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ABSTRACT 
 

A new non-parametric linearization method for nonlinear random vibration analysis is 

created. This method works on a discrete representation of the stochastic inputs and the ideas 

from the first order reliability method (FORM). For a specifiedzresponse thresholdzof 

theznonlinear system, thezequivalent linearzsystem is characterizedxby matchingzthe "design 

points" of the linear and nonlinearzresponses in the space of thezstandard normalzvariables 

acquiredzfrom the discretizationzof thezexcitation. Because of thiszdefinition, the tail 

probabilityzofzthe linearzsystem is equalzto the firstzorder approximation ofzthe 

tailzprobability of theznonlinear system, this propertyzmotivating the namezTail-

EquivalentzLinearization Method (TELM).This leads to the identification of the TELS in 

terms of a unit-impulse response function for each component of the input excitation,tail 

equivalent linearization method is a new,non-parametric linearization method for nonlinear 

random vibration analysis.This method is to overcome the inadequacy of conventional 

equivalent linearization method.Our objectives are investigation and thorough understanding 

of analysis of stochastic non-linear system by tail equivalent linearization method  as well as 

computation of certain nonlinear response characteristics. Further more study is presented on 

method of random vibrational analysis especially on equivalent linearization method and also 

gives brief review on reliability analysis of structure, first order reliability analysis (FORM).It 

is demonstratedzthat the equivalentzlinear systemzis determined in termszof its 

impulsezresponse functionzin the non-parametriczform fromzthe knowledgezof design point. 

This examination lookszatzthe impacts of differentzparameters onzthe tail-equivalentzlinear 

system, presentszan algorithmzfor findingzthe design points. Design point in FORM is the 

point on a limit-state surface that is nearest to the origin when the random variables are 

transformed to the standard normal space.Linearization of the limit-state surface at this point 

uniquely defines a linear system, denoted as Tail-Equivalent Linear System, TELS.Previous 

study shows that design point shows that design point on limit state surface of linear system 

and nonlinear system is same. Once the TELS is defined for a specific response threshold, 

methods of linear random vibrational analysis are used to compute various response statistics, 

such as the mean crossing rate and tail probabilities of local and extreme peaks. The method 

has been developed for application in both time, and frequency domain and it has been 

applied to inelastic structures as well as structures experiencing geometric nonlinearities. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 General 

 

Stochasticity and non-linearity are characteristics of many structural and mechanical 

engineering problems. In some sense, we can say that they are mother of all problems. They 

are essential considerations in assessing the reliability of structural and mechanical systems 

under extreme loads, e.g. 

 Inelastic structural response to strong earthquake ground motion. 

 Response of offshore structures to wave loading under material and geometrical non-

linearity’s. 

 Response to turbulent winds. 

Existingzmethods of nonlinearzstochastic dynamic analysiszare restricted to special cases or 

are not suitable forzreliability analysis-hencezthe need of the new method. 

In evaluating thezsafety of a structure, it iszimperative to incorporatezthe nonlinearity,zsince 

failure  generallyzhappens in the nonlinear range  of structural behaviour.  

The topiczof nonlinearzrandom vibrationzhas beenzthe focuszof much researchzand 

developmentzin the previouszseveral decadeszMethodszdeveloped includezthe Fokker–

Planckzequation, stochasticzaveraging, moment closurez,zperturbation, andzequivalent 

linearizationz.Among these,zthe equivalentzlinearization methodzhas gainedzwide popularity 

becausez of itszversatility in applicationz tozgeneral,zmulti-degree-of-freedomznonlinear 

systems.The otherzmethods, possiblyzmore accuratez, arezlargely restrictedìto specìalized 

systemszor forms ofzthe excitation, andzare difficult tozapply in practice.zThe MontezCarlo 

simulationzmethod isswithout restriction, butcis computationallycdemanding.  

Inzthe equivalentzlinearization methodz(ELM), theznonlinear systemzof interestzis replaced 

byzan equìvalentzlinear system, the parameterszof which are determined by minimizingza 

measure of the discrepancyzbetween the responseszof the nonlinear and linear systemsz. The 

measure of discrepancyz most often used is the mean-squarezerror between the two responses 

,althoughzan energy-based measurezhas also been considered. The solutionzrequires an 

iterative scheme, since thezparameters of the linearzsystem are functions of the second-

momentszof its response. Furthermore, the method requires an assumption regarding the 
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probabilityzdistribution of the nonlinear response and mostzoften the Gaussianzdistribution is 

selected. As a result, whilezthe method canzbe quite accurate inzestimating thezmean-square 

response, the probabilityzdistribution can be far fromzcorrect, particularlyz in the tail region. 

It follows that estimateszof suchzresponse statisticszas crossing rateszandzfirst-passage 

probability, whichzare of particularzinterest in reliabilityzanalysis, can be grossly 

inaccuratezat highzthresholds. To addressz this problem,zan alternativezlinearization 

methodzwas proposed by Casciati  byzequating the meanzlevel crossingzrates of the 

nonlinearzandzequivalent linear systems. However, thiszapproach requireszknowledge of 

thezjoint probability distributionzof the response and itszderivative, whichzcan bezextremely 

difficultzto obtain forzgeneral nonlinearzsystems, particularlyzthose having multiplezdegrees 

ofzfreedom. 

The method proposedzin thiszstudy is alsozan equivalentzlinearization method.zHowever, 

insteadzof definingzthe linear systemzby minimizingzthe mean-squarezerror in thezresponse, 

it is definedzby matchingzthe tailzprobability of thezlinear responsezto azfirst-order 

approximationzof the tailzprobability of theznonlinear responsez.For thiszreason, thezname 

Tail-Equivalent LinearizationzMethod (TELM) iszused. The genesiszof thezmethod lieszin 

the first-order reliabilityzmethod (FORM)  andzthe earlierzworks of Li and Der Kiureghian, 

Der Kiureghian andzKoo. This studyzformalizes thezmethod andzinvestigates the 

variouszcharacteristicszof theztail-equivalent linear systemz(TELS).  

After describingza methodzfor discretezrepresentation of thezstochastic excitationz,geometric 

characteristics of a linear systemzin thezspace of standardznormal random variableszare 

examined. Itzis shownzthat a reversiblezrelationship existszbetween the impulsezresponse 

function of thezsystem and thezgradient vector of a hyperplane definingza threshold of 

interest. This then leadszto a formalzdefinition of thezTELS for azgeneral nonlinearzsystem. 

Issues related to thezexistencezand uniquenesszof thezTELS and thezinfluences of 

variouszkey parameters on thezTELS arezexamined. An algorithmzfor finding thezsequence 

of linearizationzpoints necessaryzfor determining the fullzprobability distributionzof 

thezresponse is next described, followedzby a discussionzof methodszfor 

determiningzvarious responsezstatistics. Throughout thezstudy resultszare presented for 

azhysteretic oscillatorzand, wherezappropriate, comparisonszare made between 

resultszobtained by theZTELM and thezconventional ELM.  
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 1.2 Objective and scope of the study 

The objectives are investigation and thorough understanding of analysis of non-linear system 

by Tail Equivalent method as well as computation of certain non-linear response 

characteristics. Proper algorithm for finding the design point has been presented. 

This study to present thorough investigation of nonlinear stochastic dynamic analysis using 

TELM (Tail Equivalent Linearization Method), and influence of various parameters on the 

tail equivalent linear system, such as discrete representation of stochastic excitation, 

characterization of linear system etc. Apart from TELM for the use of white noise Gaussian 

process. For studying of TELM we want basic idea about random vibration analysis and 

methods of structural reliability analysis. 

TELM is based on first order reliability method and equivalent linearization method of 

random vibration. 

TELM is combination of FORM and ELM means reliability analysis and random vibration 

analysis. In this study we give brief review of both the methods. 

The method was initially developed in the field of earthquake engineering, where a 

discretization in time domain is convenient. A corresponding definition of the tail equivalent 

linearization system was then obtained in terms of its unit impulse-response function. 

A number of applications of this method in civil engineering filed has been investigated for 

both stationary and non-stationary problems,single and multi degree of freedom systems,and 

a variety of non-degrading,hysteretic material models,demonstrating its validity and 

accuracy. 

1.3 Organization of Report 

This report is organized into twelve chapters. 

