is the unreliable estimation of the time
delays between binaural signals.

In 2015, Parasuraman Sumath et al. [10], proposed a sliding discrete Fourier
transform-based PLL (Phase locked loop) to decompose mono component AM-FM signal. It
was shown that the sliding DFT filter is prone to windowing effect if input signal frequency
drifts from the center carrier frequency. The amplitude errors and the phase errors
produced by the windowing effect had been used to gain the lock condition of the PLL. The
variation from the center frequency generated phase and magnitude errors in the form of
in-phase and quadrature-phase components. The magnitude error was found because of
the variations in frequency. To get the corresponding AM, the in phase component was
passed to a full wave rectifier. Thus the amplitude and frequency variation of the AM-FM
signal was calculated simultaneously. The result showed that the PLL based method could
be used to decompose AM-FM signal having large variations in frequency and the
amplitude.

In 2015, Haricharan Aragonda et al. [11], proposed an algorithm to separate the
amplitude modulation (AM), which corresponds to the response of vocal tract and the
frequency modulation (FM) that corresponds to the excitation of the voiced speech. The
demodulation algorithm of the AM-FM signal was based on the Riesz transform and Hilbert
transform. A comparison had been made between the Riesz transform technique and
sinusoidal demodulation technique on real speech data. The results showed that the Riesz-
transform based method characterizes the spectrogram more precisely. The signal to noise
ratio (SNR) of the reconstructed speech signal was found 2 dB higher using the Riesz
transform method.

Voltage flicker analysis is one of the elementary tools for power quality assessment in
power systems. Determination of the envelope of voltage flicker is one of the researched
fields in signal processing. Various methods have been used to determine voltage flicker.



In 2012, Iman Sadinezhat et al. [12] proposed adaptive Kalman filter and least
square algorithm based method to estimate the voltage fluctuations in the power
distribution system. A two step model was followed. The extraction of the fundamental
frequency component was done by the least square algorithm and the coefficients were
updated based on the inter harmonics in the voltage waveform. The second step was to
estimate the instantaneous flicker level of the voltage waveform by the Kalman filter. The
result showed that the Kalman least square algorithm in the Gaussian noise of 10 dB
produced an error of 3.387 for the amplitude estimation and 0.0462 for the frequency
estimation.

In 2014, Wenxuan Yao et al. [13] proposed fast S-transform and used it to estimate
the components of the time varying flicker. Teager energy operator was also utilized to
calculate the characteristics of the flicker. The fast S-transform extracted both the
frequency and time domain information of the voltage flicker. It has been shown that the
fast S-transform had lower computational complexity compared to the S-transform.
Teager energy operator increased the noise immunity. The end points and the duration of
each voltage flicker component were precisely calculated through the high resolution of
fast S-transform. Results showed that the relative errors were less than 5%.

In 2016, Feng Li et al. [14] proposed a method for estimating the components of
voltage flicker with the help of chirp Z- transform and the Teager energy operator. The
Teager energy operator having error correction factor was shown and an improved Teager
energy operator was presented which decreased the errors in the voltage flicker
estimation. The magnitude and frequency of voltage envelope were calculated by the Chirp
Z-transform. The evaluation was done on the basis of voltage harmonics and inter-
harmonics, white noise, and fluctuation of frequency. The results showed the magnitude
and frequency errors of the flicker were reduced significantly. However, in the presence of
input signal to noise ratio (SNR) of less than 35 dB, a reduced accuracy was found.

In 2017, Ali Dastfan et al. [15] presented a method for extraction of voltage
envelope using phase-locked loop (PLL) and Grey system model (GM). Voltage envelope
was detected using phase-locked loop and then the signal was uniformly sampled. Grey
system theory-based models, such as GM(1,1) and the rolling Grey model were used to
predict the time series. Further, the Fourier correction Grey model (FGM) was used to
improve the precision of GM(1,1). Because of the lesser number of samples, an iterative
approach was taken to estimate the entire voltage envelope. Results showed that Grey
models were able to reduce the errors in the detection of voltage envelope by 5%.



CHAPTER 3: METHODOLOGY

3.1 THE HILBERT TRANSFORM

Leonard Euler (1707- 1783) first derived the Euler formula. Later in 1893, the
scientist Charles P. Steinmetz and a physicist Arthur E. Kennelly first used this formula to
form a time varying harmonic waveform in the complex form. i.e.

e/®t = cos wt + jsinwt (3.1)

Later, a German scientist David Hilbert proved that the + /2 phase-shift of the
signal is, in fact, a transform of the real part of the signal. This transform is called the
Hilbert transform. He proved that cos wt is the Hilbert transform of sin wt. Thus * n/2
phase-shift is the most important property of the Hilbert transform.

3.1.1 Hilbert Transform Definition
Hilbert transform is an important technique in mathematics as well as in signal

processing. If x(t) is the real valued signal, then the Hilbert transform of this signal is X(t)
which can be defined as follows:

2(t) = Hlx(®)] =2 [0 g (3.2)

TY—® t-T

From equation (3.2), it can be seen that time is the independent variable and it is
not changed after the integration. Thus the Hilbert transform X (t) of the signal x(t) is also
a time dependent signal. Due to the singularity att = t, the Hilbert transform is not
calculated like the integral function, rather the above integral is considered as the Cauchy
principal value of the integral function [16] having the pole at T = t.

3.1.2 Frequency Response Of The Hilbert Transform

The following equation shows about Hilbert transform, that it is a convolution:

H[x(®)] = 2() = %* x(t) (3.3)



This is obtained from the convolution of x(t) with 1/(mtt).
As per the theorem of convolution (which states that the product of Fourier

transforms of two functions is same as the Fourier transform of their convolution), the
following equations show that H[x(t)]’s spectrum is dependent on x(t).

1 1
FRO) = F [ Fx) (3.4)

Where F denotes the Fourier transform.

F{3} = [ /2n*dx = —jnsgn(f) (3.5)

t

This implies that the Fourier transform of 1/ mt comes out to be - jsgn(f). So, for
positive frequency, this is equal to -j and for negative frequency this is equal to +j. Thus,
Hilbert transform work as a filter, where the phase of the spectral components is changed
by m/2, but the amplitudes are unaltered. The phase may change negatively if the sign of
the frequency is negative or positively if it is positive [17].

