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ABSTRACT

A new non-parametric linearization method for nonlinear random vibration analysis is
created. This method works on a discrete representation of the stochastic inputs and the ideas
from the first order reliability method (FORM). For a specified response threshold of
the nonlinear system, the equivalent linear system is characterized by matching the "design
points” of the linear and nonlinear responses in the space of the standard normal variables
acquired from the discretization of the excitation. Because of this definition, the tail
probability of the linear system is equal to the first order approximation of the
tail probability of the nonlinear system, this property motivating the name Tail-
Equivalent Linearization Method (TELM).This leads to the identification of the TELS in
terms of a unit-impulse response function for each component of the input excitation,tail
equivalent linearization method is a new,non-parametric linearization method for nonlinear
random vibration analysis.This method is to overcome the inadequacy of conventional
equivalent linearization method.Our objectives are investigation and thorough understanding
of analysis of stochastic non-linear system by tail equivalent linearization method as well as
computation of certain nonlinear response characteristics. Further more study is presented on
method of random vibrational analysis especially on equivalent linearization method and also
gives brief review on reliability analysis of structure, first order reliability analysis (FORM).It
is demonstrated that the equivalent linear system is determined in terms of its
impulse response function in the non-parametric form from the knowledge of design point.
This examination looks at the impacts of different parameters on the tail-equivalent linear
system, presents an algorithm for finding the design points. Design point in FORM is the
point on a limit-state surface that is nearest to the origin when the random variables are
transformed to the standard normal space.Linearization of the limit-state surface at this point
uniquely defines a linear system, denoted as Tail-Equivalent Linear System, TELS.Previous
study shows that design point shows that design point on limit state surface of linear system
and nonlinear system is same. Once the TELS is defined for a specific response threshold,
methods of linear random vibrational analysis are used to compute various response statistics,
such as the mean crossing rate and tail probabilities of local and extreme peaks. The method
has been developed for application in both time, and frequency domain and it has been

applied to inelastic structures as well as structures experiencing geometric nonlinearities.
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CHAPTER 1
INTRODUCTION

1.1 General

Stochasticity and non-linearity are characteristics of many structural and mechanical
engineering problems. In some sense, we can say that they are mother of all problems. They
are essential considerations in assessing the reliability of structural and mechanical systems
under extreme loads, e.g.

e Inelastic structural response to strong earthquake ground motion.

e Response of offshore structures to wave loading under material and geometrical non-

linearity’s.

e Response to turbulent winds.
Existing methods of nonlinear stochastic dynamic analysis are restricted to special cases or
are not suitable for reliability analysis-hence the need of the new method.
In evaluating the safety of a structure, it is imperative to incorporate the nonlinearity, since
failure generally happens in the nonlinear range of structural behaviour.
The topic of nonlinear random vibration has been the focus of much research and
development in the previous several decades Methods developed include the Fokker—
Planck equation, stochastic averaging, moment closure , perturbation, and equivalent
linearization .Among these, the equivalent linearization method has gained wide popularity
because of its versatility in application to general, multi-degree-of-freedom nonlinear
systems.The other methods, possibly more accurate , are largely restricted to specialized
systems or forms of the excitation, and are difficult to apply in practice. The Monte Carlo

simulation method is without restriction, but is computationally demanding.

In the equivalent linearization method (ELM), the nonlinear system of interest is replaced
by an equivalent linear system, the parameters of which are determined by minimizing a
measure of the discrepancy between the responses of the nonlinear and linear systems . The
measure of discrepancy most often used is the mean-square error between the two responses
,although an energy-based measure has also been considered. The solution requires an
iterative scheme, since the parameters of the linear system are functions of the second-

moments of its response. Furthermore, the method requires an assumption regarding the
1



probability distribution of the nonlinear response and most often the Gaussian distribution is
selected. As a result, while the method can be quite accurate in estimating the mean-square
response, the probability distribution can be far from correct, particularly in the tail region.
It follows that estimates of such response statistics as crossing rates and first-passage
probability, which are of particular interest in reliability analysis, can be grossly
inaccurate at high thresholds. To address this problem, an alternative linearization
method was proposed by Casciati by equating the mean level crossing rates of the
nonlinear and equivalent linear systems. However, this approach requires knowledge of
the joint probability distribution of the response and its derivative, which can be extremely
difficult to obtain for general nonlinear systems, particularly those having multiple degrees

of freedom.