In the first chapter a short review of TELM and importance of this method are given..For 

understanding TELM, we require a good knowledge of random vibration analysis and 

reliability analysis of structure so that we also require a review of both method of analysis. 
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The second chapter is literature review in which the works of previous scientists on Tail 

equivalent linearization method are explained. 

In chapter three, the different methods of nonlinear stochastic analysis are overviewed. This 

includes classical methods, simulation methods and linearization methods. 

In chapter four, the characteristics of linear system are explained. 

In chapter five, we study about reliability. Various terminologies used in reliability are 

defined. We study about normal distribution function. And finally first order reliability 

method is studied. Non-linear system is transformed into equivalent linear system and we 

calculate the design point and further reliability index is calculated. 

In chapter six, the various steps to discretize nonlinear stochastic process is explained. This 

includes time-domain discretization and frequency-domain discretization. 

In chapter seven, we see how to use FORM to solve stochastic dynamic problems. 

In chapter eight, we study how to identify linear system in time-domain and in frequency 

domain. 

In chapter nine, we study about the Tail Equivalent Linearization Method. A brief 

introduction of TELM is given. Then the various steps in TELM are explained. Then the 

iterative algorithms to find the design point is shown. 

In chapter ten, we study about the various characteristics of the tail equivalent linearization 

method. A numerical problem to show the various characteristics of TELM is used by using a 

SDOF inelastic hysteretic oscillator based on Buoc Wen Model. Before we solve the above 

problem, we should know the different methods which are used to evaluate dynamic 

response. We solve a numerical example given in A.K.Chopra book by linear interpolation 

and Newmark’s method. 

In chapter eleven, we study about the shortcomings and limitations of TELM and finally 

In chapter twelve, we obtain the conclusions from the whole project.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Kazuya Fujimara,Armen Der Kiureghian , presentedztailzequivalent linearizationzmethod 

whichzuses the advantageszof firstzorder reliabilityzmethod(FORM).In this 

method,stochasticzexcitation is discreticized andzrepresented inzterms ofzfinite set of 

standardznormal variables.TELM isznew,non-parametric linearizationzmethodzfor 

nonlinearzrandomzvibration analysis.Forza specifiedzresponsezof thresholdzof the 

nonlinearzsystem.The equivalentzlinear systemzis defined by matchingzthe “design points” 

of thezlinear and nonlinearzresponses in the spacezof the standardznormal randomzvariables 

obtained from the discretizationzof the excitation.Due to this definition,the tail probabilityzof 

thezlinear system iszequal to thezfirst-orderzapproximation of theztail probabilityzof the 

nonlinear system,for thiszproperty motivatingztheznamezTail-EquivalentzLinearization 

Method(TELM).He has shownzthat the equivalentzlinear systemziszuniquely determinedzin 

terms of itszimpulse responsezfunction in aznon-parametriczform fromzthe knowledgezof 

design point.He examinedzthe influenceszof variouszparameters on theztail-equivalentzlinear 

system,presents anzalgorithm forzfinding the neededzsequence ofzdesign points,and 

describeszmethods forzdetermining variouszstatistics of theznonlinear response,such aszthe 

probabilityzdistribution,meanzlevel-crossingzrate andzthezfirst-passage probability. 

Applicationsztozsingle andzmulti degree ofzfreedom,non-degradingzhystereticzsystems 

illustratezvarious featureszof the method,and comparisonszwith the resultszobtained 

byzMonteZCarlo simulationszand by thezconventional equivalentzlinearization 

method(ELM) demonstratezthezsuperior accuracyzofzTELMzoverzELM, particularly for 

high responsezthresholds.   

Luca Garre,Armen Der Kiureghian , extendedzthe previouszwork onzthezTail-

EquivalentzLinearizationzMethod (TELM) tozthezfrequency domain. Thexextensionzdefines 

the Tail-EquivalentzLinearzSystem inzterms of itszfrequency-responsezfunction.This 

function iszobtained byzmatching thezdesign pointzof theznonlinear responsezwith 

thatzofzthe linearized response.The proposedzapproach is particularlyzsuitable whenzthe 

inputzand responsezprocesseszare stationary,as is usuallyzthe casezin thezanalysis of 
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marinezstructures. When linearzwaves arezconsidered, thezTail-EquivalentzLinearzSystem 

possesses a number of importantzproperties,such as the capabilityzto account forzmulti-

support excitationszandzinvariance withzrespect to scalingzof thezexcitation. TheZlatter 

propertyzsignificantly enhanceszthe computationalzefficiency ofzTELM forzanalysiszwith 

variable seazstates .Additionally,thezfrequency-response functionzof thezTail-Equivalent 

Linear System offerszinsights into thezgeometry ofzrandom vibrationszdiscretized inzthe 

frequency domainzand into thezphysical naturezof the response process.The 

proposedzapproach iszapplied tozthe analysiszof point-in-timezand first-passagezstatistics of 

the randomzswayzdisplacement ofza simplifiedzjack-up rig model.A basic requirementzof 

TELMzis thezdiscretization of thezinputzexcitation inzterms of azfinite setzof standard 

normalzvariables. In fact,thezequivalence inzTELM is establishedzin thezspace ofZthese 

randomzvariables by matching thezdesign points of thezlinear andznonlinear responses,which 

are points onztheir respectivezlimit statezsurfaces withzminimal distanceszfrom thezorigin in 

the standardznormal space.The method waszinitiallyzdeveloped in thezfield ofzearthquake 

engineering,where a discretizationzin timezdomain is convenient.A correspondingzdefinition 

of theztail-equivalent linearzsystem waszthen obtained inzterms of itszunitzimpulse-

responsezfunction.A number of applicationszof this methodzin the fieldzof civilzengineering 

have been investigatedzfor both stationaryzandznon-stationary problems,single and 

multizDOF systems,and a varietyzof non-degrading,hysteretic materialzmodels 

demonstrating itszvalidity andzaccuracy. 

Armen Der Kiureghian and Kazuya Fujimura,  A newzalternativezapproach for 

computingzseismic fragilityzcurves for nonlinear structureszfor use inZPBEE analysis is 

proposed.Thiszapproach is proposed.The approachzmakes use of azrecently 

developedzmethod for nonlinearzstochastic dynamic analysis by tail-

equivalentzlinearization.The approach avoids repeated time-history analysiszwith azsuite of 

scaled,recordedzground motions.Instead,the ground motionzis modelled as stochasticzprocess 

and afterzdetermining TELS for eachzresponse threshold,simple linear randomzvibration 

analysis arezperformed tozcompute thezfragility curve.In thezpresent application,the 

samezstochastic model waszmodel waszused for allzintensity levelzto morezrealistically 

characterizezhigh-intensity motions.In doing this,this since the TELSzremains invariantzof 

the scalingzand frequency contentzof the excitation,one willzonly need tozchange the 
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excitationzmodel in thezlinear randomzvibrationzanalysis ofzthe TELSzfor 

differentzintensityzlevels.  

Whilezoffering a viablezalternative forzfragility analysis,the proposedzmethod haszits 

limitations.For example,at thezpresent time it is onlyzapplicable to non-

degradingzsystems,and only onezcomponent of groundzmotion was consideredzin 

thezpresent application. Furthermore,responsezgradient computationszare required 

andztherefore, a dynamiczanalysis code with thiszcapability must be used.Nevertheless, the 

proposedzmethod offers anzalternative to a typezof analysiszfor whichzfew 

otherzviablezalternatives arezpresently zavailable. 

Sanaz Rezaeian and Armen Der Kiureghian,   describedzin her report stochastic modelling 

and simulation ofzground motion time historiesxfor use in response-history orzstochastic 

dynamic analysis.Ultimately,this researchzbenefits the emerging field ofzperformance 

basedzearthquake engineering(PBEE) byzproviding a convenientzmethod of 

generatingzsynthetic ground motions for specified designzscenarios that havezcharacteristics 

similarzto those of real earthquakezground motions. A new site-based,fullyznon stationary 

stochastic modelzto describe earthquakezground motionszis developed.The modelzis based 

on timezmodulation of thezresponse of a linear filter withztime-varyingzcharacteristics to a 

discretizedzwhite-noisezexcitation.It is concludedzthat forztypical strongzgroundzmotion 

thezfilter frequencyzcan be generatedzby azlinear function,whereas thezfilterzdamping 

ratiozcan bezrepresented byza constantZor a piece-wisezconstant function. 