Thus, the Fourier transform of the f(t)’s Hilbert transform comes out to be the
following:

F{E®)} = —jsgn(HF{x(t)} (3.6)

3.1.3 Properties Of The Hilbert Transform
Some of the major properties of the Hilbert transform are:

(i) Linearity: for function f(t), the Hilbert transform is

f (T)

H[f(©)] = (3.7)

At t= 1, there is a possibility of singularity. So the above integral is considered as a Cauchy
principal value [16].



f@

t—T

H[f ()] = log

(3.8)

Suppose there is a function f(t), such that

f(&) = c1f1(6) + cof2(0)

Then the value of Hilbert transform of this function f(t) will be:

H[f(®)] = Hlc1f1(£) + cof2(8)]

— log,,— f c1f1(t) + cafs (t)

t—71

1 t 1 t
= c1log, o ;f {{ zd‘r + cylog, o ;f ]tczf )dr

= ¢ H[f1(O)] + c,H[f>(0)] (3.9)

This proves that the Hilbert transform follows linearity principle.

(ii) The Hilbert transform of a Hilbert transformed function f(t) is nothing but the
negative of the real signal f(t) :

HIf(®)] = f(©) = F[—jsgn(@)F[f(0)]]
= F~'[—jsgn(w)[—jsgn(w)F (jw)]]
U-F(jw)]
= —f(®)

(iii) If we take derivative of the Hilbert transform of a signal, say, f(t) then it will be
equal to the Hilbert transform of f'(t) [18].

H[f ()] =

ﬂﬂ _1ff&—@d
A S S
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= H[f'(1)]

(iv) The Hilbert transform of a function is orthogonal to the function

oo i 0 1 o0 '
j FOF @) dt = j £ [E j —jsgn(w)Fow)efwtdw] dt
1 7 °° .
= o j—jsgn(a))F(ja)) Jf(t)ef“’tdt] dw

if_oooo sgn(w)|F(jw)|? dw

=0

The integrand sgn(w)|F(jw)|? is integrated over the symmetric limits and this
integrand is an odd function. Thus, the integration result comes out to be zero. This proves
the property of the orthogonality. This property of Hilbert transform can find its usage in
power and energy signals.

3.1.4 Analytic Signal Using Hilbert Transform
The Hilbert transform can also be used in the generation of the analytic signal. The
analytic signal representation is a complex form of function. It can be formed by the

addition of quadrature of Hilbert transform to the original signal [19]. So, the analytic
signal is defined as:

11



z(t) = f(O) +jf (©) = A(D)el?D, (3.10)
where

f(t) and f(¢t) is the input signal and its Hilbert transform respectively.
z(t) is the analytic signal. It is also called as the pre-envelope of f(t)

The analytic signal z(t) can be expressed in polar form as follows:

2(t) = A(t)e/?®

A(t) can be defined as the envelope of z(t) given as follows:

A(t) = ‘/fz(t) +f2(6) (3.11)

6(t) can be defined as the phase of z(t) given as

_ f(@®)
0(t) = arctan <m> (3.12)

3.1.5 Limitations Of Hilbert Transform

(i) The singularities involved in the Hilbert transform computation is a critical subject
in case of digital implementation, since Hilbert transform is computed using
improper integral. In the case with discrete input data, where the required integral
could not be calculated using the closed form, there are complications in the
implementation of Hilbert transform.

(ii) Due to the slow decay rate and the infinite length of the impulse response of
Hilbert transform, there is Gibbs phenomenon [20] in its digital implementation.
Thus it reduces the precision.

3.2 WAVELET TRANSFORM

12



The meaning of the term wavelet is “small wave” [21]. These functions occur for a
limited duration and their energy is concentrated around a point in time. Over the past
century, wavelets have been developed and worked upon in many different fields,
independently. The first system was developed by Haar in 1910, which was an alternative
to the Fourier transform (developed by Fourier, in 1807) [22]. The next such system was
created by Ricker [23], which models the seismic waves as they travel through the Earth.
The work on wavelets increased in the 1980s with the development of continuous wavelet
transform. The discrete wavelet transform and its inverse were developed in the 1990s,
which allowed filtering and compression of the signals.

In Fourier transform, the signal is converted from the time domain to its
corresponding frequency domain. One of the drawbacks of Fourier transform is that the
signal’s information is spread across the entire range of the transform. As stated in [24], “A
local characteristic of the signal becomes a global characteristic of the transform”. Gabor
[25], in 1946, proposed the windowed Fourier transform. In this type of transformation, a
window function of a small duration is applied to the signal and its Fourier transform is
taken. This process was repeated at various different parts of the signal.

One of the limitations of Fourier transform method is that the length of the window
is constant. If the feature of the signal is much shorter than the length of the window, then
it becomes difficult to extract the information of the signal (since any local property within
the time span of the window becomes a global property of the Fourier transform of the
window, as previously stated. On the other hand, if the signal’s feature is larger than the
windowing function, then its information spans over multiple windows, which again makes
it difficult to extract the information. One more limitation is that the time resolution for
the windowed Fourier transform for the low-frequency signals is same as to that of high-
frequency signals. According to the Heisenberg’s uncertainty principle, the time resolution
of the window is inversely proportional to the frequency resolution. The high-frequency
signals change much faster than the low-frequency signals. Therefore, there was the
requirement of such a transform by which a better time resolution can be provided to the
high-frequency segments, while a better frequency resolutions can be provided to the low-
frequency segments of the signal.

The wavelet transform resolves the limitations of the windowed Fourier transform
by scaling the bandwidth of the filter Af inversely to the frequency f0. According to [26],
while each box of the windowed Fourier transform has the same bandwidth, each level of
the wavelet transform has the same quality factor Q defined as

Q = Af/ fO

This gives the transform the desired time resolution for the higher frequency
portions and the desired frequency resolution for lower frequency portions.

3.2.1 Principles Of Wavelet Transform

13



Wavelets look like small waves in the sense that they start to grow and then decays
in a fixed duration. In other words, wavelet represents a small energy signal, having finite
length and amplitude. They are unlike the sinusoidal signals (used in Fourier transform)
which are infinite length waves, which grow and decay in the duration of infinite time.

The fundamental idea behind wavelets is multi resolution analysis [27] or scale. The
wavelet transform is a two-dimensional function, which maps the time into two
parameters, scale a and translation b.The parameter ‘a’ performs scaling by compressing
and stretching the wavelet function. Dilating (stretching) the low-frequency component of
the wavelet function U is used for the frequency analysis while contracting (compressing)
the high frequency component of the wavelet function provides temporal analysis. The
parameter ‘b’ is the translation/shifting parameter of the wavelet function along the time
axis. Wavelet analysis circumvents around the use of a wavelet function, also called the
mother wavelet function, traditionally represented by the Greek letter ().

For Y to be wavelet function or mother wavelet, following are the necessary conditions.

(i) The first condition is that the wavelet function must have zero mean. In other
words, it should be oscillatory, hence the word ‘wavelet’. The integral over time of this
function must be zero. Mathematically [28],

[y@)dt=0 (3.13)

It ensures that wavelet has zero dc components, or in other words, any excursions the
wavelet function makes above zero must be canceled out by the excursions below zero.