The method proposed in this study is also an equivalent linearization method. However,
instead of defining the linear system by minimizing the mean-square error in the response,
it is defined by matching the tail probability of the linear response to a first-order
approximation of the tail probability of the nonlinear response .For this reason, thezname
Tail-Equivalent Linearization Method (TELM) is used. The genesis of the method lies in
the first-order reliability method (FORM) and the earlier works of Li and Der Kiureghian,
Der Kiureghian and Koo. This study formalizes the method and investigates the
various characteristics of the tail-equivalent linear system (TELS).

After describing a method for discrete representation of the stochastic excitation ,geometric
characteristics of a linear system in the space of standard normal random variables are
examined. It is shown that a reversible relationship exists between the impulse response
function of the system and the gradient vector of a hyperplane defining a threshold of
interest. This then leads to a formal definition of the TELS for a general nonlinear system.
Issues related to the existence and uniqueness of the TELS and the influences of
various key parameters on the TELS are examined. An algorithm for finding the sequence
of linearization points necessary for determining the full probability distribution of
the response is next described, followed by a discussion of methods for
determining various response statistics. Throughout the study results are presented for
a hysteretic  oscillator and, where appropriate, comparisons are made between
results obtained by the TELM and the conventional ELM.



1.2 Objective and scope of the study

The objectives are investigation and thorough understanding of analysis of non-linear system
by Tail Equivalent method as well as computation of certain non-linear response

characteristics. Proper algorithm for finding the design point has been presented.

This study to present thorough investigation of nonlinear stochastic dynamic analysis using
TELM (Tail Equivalent Linearization Method), and influence of various parameters on the
tail equivalent linear system, such as discrete representation of stochastic excitation,
characterization of linear system etc. Apart from TELM for the use of white noise Gaussian
process. For studying of TELM we want basic idea about random vibration analysis and
methods of structural reliability analysis.

TELM is based on first order reliability method and equivalent linearization method of

random vibration.

TELM is combination of FORM and ELM means reliability analysis and random vibration

analysis. In this study we give brief review of both the methods.

The method was initially developed in the field of earthquake engineering, where a
discretization in time domain is convenient. A corresponding definition of the tail equivalent

linearization system was then obtained in terms of its unit impulse-response function.

A number of applications of this method in civil engineering filed has been investigated for
both stationary and non-stationary problems,single and multi degree of freedom systems,and
a variety of non-degrading,hysteretic material models,demonstrating its validity and
accuracy.

1.3 Organization of Report
This report is organized into twelve chapters.

In the first chapter a short review of TELM and importance of this method are given..For
understanding TELM, we require a good knowledge of random vibration analysis and

reliability analysis of structure so that we also require a review of both method of analysis.



The second chapter is literature review in which the works of previous scientists on Tail

equivalent linearization method are explained.

In chapter three, the different methods of nonlinear stochastic analysis are overviewed. This

includes classical methods, simulation methods and linearization methods.

In chapter four, the characteristics of linear system are explained.

In chapter five, we study about reliability. Various terminologies used in reliability are
defined. We study about normal distribution function. And finally first order reliability
method is studied. Non-linear system is transformed into equivalent linear system and we

calculate the design point and further reliability index is calculated.

In chapter six, the various steps to discretize nonlinear stochastic process is explained. This

includes time-domain discretization and frequency-domain discretization.

In chapter seven, we see how to use FORM to solve stochastic dynamic problems.

In chapter eight, we study how to identify linear system in time-domain and in frequency

domain.

In chapter nine, we study about the Tail Equivalent Linearization Method. A brief
introduction of TELM is given. Then the various steps in TELM are explained. Then the

iterative algorithms to find the design point is shown.