Caughey TK  proposed generalizedzto the case of nonlinear dynamiczsystems with random 

excitation.The methodzis applied to a variety of problemszand results are compared with 

exactzsolutions of the Fokker-Planck equation for those caseszwhere the Fokker-Planck 

technique might be applied.Alternatezapproaches to the problemzare discussed includingzthe 

characteristic function. 

Armen Der Kiureghian,  The geometryzof randomzvibrationzproblems inzthe space 

ofzstandardzrandom variableszobtained fromzdiscretization of the inputzprocesses is 

described.For linearzsystems subjectedzto Gaussianzexcitation,simple geometriczforms,such 

as vectors,planes andzellipsoids ,characterize thezproblem of interest.Forznon-Gaussian 

responses,non-linear geometriczforms characterizezthe problems.Approximate solutionszfor 
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suchzproblemszare obtainedzby usezof FORM andzSORM.Examples involvingzresponse to 

non-Gaussian excitationzand out-crossingzof a vectorzprocess from aZnon-linear domainzare 

usedzto determinezthezapproach. Givenza discretezrepresentation of thezinput processzin 

terms of standardznormal variables,It is shown that manyzstatistical quantities ofzinterest 

inzrandom vibrationszcan bezrepresented inzgeometric form in the standardznormal 

space.These interpretions offerza newzoutlook to randomzvibration problemszand 

potentiallyzprovide new toolszfor the approximatezsolution ofznon-Gaussian orznon-linear 

problems.In this article,solution methodszby FORMzand SORMzwere explored.Possibilities 

forzdevelopingZefficient simulationzmethodsZthat exploitzthe geometriczforms also 

exist.The numericalzexamples presentedzin thiszindicate thatzFORM andzSORM canzbe 

effectivezmethods of solution,but theyzshould bezused withzcaution. 

Heonsang Koo,Armen Der Kiureghian,Kazuya Fujimara , A key step in finding the 

design-point excitation,whichzrealization of the input process thatzis most likely to give rise 

to thezevent of interest.It is shown that forza non-linear elastic SDOF oscillatorzsubjected to 

a Gaussianzwhite-noise input,the design-pointzexcitation is identical to the mirrorzimage of 

the free-vibration responsezof the oscillator when it is releasedzfrom the target 

threshold.With a slightzmodification,this result iszextended to problems with non-whitezand 

non-stationary excitations, aszwell as to hysteretic oscillators.For thesezcases only 

anzapproximation to the design pointzis obtained.If necessary the approximationzcan be used 

as a ‘warm’ starting pointzin an iterative algorithmzto obtain the exact design point. 

 M.Ababneh,M.Salah,K.Alwidyan, ,in hiszpaper,a comparison betweenzthe optimal linear 

model and Jacobianzlinearization technique is conducted.The performancezof these two 

linearizationzmethods are illustrated using twozbenchmark nonlinear systems,thesezare 

inverted pendulum system;and Duffing chaos system.Linearization of nonlinearzdynamical 

systems.Optimal linear model isza online linearization techniquezfor finding a local model 

that iszlinear in both thezstate and controlzterms. 

Faycal Ikhouane,Victor Manosa,Jose Rodellar,  The Bouc-Wenzmodel, widely used 

inzstructural and mechanicalzengineering, gives an analyticalzdescription of a 

smoothzhysteretic behaviour. It may happen that a Bouc-Wen modelzpresents a good 

matchingzwith the experimental realzdata for a specific input, but does notznecessarily keep 

significantzphysical properties that arezinherent to the real data ,independentlyzof the 
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exciting input.This literaturezpresents a characterizationzof the different classes of Bouc-Wen 

modelszin terms of their boundedzinput-bounded output stabilityzproperty,and their 

capability forzreproducing physical propertieszinherent to the true systemzthey are to model.  
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CHAPTER 3 

METHODS OF NONLINEAR STOCHASTIC ANALYSIS 

3.1 Introduction 

Classical methods:  Perturbation methods, Fokker-Plank equation, stochastic averaging, 

moment closure, etc. 

 

Simulation methods: Monte Carlo Simulation (MCS), Importance Sampling (IS), Markov 

Chain Monte Carlo (MCMC), Latin Hypercube Sampling (LHS), Orthogonal plane sampling, 

etc. 

 

Linearization methods: Classical Equivalent Linearization Method (ELM), Tail-Equivalent 

Linearization Method (TELM). 

 

The classical methods are important and elegant approaches, but are limited to specialized 

systems or excitations. The broad family of simulation methods has no theoretical limits 

however, some of these methods are computationally inefficient for high reliability problems 

(such as most civil structures). The final class of methods offers an efficient and fairly 

accurate estimation of the response distribution for many structural problems. However, the 

standard ELM, which is a parametric method, is designed to accurately estimate the first and 

the second-moments of the response distribution. Since the method is not meant for 

estimating the tail of the distribution, it is not accurate for computing the probability of 

failure for highly reliable systems. The TELM is a recent linearization method based on the 

first-order reliability method (FORM) developed by Fujimura and Der Kiureghian. It aims at 

providing a good estimation of the tail probability of the nonlinear response for this class of 

problems. 

 

3.2 Classical methods 

 

3.2.1 PERTURBATION - Among the classical methods, perturbation methods are probably 

the first ones to be used in nonlinear random vibration. First introduced in this field by 
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Crandall, these are fairly general methods to solve deterministic and/or stochastic nonlinear 

mechanics problems. 

 

Perturbation methods are based on power series expansion of the solution, where only 

“significant” terms are retained. The differential equations are formulated for each term of the 

expansion. The procedure is rather straightforward. However, due to the nature of the 

formulation, the expansion terms rapidly increase in complexity when high-order terms are 

considered. In addition, these methods are usually limited to lightly nonlinear systems. 

 

3.2.2 FOKKER-PLANCK EQUATION - The Fokker-Planck equation was derived in the 

context of statistical mechanics, it is a partial differential equation that describes the evolution 

in time of the probability density function of a non-stationary process. The solution of this 

equation provides the exact probabilistic structure of the response at all times. However, 

solutions for nonlinear problems are scarce and typically are limited to situations where the 

response process is Markovian. Moreover, the required computational effort rapidly increases 

with the number of degrees of freedom of the structure. 

 

3.2.3 MOMENT OF CLOSURE- Moment of closure is an approximate method for 

estimating the statistical moments of a stochastic process. The method is based on the 

derivation of the equations for statistical moment of the response from the FP equation. In 

general, the statistical moments are governed by an infinite number of coupled equations; a 

closure technique is used to obtain an approximate solution in terms of a finite set of 

moments. The accuracy of the solution depends on the order of closure. However, this comes 

at a price because the method turns out to be impractical for high orders, which are needed 

for highly nonlinear systems. 

 

3.2.4 STOCHASTIC AVERAGING- The stochastic averaging method was first introduced 

by Stratonovich in solving nonlinear oscillations of electrical systems under noisy excitations, 

while a robust mathematical foundation has been established in . In the field of stochastic 

dynamics most of the works on this topic has been done by Roberts, Spanos and Zhu. 

Essentially, the method approximates the response vector with a diffusive Markov vector 

with the probability density function governed by the FP equation. The method is designed to 

calculate the coefficient function in the FP equation by eliminating the effect of periodic 
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terms by stochastic averaging. The method is applicable to a wide variety of single degree of 

freedom systems, but it finds its limitation when applied to multi-degree-of-freedom (MDOF) 

systems. 

 

3.3 Simulations methods 

 

3.3.1 MONTE CARLO SIMULATION - Due to its simplicity, Monte Carlo Simulations is 

the most frequently applied method to solve random vibration problems. There are no 

theoretical limitations owing to the nature of the approach; however, for the crude version of 

MCS, there are computational limitations when the tail of the response distribution is of 

interest. For highly reliable systems, where the interest is in the far tail of the distribution, 

many alternative simulation methods have been developed in the recent years. The two 

principal categories are the IS and MCMC methods. 