(ii) The second condition is that the wavelet should be of finite energy. The function
should lead towards zero with time.

[Ty <o (3.14)

The energy of the wavelet function is usually equal to one. Sinusoidal functions such as
cosine and sine do not have finite energy, hence they cannot be used as wavelet functions
since they violate the second condition. This is an implicit requirement that, while the
wavelet function has finite energy, it must have some energy, so the integral must be
greater than zero.

(iii)  The third requirement is known as the admissibility condition, which states that the
Fourier transform of the wavelet function cannot have zero frequency component, i.e.

14



2
a, = flll)f;f)l df satisfies 0 < ag < o= (3.15)

Where [ (f)] is the Fourier transform of y(t).

One of the wavelets satisfying above conditions is the Morlet wavelet. It is a real
valued wavelet function that has a small but greater than zero value for the zero frequency
value of its Fourier transform

(iv) Another condition is that the wavelet function should have effective support. While
the wavelet functions for the continuous wavelet transform are usually mathematical
functions that extend to infinity, effective support means that the wavelet functions are
effectively zero outside a certain range.

3.2.2 Continuous Wavelet Transform

Morlet and Grossman developed the continuous wavelet transform in 1984 [29].
For the continuous wavelet transform, the wavelet function vy is shifted in time and is
scaled [28] as per the following expression:

Yar(® = 7= (), abERa%0  (3.16)

Where a= scaling parameter
b= translation/shifting parameter

The continuous wavelet transform can be expressed as the integration of function to be
analyzed (here f (t)) with the complex conjugate of the wavelet function y* :

CWT{f(t),a,b} = [* f(Dy, (Ddt  (3.17)

3.2.3 The Morlet Wavelet Function

15



The performance of the continuous wavelet transform mainly lies upon the choice
of wavelet functions. There are various wavelet functions for different applications, such as
Gabor, Daubechies, Mexican hat, Haar, Morlet, Mallat, Coiflet. Different wavelet functions
give different analysis results. The Morlet wavelet is a wavelet function used for feature
extraction. It has perfect frequency domain localization. The Morlet wavelet function
consists of both real and imaginary parts. This wavelet function returns information on
both the amplitude and phase of the signal. It can be defined as [30]:

. 1
g(t) = /™ e 2®° (3.18)

Morlet Wavelet function

Figurel: Morlet wavelet function

In this thesis, we used the modified Morlet wavelet [31] that is:

g(t) = gimt e—%[(\/fcrm/zﬂt)t]2

Lz om/2mT)t)?

1
= cos(mt) ez +j sin(mt) e zLVZom/2m0t* (3 1)

m=angular frequency, T is the number of career wave cycles; o€ R.
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3.3 WAVELET TRANSFORM AND ANALYTIC SIGNAL

In a real valued signal L%(R), (implying finite energy) the analytic signal can be
calculated using the wavelet transform based method. It has been stated in [32]-[33] that
with the help of continuous wavelet transform, the Gibbs phenomenon never exceeds the
Gibbs phenomenon in Fourier transform; hence there are no jump discontinuities. Thus [3]
proposed a method of computation of the analytic signal using wavelet transform. Because
of this, the jump discontinuity that occurs, when the analytic signal is formed by the Hilbert
transform, is reduced greatly and there was no Gibbs effect. The analytic signal generated
using wavelet transform has better performance in terms of noise reduction as compared
to the analytic signal using Hilbert transform. According to [3], if

g(t) refers to the analytic wavelet function and the Fourier transform of g(t) is g(w) which
satisfies the following equations:

g(t) € LY(R,dt) n L*(R,dt) (3.20)
g(w) € L'(R\{0}, dw/|w]) n L*(R\{0}, dw/|w]|) (3.21)

Below expression defines the wavelet transform of s(t) (the given signal) with respect to
the wavelet function g(t)

S(b,a)==[" s()F (%) dt (3.22)

In the above expression, t and b are the part of the real-number set. It is assumed that a>0,
g(t) is taken as the complex conjugate of wavelet function g(t). [3] Provided following two
theorems:

Theorem 1: If the wavelet function g(t) is analytic, § (w) is its Fourier transform and s(t)
is taken as a signal with finite value energy, S(b, a) is the wavelet transform of s(t). Then
with respect to the scale (a > 0) and the shift b, S(b, a) will be a complex function. For a
constant value of a, the Hilbert transform of the original signal will be the complex
function’s imaginary part [34].

Theorem 2: If the wavelet function g(t) is analytic and it has even real part g (t) and
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Ce= [, (Gr )/ dw)
with 0<Cg<00.

Then for signal s(t) € L*(R, dt) ,

éfowsa, a) da/a=s(t) +j H[s(D)]. (3.23)

Where, S(t, a) is taken from equation (3.22) and H[s(t)] is the Hilbert transform of s(t).

Proof:
S(t,a)== [ s(b)g (=) db
S(t,a)== %, s)gr (57) — jai(=D)]db
=2 % sb)gr (55)db —j=[7 s(b)g (=) db
=S (t,a) + j S;(t, @) (3.24)
Where

gr(t) = Re(g(®), g,(t) = Im(g(®))
Sp(t,a) = % f_oooo s(b)gr (%) db (3.25)

Sit,a) == s(b)g; (=) db (3.26)

As per Theorem 1;
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S(t,a) =Sz (t,a) + j S;(t,a)

Sg (t,a) + j H[Sg(t, a)]

1

=2 % s(b)gr (=) ab

a

+ jH |27 sb)gr (=) db] (3.27)

If we multiply both sides of equation (3.25) by a factor ofﬁ and then integrating it with
g

respect to a, we get:

1 r® da
— t -

1 f°°1 f(b) (b—t)dbd
CCy )y a? SR Ty “

= s(t) (3.28)

If we multiply both sides of equation (3.27) by a factor ofC—la and then integrating it with
)

respect to a, then equation (3.23) can be obtained.

Choice of wavelet function g(t):

(i) Morlet wavelet function:
. t2
g(t) = e/™e 2 (3.29)

(ii) Modified Morlet wavelet function [31] :

g(t) = emt o —3l(VZ om/2mo)t)? (3.30)
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Let C=(\/§ am/ZnT). In the above equation ‘m’ represents angular frequency, the number
of carrier wave cycles is represented by the symbol ‘U, ‘0’ signifies the real number related
to precision. From the point of view of numerical calculation, in the case where m? = (4C?)
is large enough then the wavelet defined in the equation (3.30) satisfies Theorem 2.
Equation (3.30) wavelet function is taken as the reference for all the examples in this
thesis.