In chapter ten, we study about the various characteristics of the tail equivalent linearization
method. A numerical problem to show the various characteristics of TELM is used by using a
SDOF inelastic hysteretic oscillator based on Buoc Wen Model. Before we solve the above
problem, we should know the different methods which are used to evaluate dynamic
response. We solve a numerical example given in A.K.Chopra book by linear interpolation

and Newmark’s method.
In chapter eleven, we study about the shortcomings and limitations of TELM and finally

In chapter twelve, we obtain the conclusions from the whole project.



CHAPTER 2

LITERATURE REVIEW

Kazuya Fujimara,Armen Der Kiureghian , presented tail equivalent linearization method
which uses  the  advantages of  first order  reliability method(FORM).In  this
method,stochastic excitation is discreticized and represented in terms of finite set of
standard normal  variables. TELM is new,non-parametric linearization method for
nonlinear random vibration  analysis.For a  specified response of threshold of the
nonlinear system.The equivalent linear system is defined by matching the “design points”
of the linear and nonlinear responses in the space of the standard normal random variables
obtained from the discretization of the excitation.Due to this definition,the tail probability of
the linear system is equal to the first-order approximation of the tail probability of the
nonlinear system,for this property motivating the name Tail-Equivalent Linearization
Method(TELM).He has shown that the equivalent linear system is uniquely determined in
terms of its impulse response function in a non-parametric form from the knowledge of
design point.He examined the influences of various parameters on the tail-equivalent linear
system,presents an algorithm for finding the needed sequence of design points,and
describes methods for determining various statistics of the nonlinear response,such as the
probability distribution,mean level-crossing rate and the first-passage probability.
Applications to single and multi degree of freedom,non-degrading hysteretic systems
illustrate various features of the method,and comparisons with the results obtained
by Monte Carlo  simulations and by  the conventional  equivalent linearization
method(ELM) demonstrate the superior accuracy of TELM over ELM, particularly for

high response thresholds.

Luca Garre,Armen Der Kiureghian , extended the previous work on the Tail-
Equivalent Linearization Method (TELM) to the frequency domain. The extension defines
the Tail-Equivalent Linear System in terms of its frequency-response function.This
function is obtained by matching the design point of the nonlinear response with
that of the linearized response.The proposed approach is particularly suitable when the

input and response processes are stationary,as is usually the case in the analysis of



marine structures. When linear waves are considered, the Tail-Equivalent Linear System
possesses a number of important properties,such as the capability to account for multi-
support excitations and invariance with respect to scaling of the excitation. The latter
property significantly enhances the computational efficiency of TELM for analysis with
variable sea states .Additionally,the frequency-response function of the Tail-Equivalent
Linear System offers insights into the geometry of random vibrations discretized in the
frequency domain and into the physical nature of the response process.The
proposed approach is applied to the analysis of point-in-time and first-passage statistics of
the random sway displacement of a simplified jack-up rig model.A basic requirement of
TELM is the discretization of the input excitation in terms of a finite set of standard
normal variables. In factthe equivalence in TELM is established in the space of these
random variables by matching the design points of the linear and nonlinear responses,which
are points on their respective limit state surfaces with minimal distances from the origin in
the standard normal space.The method was initiallyzdeveloped in the field of earthquake
engineering,where a discretization in time domain is convenient.A corresponding definition
of the tail-equivalent linear system was then obtained in terms of its unit impulse-
response function.A number of applications of this method in the field of civil engineering
have been investigated for both stationary and non-stationary problems,single and
multi DOF  systems,and a variety of non-degrading,hysteretic ~ material models
demonstrating its validity and accuracy.