The importance sampling is a rather straightforward method. The inefficiency of the crude 

MCS for low probability events lies in the fact that only few samples fall in the failure 

domain. To avoid this problem, an importance sampling distribution is used in order to 

generate more samples in the failure domain, making the method more efficient. However, 

particular care must be taken in using this method in high dimensions, such as in conjunction 

with discretized stochastic processes. For Gaussian processes in high dimensional spaces, a 

suitable importance sampling distribution is formulated by Au and Beck. This method is 

adapted to estimate the first-passage probability of the equivalent linear system obtained by 

the TELM. 

 

3.3.2MARKOV CHAIN MONTE CARLO METHOD - The Markov Chain Monte Carlo 

methods are a collection of schemes for sampling from complex probability densities by 

constructing a Markov chain thatzhas the desired distribution in its equilibrium state . There 

are different algorithms in this class. The most widely used ones, which can be considered as 

the parents of all other schemes, are the Metropolis-Hasting algorithm and the Gibbs 

sampling algorithm. Initially developed outside the field of statistics, these methods greatly 

impacted statistical analysis in the early 90’s, especially in Bayesian computational statistics. 

In particular, the Metropolis-Hasting algorithm was developed in physics in an attempt to 

calculate complex integrals as the expected value of random variables by sampling from their 

distributions. Gibbs sampling found its roots in image processing. Good references for 
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MCMC methods. MCMC methods are suitable for high-dimensional problems and can be 

efficiently used to sample in rare failure domains. For this class of problems, the subset 

simulation method proposed by Au and Beck represents one the most popular simulation 

method to solve high reliability problems under stochastic excitations. 

 

3.4 Linearization Methods 

 

3.4.1 Equivalent Linearization Method  

 

The equivalent linearization method is the most popular method used in nonlinear stochastic 

dynamics. Its popularity is based on its simplicity and its wide range of applicability. In 

particular, its complexity does not increase for MDOF systems and thus it is suitable for civil 

structures. The general idea behind the method is to replace the nonlinear system by a 

parameterized equivalent linear system. The method possibly finds its roots in the 

deterministic linearization method introduced in mechanics by Krylov and Bogolubov. The 

most appealing feature of every linearization method is that, once the linear system is 

obtained, all the linear theory can be effortlessly applied. 

  

 Approximates the nonlinear response in terms of an “equivalent” linear 

system.(Caughey 1963).That equivalent needs to be defined. 

 The ELS is determined by minimizingza measure ofzdiscrepancy between nonlinear 

and linear systems. Different methods are characterised by what you are trying to 

minimize. 

 Conventional ELM – minimize the variance of error between nonlinear and linear 

responses; requires the assumption of a distribution, typically Gaussian (e.g. Atalik 

and Utku 1976; Wen 1976).Gaussian distribution is used because it simplifies all the 

calculations. This method works well if you are estimating the variance of the 

nonlinear response.it provides quite accurate results. However you are interested in 

tail probabilities (the probability that the response will exceed a 

higherzthreshold),this method does not works well. this does not work well 

particularly because of the Gaussian distribution function. we know that even if input 

is Gaussian, the output of a nonlinear system is not Gaussian.so this Gaussian 

distribution is rather limited.so the next two methods try to overcome this problem. 
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 Minimize higher moments of error (Naess 1995) – this method is used for particular 

kind of elastic nonlinear system where the restoring force has a polynomial form. 

because he is looking at higher moments, emphasis is placed in the tail and so he is 

able to get better results in the tail. but the method is restricted again  because of the 

polynomial form. 

 Minimizing the difference in mean crossing up rates at a selected threshold( Casciati 

1993).by this we can get good results in the tail. however it is not clear how we 

compute the up crossing rate response 

 

3.4.2 Proposed tail equivalent linearization method 

 

This method defines thezlinear systemzby equatingzthe tailzprobability of thezlinear response 

equalzto thezfirst orderzapproximation ofzthe tailzprobability of theznonlinear response 

(Fujimara and Der Kiureghian 2007).Becausezit is dealingzwith the tailsZthe accuracyzis 

enhancedzin the tailzregion. 
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CHAPTER 4 

 

CHARACTERISTICS OF A LINEAR SYSTEM 

 

 

 

 

 

 

Fig 4.1 Linear System 

 

Considerza linearzsystem.it is subjectedzto one excitationzF(t) and one response X(t). 

 For onezinput-output pairz(F(t),X(t)),a stable linearzsystem is completely definedzby 

either of thezfollowing: 

 h(t)=impulse response function(IRF),i.e. response to F(t)=δ(t) 

 H(ω)=frequency response function(FRF);i.e. amplitude to steady state 

response to F(t)=exp(iωt)(complex harmonic function). 

 

If you have either of these functions for a stable linear system, then you have completely 

characterized the system. You don’t need to know the geometry, boundary conditions, etc. So 

for any input you can contribute the corresponding output. 
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CHAPTER 5 

RELIABILITY  

 

5.1 Reliability Analysis 

 

5.1.1 Reliability:  
 

Reliability is the measure of quality of geotechnical structure over a specified time under 

standard conditions. In other words reliability is probability of success.  

 

5.1.2 Methods of reliability:  

 
1. First OrderzReliabilityzMethod (FORM)  

2. Second OrderzReliabilityzMethod (SORM)  

3. MontezCarlozSampling (MCS)  

4. NumericalzIntegration (NI)  

5. IncreasedzVariancezSampling (IVS)  

 

Terminology used inzreliability:  

 

5.1.3 Mean:  

First central moment  which is defined as the average value of data set and measures central 

tendency of data.  

 

5.1.4 Variance:  

Second central moment that measures spread in data about mean. 

  

5.1.5 Coefficient of variation (cov):  

It measures the dispersion of data. Higher value of cov represents the higher diepersion about 

its mean.  

 

5.1.5 Covariance:  

Covariance indicates the degree of linear relationship between two random variables (x, y).  
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Covz(x,y) =zE ((x-mx) (y-my)) = E (xy- mx my) = E(xy) - E(x)E(y)z  

The uncertainties in a variable can be quantified using a mathematical model satisfying 

different functions such as probabilityzdensity function, probabilityzmass functionzand 

cumulativezdistribution function. Continuouszrandom variable follows normal distribution 

and beta distribution. 

 

5.1.6 Normal distribution: 

The normalzdistribution is thezmost widely knownzand used ofzall distributions. 

Becausezthe normal distribution approximateszmany natural phenomena sozwell, it has 

developedzinto a standardzof reference for manyzprobability problems.  

 

Fig. 5.1 Standard Normal Distribution Curve 

 

 
5.1.7 Properties of Normalzdistribution: 

 

 The parameter varies between –  ∞ to +  ∞ .  

 It is perfectly symmetric about mean.  

 Mean, Median and Mode values are same. 

The rulezfor a normal densityzfunctionzis  

            
 

     
            

 

Reliabilityziszthe probability of success and itszvalue is one minuszprobability ofzfailure (1- 
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Pf ). If ‘R’ is thezresistance and ‘S’ is thezload on the structure, then the structurezwill fail if 

‘R’ is less thanz‘S’ and probability ofzfailure can be expressed aszPf = P [R≤S] =zP [(R-S) 

≤0]  

 

Fig.  5.2 Overlapped area iszthe probability ofzfailure of randomzvariable R andzQ 

The probability of failure is the shaded area of overlapping as shown in the figure above and 

mathematically denoted as 

    
             

  

  

 

Reliabilty,   

               
  

  

 

Where GR(r) is CDF of resistance R and Gs(s) is CDF of load S.  

Limit statezfunction can bezdefined as a mathematicalzmodel which relates variables such 

aszload and resistance. It is expressed as 

                                  Z= (R-S)=f (R,S) = f(X1,X2,X3, …..,Xn) 

z = margin of safety  

If the limit state function is zero then failure would occur and the equation is known as limit 

state equation. i.e., f(X1,X2,X3, …..,Xn) = 0, defines the safe and unsafe which may be linear 

or non linear.  
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Fig. 5.3  Distribution of safety margin (Melchers 2002) 

 

Cornell gave expression for reliability index 

 

  
  

  
              is CDF ofzstandardznormal variable. 

 

5.2 First order reliability method (FORM) 
 
It is azwell developedzmethod for structural reliabilityzanalysis.  

 An approximate method for solving time-invariant reliability problems. 