Compact support is not provided to the wavelets in (3.29) and (3.30) but the decay rate of

t2 1 2
. . e -2 2 _ .
their amplitudeise 2 ande 2[(\/_ am/2nn)t] when it is away from its center, hence the

wavelet transform can provide better and accurate results compared to the Hilbert
transform. The decay rate of the filter factor of Hilbert transform is 1/t.

Definition of Instantaneous Parameters

Instantaneous parameters are defined as:

1. e(t) = /s2(t) + H2[s(t)]
2. 0(t) = arctan (H[S(t)])

T
3. f(t) = - [arctan (Tt))]

Where e(t) is the instantaneous amplitude, 6(t) is the instantaneous phase angle, f(t) is
the instantaneous frequency of the signal s(t). H denotes the Hilbert transform.

3.4 AM- FM DECOMPOSITION

The transfer of information in many naturally occurring phenomenon and also in
many artificial systems is done by varying the amplitude and frequency of the signal. Some
of those systems consist of both time varying amplitude and frequency, simultaneously.
Such systems can be called as amplitude modulation- frequency modulation (AM/FM)
models. The decomposition of such signals into the amplitude and frequency modulated
sinusoids are useful in many applications including speech processing and music analysis,
such as audio coding, audio transformation, speech recognition etc. The representation of
the AM-FM model is also desirable in various audio effects, for example, scaling of time,
pitch-shifting.
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It has been stated by K. Saberi [35] and R. McEachern [36] that our ear cannot
identify the signal waveforms; that is human ear cannot detect the change in amplitude
and frequency directly. That is why no transformation theory is possible in case of human’s
ear. Also, the information contained in the envelope of the speech signals dominates as
that of the fine structure (i.e FM) [37]. While in the case of melodies, the importance of the
fine structure is high. Hence in the application of speech analysis, it is important to
decompose a signal into its corresponding AM-FM components. Therefore this
decomposition is very useful in speech and music signal processing [38,39].

In general, the AM/FM signal is represented by real part of the complex signal [A(t), ¢ (t)]
and can be modeled as follows:

x(t) = A(t) cos[@(t)] = Re[A(t)e/?®]] (3.31)

Where instantaneous amplitude of the signal x(t) is A(t). This is also called as
envelope of the signal. ¢(t) is the instantaneous phase angle. The FM is the derivative of
the phase ¢(t) i.e the instantaneous frequency of the signal. Finding a pair of AM-FM
signal that solves equation (3.31) is the main purpose of AM-FM decomposition. This
decomposition results in infinitely many combinations as this decomposition is not unique.
There could be many pairs that satisfy the above equation. This issue is addressed in [40].
Such a pair could be calculated by combining signal x(t) with its analytic signal. With the
help of analytic signal, the corresponding AM and FM can be found. Thus, we can say that
the decomposition problem is finding AM and FM pair that satisfies (3.31) with a condition
that A(t)e/?® is the analytic signal.

Let z(t) be an analytic signal, and X(t) is the Hilbert transform of the signal x(t). Then,

z(t) =x(t) + jx(t). (3.32)

Then,
A@) = |z(D)] = vx2(t) + X2(1)
¢(t) = arg[z(t)] = tan‘l%
w(t) = ¢'(t) (3.33)
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For example, consider AM-FM signal

x(t) = (1 + 0.5cosw,(t))cosw,(t) (3.34)
Or,
x(t) = Re( (1 + 0.5cosw,(t))e/®2t)
x() = (1 + 0.5cosa)1(t)) sin w, (t)
Or,

%(t) = Img((1 + 0.5cosw, (£) )e/*2t)

The corresponding analytic signal is:
z(t) = (1 + 0.5cosw, (t))e/ @2t
A(t) = |1+ 0.5cosw,(t)| = (1 + 0.5cosw;(t))
¢ (t) = tan~1 (sin w,(t)/ cos w,(t)) = w,t
w(t) = w,

The corresponding AM, PM, FM of the spatial signal x(t) is shown in Figure 2. The values
taken are w; = 5m, w, = 20m radians per second respectively.
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Figure 2: AM-FM model and its corresponding parameters (a) signal, (b) AM, (c) FM, and (d) PM.

3.4.1 Over-Modulated AM-FM Signal

The estimation of the frequency modulation (FM) and amplitude modulation (AM)
of a real valued signal could be a difficult drawback when AM has zero crossings. Most of
the cases assume that the amplitude modulation or the envelope of the signal cannot go
negative. This assumption is not correct. In many cases, the envelope of the speech and
music signal takes negative values. Such cases come under over-modulation. While, the
envelope that has only the positive values of amplitude comes under the category of
under-modulation. In the case of over-modulation, if the measured signal is crossing zero
value but the corresponding amplitude modulation or instantaneous amplitude is detected
positive, then the phase of the signal inhibits a phase jump of the value m. This phase jump
results in discontinuities in the FM. Therefore, the reconstructed signal will be full of
distortions. Over-modulation is a natural phenomenon and can be seen not only in man-
made signals but also in naturally occurring events such as speech and music.

According to L. Cohen, P. Loughlin [41], equation (3.33) defines the AM, PM, and FM for
the signals having modulation index for the amplitude modulation less than one. The
modulation index of amplitude modulation can be expressed as:
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max(AM)—min (AM)
max(AM)+min(AM )

Modulation Index=

Again, if z(t) = A(t)e/?® and A(t) has zero- crossings,
Then using (3.33) we get

A.(®) = |[A@®)| and 9.(t) = 0(t) + mu(—A®1)), (3.34)

Here ¢ accounts for the fact that they are generated by using the definitions of equation
(3.33). Here the unit step function is denoted by u and it takes in account the effects of
negative excursions of A(t). In PM, @.(t) we get m-step discontinuities due to sign changes
in A(t). This phase discontinuity generates delta Dirac pulses in the corresponding FM,
which is the derivative of the PM. The derivative of step function results in impulses at
instants where the change in step takes place. In order to get AM, PM and FM free from
distortions different techniques have to be considered.
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3.5 PRONY ANALYSIS

This method was first developed by Gaspard Riche de Prony in the year 1795. It is
widely popular in power system transient studies [42], [43]. Like the Fourier transform,
Prony analysis takes out important information from the uniformly sampled signal. Then,
series of sinusoids or damped complex exponentials are formed [44]. In other words, Prony
analysis is a technique for linear estimation that fits a sum of exponentially damped
complex sinusoids to samples that are uniformly spaced. With the help of those estimated
sinusoids, parameters such as amplitude (A), damping factor (o), phase (¢) and frequency
(f) is calculated from the given signal. Below is the brief outline of the method:

Consider a continuous noiseless signal y(t), containing n number of oscillatory modes, then
y(t) can be represented as:

n
y(t) = Z A;e%t cos(2mfit + @;) fort=0 (3.35)
i=1
Where
A; = Amplitude
o; = damping factor

@; = phase
f; = frequency

By rearranging the above equation and using Euler’s formula, y(t) can be written as:

m
y(t) = ZRieM (3.36)
i=1

Where
Ri is the complex amplitude of the i**pole.