 X=vectorzof randomzvariables. 

g(x)=limitzstate function (g(x)<=0failurezevent) 

p(f)=Pr[g(x)<=0]zprobability ofzfailure 

 

Fig 5.4 Geometry of random variables 
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Thezpicture above describeszthe concept in terms of geometry in the spacezof this random 

variables x1 and x2.The contours are representing the contour of the probabilityzdensity 

functionzof thesezrandom variables. The red line is the limitzstate surface where this limit 

state function takes zero values and the grey domain is the failure domain. The task is to 

compute the probability of the random variables to be in this failure region. 

 

Fig 5.5 Transformation from x space to u space 

The FORM solves this problem by making aztransformation.We make a transformationzfrom 

the x space to u spacez(a vector of standard normal variables).There is no approximation 

involved here and this can be done as long as thezrandom variables are continuous and have a 

strictly increasingzjoint cumulativezdistributionzfunction (cdf). 

 u=u(x) transformation tozstandard normal space. 

 G(u)=g{x(u) limitzstate functionzin transformedzspace. 

 

Thezadvantage of doing this(xu space) is that in u space the probability densities have 

contours that are spherical and hyper spherical in higher dimensions. So it is an canonical 

space and in this space there are simple properties in terms of probability computations. 

Next we find the point nearest to the origin and we call this the design point. 

 

u*=minarg[(||u|| / G(u))=0]  design point 

 

We linearize the surface at that point. 

            reliabilityzindex iszthe distancezfrom thezorigin tozdesign pointZand 

inzstandard normalzspaceZthe mean is at zero so the farther you are from the mean, the 

farther the failure domain is from the mean point, the more reliable it is.so this distance is the 

measure of the reliability. 
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The first orderzapproximation of the failurezprobability is described by thezprobability of 

failure described by that hyperplane which would be halfzspace probability in the 

standardznormal spacezthat depends only on the distance of the origin due to rotational 

symmetry.It is thezstandard normal probabilityzfunction evaluated at minuszthe distance 

from the origin. 

Pf=Φ(-β),FORM approximation 

 

 

Fig 5.6 Design point and reliability index representation 

 

This works well becausezof the fact that in standardznormal space probabilityzdensity decays 

exponentially withzthe distance from the origin, so as we go farzaway from the origin, the 

discrepancies between the actual surface and thezhyperplane becomeznegligible. 
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CHAPTER 6 

 

DISCRETE REPRESENTATION OF STOCHASTIC PROCESS 
 

 

 

To use a time-invariant stochastic problem we have to discretize that the stochastic 

processzcan be only represented inzterms of randomzvariables. 

  

6.1  General form of a zero-mean Gaussian process 

  

           zF(t)z=zs(t).u 

S(t)z=z[s(t1)……..sn(t)]  zvector of deterministic basis function that carry time 

evaluation of a process 

U=[u1…..un]zvector of standardznormal variables that bringszin the stochasticity. 

This is a way ofzseparating variation in time andzstochasticity. 

There are different ways of doing this. 

 

6.2 Timezdomainzdiscretization (modulated filtered whiteznoise) 

 

             S1(t)=q(t)hf(t-t1)   hf(.) = impulsezresponse functionzof a linearzfilter. 

             Q = modulating function that modulates the process in time. 

                                    

 

 

Fig 6.1 Time domain discretization 

 

The picture above shows what it means. we have discretized time.At each time we have a 

random impulse and the filter responses to that pulse and you can sum up because the first 
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equation is nothing but a summation.so when you sum up you end up getting as in picture 

shown below 

 

Fig 6.2 Frequency domain discretization 

 

This process is not only non-stationary in time but also non stationary in frequency domain. 

 

6.3 Frequency-domain discretization (stationary process) 

                 

   

   

               

                                 

 

This is a very well known way of decomposing the process into its frequency components 
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CHAPTER 7 

 

FORM SOLUTION OF STOCHASTIC DYNAMIC PROBLEMS 

 

How to use FORM to solve stochastic dynamic problems 

  

7.1 Definitions 

 F(t)=s(t).u discretized stochastic excitation 

 X(t,u)=response to discretized stochastic excitation(the response now is a function of 

time but also implicitly the function of this random variables u and there could be 

many of them depending on how you discretize duration and so on. 

 Pr(x<X(t,u))=tail probability atzthreshold x at timezt.(the tailzprobability is the 

probability that at azgiven time t, the response exceedsza thresholdzx. 

 

7.2  Reliability Formulation 

 Gz(u,x) =Zx-X(t,u)zzhere is the limitzstate function. Gzbecause the 

randomzvariables are already in thezspace. 

 Prz(x<X(t,u)z= zPr(G(u,x)≤0)ztail probability becomes the probability that the 

limit state function takes the negative value. 

 u*=argmin(||u|| / G(u,x)=0) design point 

 

 β(x)=||u
*
(x)||

 
 

 

                          

Fig 7.1 Reliability index ((x)) 
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This is similar to shown before with the exception that the limit state function has the 

threshold as a parameter also. 

 Pr(x<X(t,u))zzΦ(-β(x)) zFORM approximation of tail probability. 

 

This distribution is not Gaussian because β is not necessarily proportion to x. 

 

7.2.1  Realibility formulation- in case of linear system 

 

We can use superposition principle. 

 X(t,u)z=za(t).u   ai(t)=collection of responses to deterministic functions 

si(t).The         responsezis a linearzfunction of u. 

 G(u,x)z=zx-a(t).uzzthe limitzstate functionzis a linear functionzof u 

         
       

           
 

        
 

        
 zreliabiltyzindex iszproportional tozthreshold. 

 Prz(x<X(t,u))z=zΦ(-β(x))zztail probability β is proportional to x, so this 

shows that thezresponsezis Gaussian. 
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CHAPTER 8 

IDENTIFICATION OFzTHE LINEARzSYSTEM 

 

Givenzthe design point, one can identify the linearzsystemz(for the input-output pair)z- if we 

are given u*,we can find the linear vector a and once we have vector a, we can identify the 

system either inztimezdomain or in frequencyzdomain. 

u*zza(t) 

 

8.1 Time domain analysis: 

Solve for h(t) in system of equations 

                                      

 

   

 

The vector ai are responses to the deterministic functions si. This is the discretized version of 

the Duhamal’s integral. 

If we know ai and si we can compute h at different time steps.so we can obtain the unit 

impulse response function if we have the design point.so even if we don’t know the linear 

system. By knowing design point we can know which type of linear system we are using. 

 

8.2  Frequency domain analysis : 

 

       
      

         

  
 

 

          
     

      
  

 

                       

Given the ai we can computezthe moduluszand thezphase angle of the frequency response 

function. 
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CHAPTER 9 

THE TAILzEQUIVALENTzLINEARIZATION METHOD 

 

9.1 Introduction 

 

TELM is a new linearization method for nonlinear stochastic dynamic analysis introduced by 

Fujimura and Der Kiureghian. 

It makes use of the time- invariant first-order reliability method (FORM) to accurately 

estimate the tail of the distribution of the response of a nonlinear system that is subjected to a 

stochastic input.  

In TELM the input process is discretized and represented by a set of standard normal random 

variables. Each response threshold defines a limit state surface in the space of these variables 

with the “design point” being the point on the surface that is nearest to the origin. 

Linearization of the limit-state surface at this point uniquely and non- parametrically defines 

a linear system, denoted as the tail-equivalent linear system, TELS. The tail probability of the 

response of the TELS for the specified threshold is equal to the first-order approximation of 

the tail probability of the nonlinear system response for the same threshold.  

Once the TELS is defined for a specific response threshold of the nonlinear system, methods 

of linear random vibration analysis are used to compute various response statistics of interest, 

such as the mean crossing rate and the tail probabilities of local and extreme peaks.  

The method has been developed for application in both time and frequency domains and it 

has been applied for inelastic structures as well as structures experiencing geometric 

nonlinearities.  

9.2  Steps in TELM 

 For selected threshold x and time t, formulate tail probability problem in terms of 

limit state function 

G(u,t)z=zx-X(t,u) 

 Find the designzpoint u* 

 Find the gradient vector of the tangent plane         
   

       
 

 Identify the tail-equivalent linear system TELS that corresponds to gradient vector a 

in terms of its IRF h(t) or its FRF H(ω)TELS is defined by the tangent at that 
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hyperplane. The computation is straightforward. The most difficult thing is finding 

the design point. 

 

9.3  Iterative algorithms for solving design point 

 

          
     

       
      requires repeated computations of X(t, u) and gradient of 

response for selected values of u. 

 

The design pointzis the solution to constraint optimization problem. We want to 

minimize the distance fromzorigin to limit state surface. 

So to find the design point we have to repetitively solve the nonlinear problem. Not 

many times ,we typically converge in 10-20 steps.  

To find the gradient of response, if we use finite difference method, it can be very 

costly because number of random variables used is large. 

So we make use of direct differentiation method. 

 

For many thresholds 

 

          For an ordered sequence x1<x2<…..<xn. 

  

 
 

Fig 9.1 Representation of design point 

 

 
First we find out two points on the trajectory, then extrapolate to get the remainingzpoints. 
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CHAPTER 10 

CHARACTERICTICS OF THE TAIL EQUIVALENT LINEARIZATION 

METHOD 

 

 Forza given thresholdzx and time t, 

  

The tailZprobability ofzthe TELSzresponse = firstzorder approximationzof theztail 

probability ofzthe nonlinearzsystemzresponse. Hence the nameaTailzEquivalent 

LinearizationzMethodz(TELM).  

 

 

 

 

Fig 10.1 TELS ofzthe non linear response for azgiven threshold x andzpoint in time t 

 As opposed to ELM and other linearization methods, TELM is a Non-parametric 

method. The conventional equivalent linearization method is a parametric method 

i.e. you have to define a parameterised linear system and through optimization we 

can find the parameters of the linear system. 

 There is no need to define a parameterized linear system. The tail-equivalent linear 

system, TELS, is introduced and numerically identified in terms of its IRF and/or 

FRF for a specific response threshold. A one-to-one relationship exists between the 

design point of the tail distribution and the IRF/FRF of a linear system. In 

particular, the coordinates of the design point are sufficient to determine the 

IRF/FRF. In the nonlinear case, this one-to-one relationship completely 

characterizes the TELS when linearization is employed at the design point of the 

nonlinearzsystem. Remarkably, TELS is aznon-parametric linear system in the 
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sense that no parameterized model needszto be defined. Even the order of the 

systemzneed not be determined 

 The designzpoint excitation F*(t)= s(t).u*zrepresents the most likelyzrealization of 

the stochastic excitation to givezrise to the event {x≤X(t,u)}zzonce we find 

thezdesign point u*  and we put it back in the expression of discretized point 

excitation, we find the design point excitation. The meaning of this is that it is the 

mostzlikelyzrealization ofzthe excitationzprocesszto give risezto thezevent of 

interest. 

10.1 Numerical Example 

In thiszsection the properties of TELM are numerically investigated by considering azsingle 

degree of freedomz(SDOF) oscillatorzwith inelastic material behaviour. Thezproblem is 

solved both in frequency and time domains. We use a symmetric Bouc-Wen material model 

to describe the force-displacement relationship. Other inelastic material models can be used 

in the formulation. 

However, there is a fundamental condition for application of TELM: thezlimit-state function 

and therefore, thezresponse of the system must be differentiable with respectzto the 

randomzvariables u at the designzpoint. This guarantees that thezlimit-state surface has a 

tangentzhyper plane at thezdesign point. It has been proven in that, for an inelastic material, a 

necessary condition for the differentiability of the response is a smooth transition 

betweenzmaterial states except for  elasticzunloading. This condition is satisfied for the 

Bouc-Wen materialzmodel, but in other cases the material model may have to be modified to 

have smooth transitions. 

 

 

Fig. 10.2  SDOF oscillator with inelastic material behaviour 
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Tozgain insight into theznature of the TELS, considerza hysteretic oscillatorzdefined by the 

differentialzequation 

                                      

where mz=z3.0x10
5
 z(kg) , c=1.5x10

2
 (kN s/m)zand k=2.1x10

4
 (kN/m)zare assumed. 

The parameterzα,zwhich controlszthezdegree ofzhysteresis, is setztozα = 0.1.  

The excitationzis definedzas                where    g(t) denotes thezbase acceleration 

modelled asza white-noise process.  

The TELS iszindependent ofzthe scalezof thezexcitation. Therefore, anyzfinite valuezfor the 

intensityzof the whiteznoise produceszthe results givenzbelow. The termzZ(t) in zfollows the 

Bouc–Wenzhysteresiszlaw   

                                                  

where the            and parameters are selectedzas n=3,A=1, andz     
 =

    

  
  is the 

mean square responseof the linear (     oscillator 

We can change the values of stiffness, mass,damping ratio, initial displacement, 

velocity,natural period and the graph given above will change correspondingly. 

 

The following example which investigates the properties of TELM is solved on MATLAB. 

The various parameters whose values are given is used in the code and some values of other 

parameters have been assumed.Some predefined function such as 

“pwelch,linsquare,hilbert,linsquare” have been used which are already defined in MATLAB. 

We plot the graphs between ground acceleration vs time,show the variation of impulse 

response functions(IRFs) and frequency response functions(FRFs) to show the exact nature 

of TELM.The problem has been solve both in time and frequency domain. 
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Fig.10.3 ground acceleration vs time graph 

The above figure shows that the ground acceleration   g(t) reaches a peak and then its effect 

diminishes after some time. 

 

 The TELS iszindependent of a scalingzof the excitation sincezthe direction of the    

design point or thezshape of the limit-state surfacezis invariant of thiszscaling.  

   i.e. h(t,x) andzH(ω,x) forzexcitation sF(t) are invariant ofzs. 

This characteristic is central in obtaining fragility curves. Fragility is conditional        

probability of event of interest conditioned on scale of excitation. 

 

 

Fig.10.3 Fragility curve for given threshold 
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All this curve has been developed from one design point. 

 

 For broad-band excitations, the TELS is mildly dependent on the frequencyzcontent 

ofzthe excitation. Hence, a white-noise approximation can be used to determine the 

IRF/FRF. For narrow-band excitations, this is no longer valid and the IRF/FRF 

must be determined for the specific input power spectral density. 

 

 

Fig.10.4 IRFs of TELS for hysteretic oscillator response to white noise 
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Fig.10.5 FRFs of TELS for hysteretic oscillator response to white noise 

 

 Influence of non-stationarity on TELS. 
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Fig.10.6 Influence of non-stationarity on the IRFs of the TELSs 

The above figure compares the corresponding IRFs for tn=4s,7sand 10s,which are plotted for 

interval (0,5s). For the case of a suddenly applied stationary excitation, little dependence of 

IRF on tn is evident. It follows that, whereas for a stationary process a single IRF per 

threshold is adequate, for a non-stationary process one may need to determine the IRF at each 

time point where the response statistics are required. This is similar to the ELM, where for 

non-stationary excitation the equivalent linear system must be determined at each time step.  

 

 The TELS strongly depends upon the selected thresholds: 

   h(t)zzh(t,x),  H(ω)zzH(ω,x) 

 

 

 

In conventional linear system there is one linear equivalent linear system that you find     

and you have to apply for all thresholds but here for each linear system you end up 

having different linear system and for that reason we designate the unit impulse 

response function and frequencyzresponsezfunction of the equivalentzlinear system as 

functions of threshold x also.  

 

Fig.10.7 variation of IRF of the TELS for selected thresholds 

As the threshold x increases, the dissipation is faster. These curves are not typical of the unit 

response function of the linear oscillator. 
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Fig.10.8 variation of FRF of the TELS of selected threshold 

As thezthreshold increaseszthe peakzdrops. 

 

 Because ofzthe dependencezof thezTELS on thezthreshold, TELM iszunable 

tozcapture the non-gaussianzdistribution of the nonlinearzresponse. 

 

Pr[x≤X(t,u)]z=zΦ(-β(x)) 

 

Becausezthe reliabilityzindex is notzproportional tozx, the TELM is ablezto capturezthe non-

gaussian distributionzof theznonlinear response. 

 

 

Fig.10.9 Variation of reliability index with threshold 

 

                 Blue-linear(α=1)                                       Red-nonlinear(α=0.1) 
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Fig.10.10 Variation of complementary cdf with threshold 

 

Fig.10.11 Variation of probability density function with threshold. 