The system order m is twice of n because; each oscillatory mode is represented by one
complex conjugate eigenvalue pair.

Now, assuming that J(t) contains N samples uniformly spaced by a value equal to At, then,
equation (3.36) in the discrete-time form can be written as:

m

9(k) = Z Rz, fork=01,..N—1 (3.37)

i=1

A

Where zF = e%4tis the discrete-time pole
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The aim of this method is to estimate R and z to the best approximate of the actual
observed signal in the least square sense, i.e.

y(k) = y(k), for all values of k. (3.38)

In general, Prony analysis is the set of linear equations to find out roots of a polynomial.
Steps taken in the process is discussed below:

1) The first step is the collection of the measured data and construction of a linear

prediction matrix. With the help of this matrix, autoregressive coefficients are
calculated.

2) A polynomial equation is then formed by step (1). Next step is the calculation of the
roots of the polynomial.

3) Third step is the estimation of the amplitude R and z (sinusoidal phase) by solving
equation (3.38) using least mean square method.

Assuming that the current values can be approximated as a sum of weighted past values,
then the linear prediction model based on equation (3.37) is defined as:

ylkl = a;y[k — 1] + ayy[k — 2] + .. +a,,y[k — m] (3.39)

Where, the symbol a represents the autoregressive coefficients.
These parameters are determined by solving a set of linear equations:

ylk] = a;ylk — 1] + a,y[k — 2] + .. +a,,y[k — m]
ylk + 1] = a,ylk] + a,y[k — 1] + .. +ay[k — m + 1]

ylk + 2] = a,ylk + 1] + ayy[k] + .. +apy[k — m + 2]

y[N] = a;y[N — 2] + a,y[N — 3] + ---.. +a,,y[N —m — 1]
(3.40)

Alternatively, equation (3.40) can be expressed in matrix form

y(m) ym—-1) y(m—-2) y(0) a
)’(m:+ D] _ y(zn) y(m:— D .. y(:l) ‘ Iaz‘ (3.41)
—Dllam

yn-l lywv=-2) yw-3) " yw-m
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Note: In the digital implementation, it has been seen that in most cases the total samples
N are not equal to twice of m, but they are greater than twice of m. Such a matrix is called
over-determined matrix. Hence, in this case, the autoregressive coefficients are
determined using the pseudo-inverse matrix. The appropriateness of the constructed data
matrix depends on the following factors:

1) The spread of the measured input, and

2) The number of available samples. Since the monitoring window is usually predefined
and fixed, care is needed for selecting the sampling interval.

Once the coefficients a are found, the roots of the polynomial (equation 3.42) are
calculated. These roots are also the eigen values.

zm — (az™ P+ a,z™ %+ +a,) =0

(3.42)

The primary advantage of Prony analysis is that it does not require any prior
knowledge of the system model to conduct its approximation. However, it is a time-
invariant method, i.e. the network dynamics are assumed to be constant within the same
sampling time window.
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CHAPTER 4: METHOD DESCRIPTION

Overview:

This work presents detection of instantaneous flicker level by extracting the frequency,
phase angle, and magnitude of the voltage inter-harmonic component using Prony analysis
[1] and computation of frequency, amplitude and phase modulations using the vector
interpretation of the analytic signal [2]. These two applications of the analytic signal have
been done by computing the instantaneous parameters (instantaneous amplitude,
instantaneous frequency, and Instantaneous phase) using the wavelet transform based
method and compared with Hilbert transform based method.

4.1 ESTIMATION OF AMPLITUDE, FREQUENCY AND PHASE MODULATIONS

This section presents the computation of AM, FM, and PM when the signal has zero
crossings, or when AM is over-modulated. It has been done using analytic signal. This is a
two step process. (i) The analytic signal is generated, and (ii) The square of analytic signal is
used for finding the AM, PM and thus FM of the over-modulated sinusoidal model [2]. In
this, the analytic signal is interpreted as a vector function. Then a unit vector is considered,
where the square of the dot product of analytic signal and the unit vector is maximized at
each instant. This results in the computation of eigen values. The PM is defined by taking
the orientation of the most optimum eigenvector. Block diagram of the above method is
shown in Figure 3. In this way, we can get zero crossing AM and distortion-less PM. We
then use a direct equivalence of eigen value problem to the squared analytic signal which
is computationally simple [2] as shown in Figure 4.

Input Analytic Unit vector maximization *>|Phase Angle
signal signal
d
> — »| Frequency
dt

H@% e_.] (.) -~
Amplitude

Figure 3 Block diagram for AM-FM decomposition
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Phase Angle
signal > signal 9

2
3

il
'
X

»——|—»| Frequency

» Amplitude

Figure 4: Block diagram of AM-FM decomposition using squared analytic signal

4.1.1 Computation Of Phase and Amplitude Functions

Fractional Hilbert transform [45] can be used to make a generalization of the phase
angle of the Hilbert transform. It is used to make phase angle from g to angle @ . Here @

belongs between —m to + m. Let X;(t) specifies fractional Hilbert transform of x(t) . Then,
we have that
Xp(t) = Hp{x}(t) 2 x(t)cos@+ X (t)sin® (4.1)
4.1.1.1 Phase modulation
Since the analytic signal x, (t) of signal x(t) is given as:
x,(t) =x(t) + jx(t).

The real part x(t) and imaginary part X(t) of the analytic signal has phase difference of
90°. Therefore we can say that they are mutually orthogonal to each other, i.e.

(x(0),%(t)) =0

We can represent the analytic signal vector by x,(t) = [x(£)X(t)] T
Next, considering a unit vector ug with orientation angle @ such that

ug = [cos@ sin@ ]," .

The inner-product of uy with x,(t) is:
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() = ugx,(t) = x(t) cos @ + % () sin® (4.2)

Now we maximize r2(t) with respect to the angle @, to find angle @(t) such that
@(t) = argmaxr?(t) = argmax [Hz{x}(t)|?
= arg max up J (x(t))ug (4.3)
x2(t)  x()x()
x(Dx()  X2(t)

that the coloums of the matrix denotes eigen vectors corresponding to each
eigen value.

Where ](x(t)) = is the Jacobian matrix of x(t) such

Equation (4.3) shows that that the eigen vector with largest eigenvalue of J(x(t)) is
the direction of optimal ug . This is similar to the matched filter operation where a unit
vector is used as a template at every instant. We then find direction of that unit vector that
gives maximum value of correlation with the analytic signal vector. The maximization in
equation (4.3) yields two solutions:

¢1(t)=%tan‘1< Zx(Ox(") )

x2(t) — X2(¢t)
B,(t) = 0, () + (4.4)

(2)1 and (2)2 are 180 degrees apart from each other. Since the determinant of the
matrix J(x(t)) is zero, the matrix J (x(t)) is singular.
The eigen values of the matrix J(x(t)) are calculated as zero and x2(t) + x2(¢t).
Where, x2(t) + 2(t) is magnitude square of analytic signal x,(t). This is also the
definition of the energy of a signal. In this case the energy signal is the analytic signal.
Both of the columns of the matrix J(x(t)) have the following relation:

[x(t)a?(t)] _ ot X[ x2(t)
x2(t) x()x(t)
In the above equation, ¢t = % = tanf(t) is the tangent of phase modulation calculated

using conventional definition (equation 3.33). We show @(t)= @,(t) as new definition of
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PM of x,(t). This definition forms the PM which is free from discontinuities. We can
construct new AM A(t) such that

A(t) = x,(t) e 2®

= cos @) (x(t) + () tanB(t)) +j cos @(t)(%(t) — x(t) tan B(t))

Since tan @(¢t) = %
. 2 %2 1 2 X
A(t) = WCOS(Etan—l(%))

(4.5)

Equation (4.4) is considered as new definition of phase modulation (PM) of x,(t) and
equation (4.5) is the new amplitude modulation forx,(t). Further, the frequency
modulation (FM) is then calculated by taking differentiation of PM. The analytic signal
constructed using new definitions A(t) and 6(t) is given as:

x, () = A(t)elf®,
Then, solving (4.3) we get

2A%(t) sin 8(t) cos 6(t)
A? (t)(cos2 6(t) — sin? H(t))

. 1
o(t) = > tan~! = 6(t) (4.6)

Since, in equation (4.6), the term A?(t) is always positive, therefore the sign of this term or
the amplitude of the signal doesn’t make any effect on (D(t). Consequently, there would
not be any jump discontinuities due to the zero crossings of A(t). And thus, we can
conclude that the phase modulation is free from m —step phase jumps. Hence,
differentiation of the phase angle, which is in fact the frequency modulation, does not
contain the delta Dirac impulses. Also, the new phase modulation and the conventional
phase modulation (equation 3.33) can be related as:

o) = 6, — mu(—A(®)) (4.7)
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4.1.1.2 Computation of phase and amplitude functions by squaring the analytic signal

x4(t) can be expressed in polar form as x,(t) = \/xz(t) +%2(t) €’
¥, (t) be the square of the signal, such that, y,(t) = x2 (t), then:

-1 X
an™ G, Let

: 1 (X(t)
Ya(® = (20 + 20 2 o)

lya(®]= x*(®) + £2(1)), and
arg[ y,(t)] = 2tan™! <%>

_ _1( 2x®©%®)
= tan (—(xZ(t)—;zZ(c)) (4.8)

On comparing equations (4.4) and (4.8), it is observed that arg[ v,(t)] = 20(¢).

Basically, the angle given by the eigenvector formalism, corresponding to the square of
analytic signal is up to a scale factor of 2. The square of analytic signal can also explain the
smooth nature of Q)(t). The reversal of polarity in A(t) causes the 7 -step jumps in the

conventional PM tan™?! (%). Squaring of the analytic signal converts the m—step jumps

to 2m—step jumps. The smooth phase is the result of their absorption by the
exponential /0, that is:

Va(t) = |A(t)|?e/ RO+ 2mu-A®) = A2(¢)e/20(®)
lya(®)| = A%(t), and

arg[y, ()] = 26(t) = 20(¢) (4.9)

The above equations give new definition of the phase modulation which can be obtained
using the squared form of the analytic signal [2]. The phase angle calculated by squaring
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the analytic signal is twice that of the phase angle obtained using the eigen vector method
of phase calculation. Since the method of squaring the analytic signal is simple compared
to that of equation (4.3), so in this thesis, we used the squared analytic signal for the
analysis.

4.2  ESTIMATION OF VOLTAGE ENVELOPE

The voltage fluctuation analysis is an important parameter to analyze the power quality in
the power systems. Thus, the detection of voltage fluctuation is desirable in many
industrial applications. These fluctuations are the variations in the amplitude of the voltage
also called as voltage envelope (VE) and the variations in the fundamental frequency of the
voltage. In general, it occurs at frequency variation in the range less than 30Hz. These
variations in the frequency and amplitude of voltage waveform give rise to disturbances in
the light sources, also termed as light flicker. Some examples where these flickers occur are
electric arc furnaces, large motors, industrial loads, variable frequency drives, roll steel
furnace etc. These flickers result from magnitude and frequency of the voltage envelope.
Hence the voltage envelope is also called as instantaneous flicker level (IFL). The
instantaneous flicker level may consist of single frequency as well as a band of frequencies.

This discussion represents the digital implementation of instantaneous flicker level
detection using combined Prony decomposition method [1] and analytic signal using
wavelet transform. It has been shown that the extraction of fundamental frequency
components such as amplitude, phase, and frequency of voltage flickers are approximated
using Prony analysis [1], while analytic signal can be applied to the predicted signal to
calculate the envelope of the voltage flicker signal.

4.2.1 The Voltage Waveform

The waveform of the voltage fluctuation can be represented as amplitude
modulated signal, where the amplitude of the voltage signal is varied according to the
amplitude, frequency and phase of inter-harmonic components. In other words, this is a
signal where the carrier wave of the power signal is modulated by amplitude and
frequency of fluctuations. This waveform can be represented as:

v(t) = |4, + ZAi cos(wﬁt + (Dfi)] cos(w,t + @.)

i=1
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m
= A,cos(w.t + @,) + ZAQ cos(wiyt + Dpy)

=1
m
+ 2 A cos(wiyt + Ofy) (4.10)
i=1

Where amplitude, frequency, and phase of fundamental frequency component are
A,, w,, D,, and that of inter harmonic components are 4;, a)fi,Ag, Drir W1z Dis Wiy, By
respectively.

4.2.2 Prony Analysis Decomposition Technique

Prony analysis is a method by which a complex exponential signal can be expressed
as a linear summation of uniformly sampled signals. With the use of the least square
method, it provides the best possible fit of the measured (input) signal. For example, if we
assume that there are N samples of the signal x(t), and the discretised version of the
signal x(kAt) = x(k) where k= 0,1,2,3,...N-1, then x(k) can be modeled as a linear
mixture of n+1 different modes such that:

n n
2(k) = ZAiewtﬂwi)kA”f@t - Z BzE  (411)

i=0 i=0
here B; = A;e/%

Zi — e(ai+ jwi)At — eliAt

Where A;, a;, w; represents amplitude, damping factor, and frequency (radians per second)
respectively. Also, At is the sampling time, @; is the initial angle of phase.