If the response is Gaussian, the curve would appear to be parabolic. For linear response the 

curve is parabolic. The curve shown above is not parabola. The tail goes down as a straight 

line. 

 For stationary response TELS is invariant of time t. Thus TELSs determined for one 

time point are sufficient to evaluate all statistical properties of the response e.g., 

 Point-in-time distribution Pr[x≤X(t,u)] 

 Mean upzcrossing rate  

 First passagezprobability i.e., the probabilityzdistribution of 

the maximum responsezover an interval of time is presented. You do not want 

point in time, you want the distribution throughout. 

 TELM is easily extended to MDoF systems-number of random variables remain the 

same. 
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CHAPTER 11 

LIMITATIONS AND SHORTCOMINGS OF TELS 

 

 The classical drawbacks of FORM also apply to TELM. In particular, there iszno 

measure of the errorzdue to the linearizationzapproximation, which meanszthat the 

accuracy of TELM cannotzbe estimated in advance. Moreover, TELMzrequires far 

more analysiszthan ELM, if one iszinterested only in thezfirst and secondzmoments of 

the nonlinearzresponse. Thus, forzsecond-moment analysis, ELM is thezappropriate 

method, while TELM is the appropriatezmethod to usezfor estimation of tail 

probabilities. 

 TELM requires many repeated computations. We use Direct Differentiation method 

for this purpose. 

 The nonlinear response must be continuously differentiable-must use smooth or 

smoothened constitutive laws otherwise you cannot define the tangent plane. we 

cannot use purely elasto-plastic oscillator. we have to smoothen that elasto-plastic 

oscillator. the transition between different systems have to be smooth. 

 The limit state surface must be well behaving. TELM does not works well for 

strongly stiffening systems(e.g. Duffin oscillator with a strong cubic term) or when 

non linearity involves abrupt behaviour in the system behaviour. 

 TELM is not applicable to degrading systems. 
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CHAPTER 12 

CONCLUSIONS 

 

 TELM is an alternativezlinearization method forznonlinear stochastic dynamic 

analysis. 

 TELM is non parametric 

 Captures non-gaussianzdistribution of nonlinearzresponse. 

 Offers superior accuracy for tail probabilities. 

 Is particularly convenient for fragility analysis. 

 Can be applied to stationary and non-stationary response. 

 Can be applied to MDoF systems, multi-component excitations. 

 TELM requires continuous differentiability of the nonlinear response. 

 As other linearization methods, the accuracy of TELM depends on the nature of the 

nonlinearity. 
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APPENDIX-I 

 

Matlab code for numerical example solved in chapter 10: 

 

1.Main.m- 

 

%% Tail-equivalent linearization method for nonlinear random vibration 

clear all;close all;clc; warning off; 

f = linspace(0,40,2048); % frequency vector 

zeta = 0.3; % bandwidth of the earthquake excitation. 

sigma = 1; % standard deviation of the excitation. 

fn =2; % dominant frequency of the earthquake excitation (Hz). 

T90 = 0.3; % value of the envelop function  

eps = 0.4; % normalized duration time 

tn = 20; % duration of ground motion (seconds). 

f0   = 0;  

Fs   = 100;  % (in Hz) Frequency sample 

NFFT = 2^12; % number of frequencies for discretization of IFT (4096) 

  

% function call 

[y,t] = seiTELS(sigma,fn,zeta,f,T90,eps,tn);  

% y: acceleration record 

% t: time 

  

 input.Vs          = [2 3 2]     % (m/s) 

input.rho         = [2000 2100 2400];    % psd (kgr/m3) 

input.damp        = [0.04 0.03 0.01];    % damping ratio 

input.freq        = linspace(f0,Fs,NFFT);% frequency range 

input.layer_thick = [10 10];             % (m) ! no thickness for bedrock! 

  

% Call function 

[f, U, A, B] = HOR_IRF(input); 
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% Frequency response function 

FRF_linear = U(1,:)./U(end,:); 

FRF_firstorder = U(2,:)./U(end,:); 

FRF_secondorder = U(3,:)./U(end,:); 

FRF_thirddorder = U(2,:)./U(end,:)+1; 

%% plot 

figure 

plot(t,y); 

xlabel('time (s)') 

ylabel('ground acceleration (m/s^2)') 

axis tight ;xlim([0 20]); 

set(gcf,'color','w') 

%% Fitting the ground acceleratoin record to target spectra & envelop 

guessEnvelop=[0.33,0.43,50]; % guest for envelop  

guessKT = [1,1,5]; % guess for spectrum 

[T90,eps,tn,zeta,sigma,fn] = KTPSD(t,y,guessEnvelop,guessKT,... 

    'dataPlot','yes') 

% plot 

figure; 

plot(f,abs(FRF_linear)); 

hold on; 

plot(f,abs(FRF_firstorder),'r'); 

hold on; 

plot(f,abs(FRF_secondorder),'k'); 

hold on; 

plot(f,abs(FRF_thirddorder),'m'); 

xlim([0 Fs/2]) 

xlabel('Time (s)') 

ylabel('h(t,x)') 

title('Suddenly applied white noise'); 

legend('t=4','t=7','t=10'); 
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2.seiTELS.m- 

 

function [y,t] = seiTELS(sigma,fn,zeta,f,T90,eps,tn) 

% [y,t] = seiTELS(sigma,fn,zeta,f,T90,eps,tn) generate one time series 

% corresponding to acceleration record from a seismometer. The function 

% requires 7 inputs, and gives 2 outputs. The time series is generated in 

% two steps: First a stationnary process is created based on the Kanai- 

% Tajimi spectrum, then an envelope function is used to transform this  

% stationnary time series into a non-stationary record. 

  

%% Initialisation 

w = 2*pi*f; 

fs = f(end); 

dt = 1/fs; 

f0= median(diff(f)); 

Nfreq = numel(f); 

t = 0:dt:dt*(Nfreq-1); 

  

%% Generation of the spectrum S 

fn = fn*2*pi; % transformation in rad; 

s0 = 2*zeta*sigma.^2./(pi.*fn.*(4*zeta.^2+1)); 

A = fn.^4+(2*zeta*fn*w).^2; 

B = (fn.^2-w.^2).^2+(2*zeta*fn.*w).^2; 

S = s0.*A./B; % single sided PSD 

  

  

%% Time series generation - Monte Carlo simulation 

A = sqrt(2.*S.*f0); 

B =cos(w'*t + 2*pi.*repmat(rand(Nfreq,1),[1,Nfreq])); 

x = A*B; % stationary process 

  

%% Envelop function E 

b = -eps.*log(T90)./(1+eps.*(log(T90)-1)); 
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c = b./eps; 

a = (exp(1)./eps).^b; 

E = a.*(t./tn).^b.*exp(-c.*t./tn); 

  

%% Envelop multiplied with stationary process to get y 

y = x.*E; 

  

end 

 

3.HOR_IRF.m- 

function [f, U, A, B] = HOR_IRF(input) 

  

  

if length(input.Vs) ~= length(input.layer_thick)+1 

    disp('There is a problem with the number of velocities Vs assigned to the various layers') 

    disp(' ') 

    disp('Solution: Assign velocities for the all soil layers and for the bedrock') 

end 

  

% frequency vector ((f0 Fs NFFT)=(0 100 4096) 0 to 100 in 4096 parts) 

f = input.freq; 

  

% circular frequency vector again angular frequency vector 

omega = 2*pi*input.freq; 

  

% imaginary "i" i is defined here 

clear i; i=sqrt(-1); 

  

% complex shear wave velocity input.Vs=[2 3 2] 

Vsstar = input.Vs.*(1+i*input.damp); 

  

% thickness of the soil layers 

h = input.layer_thick; 
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% number of soil layers + bedrock, it shows size of vector here it is 3 

layernum = length(input.Vs);  

  

% complex impendance ratio on layer interfaces 

az=zeros(layernum-1); % 0 matrix of 2x2 

for i1 = 1:layernum-1 % it shows loop will run for layernum - 1 times that is 2 

    az(i1) = input.rho(i1) * Vsstar(i1) / ( input.rho(i1+1) * Vsstar(i1+1) ); 

end 

  

% Initialization of matrices 

kstar = zeros(layernum,length(input.freq));% matrix size 3x4096 

A     = zeros(layernum,length(input.freq)); 

B     = zeros(layernum,length(input.freq)); 

U     = zeros(layernum,length(input.freq)); 

  

% Calculate transfer functions 

for i1 = 1:layernum  % Loop for the soil layers 

     

    for i2 = 1:length(input.freq)  % Loop for the frequencies 

         

        kstar(i1,i2) = omega(i2)./Vsstar(i1);  % complex wave number kstar=omega/Vsstar 

         

        if i1 == 1 

            A(i1,i2) = 0.5*exp(i*kstar(i1,i2)*input.layer_thick(i1)) + ... 

                0.5*exp(-i*kstar(i1,i2)*input.layer_thick(i1)); 

             

            B(i1,i2) = 0.5*exp(i*kstar(i1,i2)*input.layer_thick(i1)) + ... 

                0.5*exp(-i*kstar(i1,i2)*input.layer_thick(i1)); 

             

            U(i1,i2) = A(i1,i2) + B(i1,i2); 

        else 

            A(i1,i2) = 0.5*A(i1-1,i2) * (1+az(i1-1)) * exp(i*kstar(i1-1,i2)*input.layer_thick(i1-

1)) + ... 
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                0.5*B(i1-1,i2) * (1-az(i1-1)) * exp(-i*kstar(i1-1,i2)*input.layer_thick(i1-1)); 

             

            B(i1,i2) = 0.5*A(i1-1,i2) * (1-az(i1-1)) * exp(i*kstar(i1-1,i2)*input.layer_thick(i1-1)) 

+ ... 

                0.5*B(i1-1,i2) * (1+az(i1-1)) * exp(-i*kstar(i1-1,i2)*input.layer_thick(i1-1)); 

             

            U(i1,i2) = A(i1,i2) + B(i1,i2) ; 

        end %end if 

         

    end %end i2 

     

end %end i1 

  

N = length(input.freq); 

  

% Complex conjugates for "perfect" ifft 

if round(rem(N,2))==1  

    ia = 2:1:(N+1)/2;  

    ib = N:-1:(N+3)/2; 

else ia = 2:1:N/2; ib = N:-1:N/2+2; 

end 

  

A(:,ib) = conj(A(:,ia)) ; 

B(:,ib) = conj(B(:,ia)) ; 

U(:,ib) = conj(U(:,ia)) ; 

 

 

4. KTPSD.m- 

function [T90,eps,tn,zeta,sigma,fn] = KTPSD(t,y,guessEnvelop,guessKT,varargin) 

%  

%Kanai–Tajimi model psd to ground acceleration 

%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
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% INPUTS  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% y: size: [ 1 x N ] : aceleration record 

% t: size: [ 1 x N ] : time vector 

% guessEnvelop: [1 x 3 ]: first guess for envelop function 

% guessKT: [1 x 3 ]: first guess for Kanai–Tajimi spectrum 

% varargin: 

%      'F3DB'        - cut off frequency for the low pass filter 

%      'TolFun'      - Termination tolerance on the residual sum of squares. 

%                      Defaults to 1e-8. 

%      'TolX'        - Termination tolerance on the estimated coefficients 

%                      BETA.  Defaults to 1e-8. 

%      'dataPlot'        - 'yes': show the results of the fitting process 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% OUTPUTS  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% sigma: [1 x 1 ]: Fitted standard deviation of the excitation. 

% fn: [1 x 1 ]:  Fitted dominant frequency of the earthquake excitation (Hz). 

% zeta: [1 x 1 ]: Fitted bandwidth of the earthquake excitation. 

% f: [ 1 x M ]: Fitted frequency vector for the Kanai-tajimi spectrum. 

% T90: [1 x 1 ]: Fitted value at 90 percent of the duration. 

% eps: [1 x 1 ]: Fitted normalized duration time when ground motion achieves peak. 

% tn: [1 x 1 ]: Fitted duration of ground motion. 

  

%% inputParser 

whiteNoise = inputParser(); 

whiteNoise.CaseSensitive = false; 

whiteNoise.addOptional('f3DB',0.05);%3 decibel frequency  

whiteNoise.addOptional('tolX',1e-8);% Adds an optional argument to the input scheme. 

tolerance 10^(-8) 

whiteNoise.addOptional('tolFun',1e-8); 
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whiteNoise.addOptional('dataPlot','no'); 

whiteNoise.parse(varargin{:}); 

tolX = whiteNoise.Results.tolX ; 

tolFun = whiteNoise.Results.tolFun ; 

f3DB = whiteNoise.Results.f3DB ; 

dataPlot = whiteNoise.Results.dataPlot ; 

% check number of input 

narginchk(4,8)% narginchk(LOW,HIGH) throws an error if nargin is less than LOW or  

greater than HIGH 

     

  

%% Get envelop parameters 

dt = median(diff(t)); 

  

h1=fdesign.lowpass('N,F3dB',8,f3DB,1/dt); 

d1 = design(h1,'butter'); 

Y = filtfilt(d1.sosMatrix,d1.ScaleValues, abs(hilbert(y)));%Y = filtfilt(B, A, X) filters the    

data in vector X with the filter described by vectors A and B to create the filtered data Y.    

Y = Y./max(abs(Y)); 

options=optimset('Display','off','TolX',tolX,'TolFun',tolFun); 

coeff1=lsqcurvefit(@(para,t) 

Envelop(para,t),guessEnvelop,t,Y,[0.01,0.01,0.1],[3,3,100],options); 

  

eps = coeff1(1); 

T90 = coeff1(2); 

tn = coeff1(3); 

  

%% Get stationary perameters for the spectrum 

E =Envelop(coeff1,t); 

x = y./E; % there may be better solution than this one, but I don't have better idea right now. 

x(1)=0; 

 

% calculate the POWER SPECTRAL DENSITY 

[PSD,freq]=pwelch(x,[],[],[],1/median(diff(t)));%% 
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coeff=lsqcurvefit(@(para,t) 

KT(para,freq),guessKT,freq,PSD,[0.01,0.01,1],[5,5,100],options); 

zeta = coeff2(1); 

sigma = coeff2(2); 

fn = coeff2(3); 

  

%% dataPLot (optional) 

if strcmpi(dataPlot,'yes'), 

    spectra = KT(coeff2,freq); 

     

    figure 

%     subplot(211) 

    plot(t,y./max(abs(y)),t,Envelop(coeff1,t),t,Y,'r') 

    legend('Typical Earthquake','Broadband Tuned','White Noise') 

    title([' T_{90} = ',num2str(coeff1(2),3),'; \epsilon = ',... 

        num2str(coeff1(1),3),'; t_{n} = ',num2str(coeff1(3),3)]); 

    xlabel('time (s)') 

    ylabel('h(t,x)'); 

     axis tight ;  

    figure; 

%     subplot(212) 

    plot(freq,PSD,freq,spectra,'r') 

    legend('Measured','Fitted envelop') 

    legend('Typical Earthquake','Broadband Tuned') 

    title([' \zeta = ',num2str(coeff2(1),3),';  \sigma = ',... 

        num2str(coeff2(2),3),';  f_{n} = ',num2str(coeff2(3),3)]); 

    xlabel('frequency (Hz)') 

    ylabel('H(w,x)') 

     axis tight 

xlim([0 10]); 

    set(gcf,'color','w') 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% NESTED FUNCTIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    function E = Envelop(para,t) 

        eps0 = para(1); 

        eta0 = para(2); 

        tn0 = para(3); 

        b = -eps0.*log(eta0)./(1+eps0.*(log(eta0)-1)); 

        c = b./eps0; 

        a = (exp(1)./eps0).^b; 

        E = a.*(t./tn0).^b.*exp(-c.*t./tn0); 

    end 

    function S = KT(para,freq); 

        zeta0 = para(1); 

        sigma0 = para(2); 

        omega0 = 2*pi.*para(3); 

        w =2*pi*freq;  

        s0 = 2*zeta0*sigma0.^2./(pi.*omega0.*(4*zeta0.^2+1)); 

        A = omega0.^4+(2*zeta0*omega0*w).^2; 

        B = (omega0.^2-w.^2).^2+(2*zeta0*omega0.*w).^2; 

        S = s0.*A./B; % single sided PSD 

    end 

end 
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