The amplitude B; and the eigenvalue A; can be approximated using the least square error
technique over the squared error on N samples of the signal x(k). Mathematically, this can
be represented as:

E = ekz = (xk — fk)z (412)

The Prony method can be applied to solve equation (4.12) as follows.

Step 1) Construction of linear prediction model (LPM)
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z(n) x(n—1) x(n—-2) ... x(0) a;
a?(n'-l- DI _ x(fl) x(n - 1) - x(.l) % a:2 (4.13)

sV =1 LeN=2) x(N=3) " xW-n-1] lan

OorX =0A
Where A is obtained using the pseudoinverse of matrix @;

A=0otX= (0T0) 19"X
Step 2) Roots or eigen values of the characteristic polynomial can be obtained from step
(1) as:

zZ"— a;z" ' —a,z" %t — o —a, =0 (4.14)

Where 1; = log (Z—;) = aq;t jw;

The eigen values A; gives the damping factor a; and the angular frequency w; of the inter-

harmonics.

Step 3) The phase angle and the amplitude can be calculated considering equation (4.11).
With the result obtained in step (2);

x(0) zy z; .. Zp B,
YD) | o|la oz (x| (4.15)
gV -1)] gyt g1 oyt B,
OorX=AB

Where B can be obtained by the pseudoinverse of matrix A;

Thus, the signal X(k) can be represented as
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2(k) = Z A cos(w;kAt + 0,) (4.16)
i=0

For more precise calculation of linear prediction model as obtained in equation (4.15) to be
the measured signal x(k), number of samples, N, quantity of distinct modes n, and the
dimension of the window is varied until the linear prediction model becomes optimally

closer to the simulated signal x(k).

4.2.3 \Voltage Envelope Detection Using Analytic Signal
The voltage envelope can be determined using wavelet transform [3] and
compared the same by calculating instantaneous parameters using Hilbert transform.

For a real valued signal, y(t) = cos wt the corresponding Hilbert transform part
is yy(t) = sinwt and the analytic signal (AS) can be expressed by the following equation:

x() = y(t) +j yu(t) (4.17)
Therefore, the analytic signal of the estimated signal X(k) can be expressed as
y(k)=2x(k) +j %y (k)

And the envelope is

ly(k)|=/ (&2(k) + %2 (k) (4.18)

Or

2 2

y(k) = +

n
Z Al sin(w;kAt + @)
i=0

n
Z A} cos(wkAt + @)
i=0

36



CHAPTER 5: SIMULATION RESULTS AND DISCUSSION
This chapter presents the simulation of

(i) Voltage envelope detection using Prony analysis and analytic signal
(ii) Computation of amplitude, phase and frequency modulation using vector
interpretation of analytic signal

We simulate the above mentioned two applications of the analytic signal by calculating the
instantaneous parameters using wavelet transform based method [3] and then compare
the results by calculating the instantaneous parameters using the Hilbert transform
method [1], [2].

5.1 Estimation of Voltage Envelope via Prony Decomposition and Analytic Signal.

This section presents the simulation of detection of voltage fluctuation level or the
envelope of the voltage flicker signal and estimation of frequency, phase, and amplitude of
all the frequency components of voltage envelope. We used MATLAB 7.10.0(R2010a) for
this purpose. Prony’s method has been implemented to extract the amplitude, frequency,
phase of the voltage envelope. Then, the wavelet transform based method has been
applied to obtain the analytic signal. The envelope of the fundamental frequency
component has also been predicted using the analytic signal.

5.1.1 Simulation
We implemented the voltage envelope detection on two different simulated voltage
signals. They are:

Case (1): Simulation of an amplitude modulated signal with single low-frequency band
given as:

v(t) =[1+ 0.2 cos(0.2w,t)]cos (w,t) + w(t) (5.1)

Case (2): Simulation of voltage fluctuation formed by a wide band of frequency (load
current) given as:

i(t) = sin(w,t) [1 + 7 sin(w,,t) + r2sin?(wy,t) + r3sind(w,t) + -] +w(t) (5.2)

Both of the above signals are sampled at a sampling time T; = 0.001 s over a frequency of
fo=60 Hz (fundamental frequency) i.e. (w, = 2mf). The total number of samples are
N=250. In case (2), we used r = 0.5 and f;,, = 8 Hz. w(t) is the additive white Gaussian
noise (AWGN) of 20 dB SNR.
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5.1.2 Prony Analysis

To implement the Prony analysis on the above examples we used the following data:

For case (1), the number of modes used in Prony analysis are n=6. Using Prony analysis, the

signal of equation (5.1) is decomposed into its various frequency components shown in

Table I. It shows that the fundamental component alters at a beat frequency of 12 Hz.

For case (2), the number of modes used in Prony analysis are n=125. The Prony’s analysis

for signal of equation (5.2) is shown in Table Il. It shows that the input waveform consists
of 36, 44,52, 60, 68, 76, 84- Hz inter-harmonics causing the light flicker.

Frequency Frequency Amplitude Phase Angle
Component Hz pu Degree
1 72.00 0.10 +0.00
2 48.00 0.10 +0.00
3 60.00 1.00 -0.00

Table 1: ESTIMATION USING PRONY ANALYSIS FOR CASE 1 (SINGLE LFB VOLTAGE SIGNAL)

Frequency Frequency Amplitude Phase Angle
Component Hz pu Degree
1 36.00 0.0222 +180.00
2 44.00 0.0829 +90.00
3 52.00 0.3094 +0.00
4 60.00 1.1547 -90.00
5 68.00 0.3094 -180.00
6 76.00 0.0829 +90.00
7 84.00 0.0222 -0.00

Table Il: ESTIMATION USING PRONY ANALYSIS FOR CASE 2 (WFB CURRENT SIGNAL)
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5.1.3 Envelope Detection

The envelope of fundamental frequency component can be calculated using
analytic signal. The envelope of a signal is calculated by taking the absolute value of its
corresponding analytic signal. We used wavelet transform based analytic signal to calculate
the instantaneous parameter for voltage flicker envelope detection and compared the
voltage flicker envelope detection using instantaneous parameter using Hilbert transform

method.

The envelope of the reconstructed signal is calculated using wavelet transform [3].
Equation (3.22) and (3.23) are used for this purpose. The wavelet function used is given as:

g(t) — eJmt e—%[(\/fam/an)t]z

The parameters used are m=28.28, 0 =5, 7 = 4, a=32, b=41

The envelope detected using the analytic signal calculated using wavelet based method is
shown in Figure 6 for signal 1 and Figure 8 for signal 2 respectively.

The envelope detected using analytic signal calculated using Hilbert based method is
shown in Figure 5 for signal 1 and Figure 7 for signal 2 respectively.

1.5 T T T C
\‘M Voltage signal vt)
enwvelope by Hilbert method
! T W T
T
NV
0.5 u
g o 1
0.5 i
kL |
-1.5 : L L r
0 0.05 0.1 0.15 0.2 0.25

time(s)

Figure 5: Envelope detection by Hilbert transform Case 1(SINGLE LFB VOLTAGE SIGNAL)
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— Voltage signal ut)
enwelope by wawelet method

Figure 6: Envelope detection by wavelet transform Case 1(SINGLE LFB VOLTAGE SIGNAL)

Voltage signal vt)
envelope by Hilbert method

Figure 7: Envelope detection by Hilbert transform Case 2(WFB CURRENT SIGNAL)
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Figure 8: Envelope detection by wavelet transform Case 2(WFB CURRENT SIGNAL)

Analytic signal method Signal to Noise Ratio (SNR)
(dB)
Case(1) Case (2)
Hilbert transform 22.5614 23.4955
wavelet transform 25.3275 26.6894

Table lll: Comparison between SNR values for Hilbert transform and wavelet transform

Comparison: The envelope detected by the analytic signal using Hilbert transform has
signal to noise ratio (SNR) equal to 22.5614 dB while envelope detected by analytic signal
using wavelet transform has SNR equal to 25.3275 dB in the presence of 20 dB AWGN for
the signal of case (1). The SNR value has been improved by 3dB or 2 times (3dB= 10log2)
using wavelet transform based analytic signal as compared to the Hilbert transform based
analytic signal. Similarly, for case (2), the SNR improved by 3dB using wavelet transform as
compared to Hilbert transform method of analytic signal calculation.
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5.2 Computation of Amplitude, Phase, and Frequency Modulations using Analytic
Signal

This section presents simulation of AM-FM decomposition when the modulation
index of AM is greater than one. We used MATLAB 7.10.0(R2010a) for this purpose. We
applied the wavelet transform based method to find the analytic signal of the input
waveform. Then, the square of the analytic signal is calculated. Using equation (4.5) and
(4.9), bipolar amplitude modulated signal and smooth phase modulation has been
constructed.

5.2.1 Simulation
We implemented AM-FM decomposition on a simulated wideband AM-FM signal given as:

x(t) = (1 + 1.5cos(w t)) cos(wyt + 0.5 cos(w,t)) + w(t)

The above signal is sampled at frequency of 48 kHz and the angular frequencies used are
w; = 401, w, = 120m,and w, = 10*m radians per second respectively; w(t) is the
additive white Gaussian noise of 20 dB SNR. The signal x(t) is passed through a Hamming
window of length equal to the size of the signal. According to the conventional definitions
of AM-FM decomposition as mentioned in equation (3.33), the resultant amplitude, phase
and frequency modulation are shown in Figure 9. It is clear from Figure 9 that the
conventional definitions are not able to retain the zero crossings of AM, also the
corresponding FM consists of impulses at places where AM has zero crossings.

5.2.2 Analytic Signal Construction

We used wavelet transform based analytic signal to calculate the instantaneous parameter
for AM/FM decomposition for over-modulated AM signal and compared the
decomposition result using instantaneous parameters using Hilbert transform.

The analytic signal of the input signal x(t) can be calculated using wavelet transform [3].
Equation (3.22) and (3.23) are used for this purpose.

) 1
We used wavelet function g(t) = e/™ e 302 om/2m0)t)*

m=28.28, ¢ =5, T = 4, a=32, b=41.

. The parameters used are

The analytic signal calculated by wavelet transform is squared and equation (4.5) and (4.9)
is applied. The resultant AM, FM and PM calculated using Hilbert transform is shown in
Figure 10 and AM, FM and PM calculated using wavelet transform is shown in Figure 11
respectively. It is clear from Figure 10 and 11 that the wavelet transform based AM is able
to retain its polarity while, the Hilbert transform based AM have distortions. The output
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signal to noise ratio (SNR) for the amplitude modulation and the mean square error (MSE)
with respect to the theoretical frequency is also calculated as shown in Table IV. It is clear
from Table IV that wavelet transform has 3 dB higher noise reduction in AM as compared
to the Hilbert transform. Frequency estimation using wavelet transform based analytic

signal has lower mean square error as compared to the frequency estimation calculated
using Hilbert transform.

amplitude
o
AM
- N
el

0 0.5 1 0.5 1

time time
(@ (b)
x 10*
4 5
3-
= 2 = 0
1 [

0 - E -5 = :
0 0.5 1 0 0.5 1
time time
(c) (d)

Figure 9: Decomposition of over-modulated AM-FM signal according to conventional
definitions: (a) Signal (b) AM (c) PM (d) FM
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A

Figure 10: Decomposition results of analytic signal by Hilbert transform: (a) AM (b) FM (c)
PM

44



Figure 11: Decomposition results of analytic signal by wavelet transform (a) AM (b) FM (c)
PM
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Signal to noise ratio (SNR): Mean square error (MSE):
(dB)
Hilbert transform 23.0393 0.8468
wavelet transform 26.59 0.0385

Table IV: SNR and MSE for decomposition using Hilbert transform method and wavelet
transform method

CHAPTER 6: CONCLUSION AND FUTURE SCOPE

We described a model that characterizes time varying spatial signals and aimed to
find out the instantaneous attributes of the signal. One such attribute was voltage flicker
envelope detection. Here we derived the envelope of the voltage signal using the analytic
signal constructed using the wavelet transform and a comparison has been made with the
analytic signal using Hilbert transform. The SNR of the detected signal by wavelet
transform based analytic signal was found 3 dB higher than that of Hilbert transform. The
simulations were done in the presence of additive white Gaussian noise of 20 dB.
Simulation results show that the voltage envelope detection using analytic signal by
wavelet transform performs better in terms of noise reduction compared to the analytic
signal using Hilbert transform. We also performed AM-FM decomposition analysis in the
case when the corresponding amplitude modulated component is over-modulated. The
instantaneous amplitude was calculated by the analytic signal via wavelet transform which
also gives SNR improvement of 3 dB while keeping the AM bipolar and the mean square
error for the frequency component was also found to be improved as compared to the
analytic signal using Hilbert transform.

Future Scope:

Different wavelet methods can be used for denoising of signals before the implementation
of analytic signal using wavelet transform.
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