Armen Der Kiureghian and Kazuya Fujimura, A new alternative approach for
computing seismic fragility curves for nonlinear structures for use in PBEE analysis is
proposed.This approach is  proposed.The approach makes use of a recently
developed method for nonlinear stochastic dynamic analysis by tail-
equivalent linearization.The approach avoids repeated time-history analysis with a suite of
scaled,recorded ground motions.Instead,the ground motion is modelled as stochastic process
and after determining TELS for each response threshold,simple linear random vibration
analysis are performed to compute the fragility curve.ln the present application,the
same stochastic model was model was used for all intensity level to more realistically
characterize high-intensity motions.In doing this,this since the TELS remains invariant of

the scaling and frequency content of the excitation,one will only need to change the



excitation model in  the linear  random vibration analysis  of the = TELS for

different intensity levels.

While offering a viable alternative for fragility analysis,the proposed method has its
limitations.For example,at the present time it is only applicable to non-
degrading systems,and only one component of ground motion was considered in
the present application.  Furthermore,response gradient computations are  required
and therefore, a dynamic analysis code with this capability must be used.Nevertheless, the
proposed method offers an alternative to a type of analysis for which few

other viable alternatives are presently available.

Sanaz Rezaeian and Armen Der Kiureghian, described in her report stochastic modelling
and simulation of ground motion time histories for use in response-history or stochastic
dynamic analysis.Ultimately,this research benefits the emerging field of performance
based earthquake  engineering(PBEE) by providing a  convenient method  of
generating synthetic ground motions for specified design scenarios that have characteristics
similar to those of real earthquake ground motions. A new site-based,fully non stationary
stochastic model to describe earthquake ground motions is developed.The model is based
on time modulation of the response of a linear filter with time-varying characteristics to a
discretized white-noise excitation.It is concluded that for typical strong ground motion
the filter frequency can be generated by a linear function,whereas the filter damping

ratio can be represented by a constant or a piece-wise constant function.

Caughey TK proposed generalized to the case of nonlinear dynamic systems with random
excitation.The method is applied to a variety of problems and results are compared with
exact solutions of the Fokker-Planck equation for those cases where the Fokker-Planck
technique might be applied.Alternate approaches to the problem are discussed including the

characteristic function.

Armen Der Kiureghian, The geometry of random vibration problems in the space
of standard random variables obtained from discretization of the input processes is
described.For linear systems subjected to Gaussian excitation,simple geometric forms,such
as vectors,planes and ellipsoids ,characterize the problem of interest.For non-Gaussian

responses,non-linear geometric forms characterize the problems.Approximate solutions for

7



such problems are obtained by use of FORM and SORM.Examples involving response to
non-Gaussian excitation and out-crossing of a vector process from a non-linear domain are
used to determine the approach. Given a discrete representation of the input process in
terms of standard normal variables,It is shown that many statistical quantities of interest
in random vibrations can be represented in geometric form in the standard normal
space.These interpretions offer a new outlook to random vibration problems and
potentially provide new tools for the approximate solution of non-Gaussian or non-linear
problems.In this article,solution methods by FORM and SORM were explored.Possibilities
for developing efficient simulation methods that exploit the geometric forms also
exist.The numerical examples presented in this indicate that FORM and SORM can be

effective methods of solution,but they should be used with caution.

Heonsang Koo,Armen Der Kiureghian,Kazuya Fujimara , A key step in finding the
design-point excitation,which realization of the input process that is most likely to give rise
to the event of interest.It is shown that for a non-linear elastic SDOF oscillator subjected to
a Gaussian white-noise input,the design-point excitation is identical to the mirror image of
the free-vibration response of the oscillator when it is released from the target
threshold.With a slight modification,this result is extended to problems with non-white and
non-stationary excitations, as well as to hysteretic oscillators.For these cases only
an approximation to the design point is obtained.If necessary the approximation can be used

as a ‘warm’ starting point in an iterative algorithm to obtain the exact design point.

M.Ababneh,M.Salah,K.Alwidyan, ,in his paper,a comparison between the optimal linear
model and Jacobian linearization technique is conducted.The performance of these two
linearization methods are illustrated using two benchmark nonlinear systems,these are
inverted pendulum system;and Duffing chaos system.Linearization of nonlinear dynamical
systems.Optimal linear model is a online linearization technique for finding a local model

that is linear in both the state and control terms.

Faycal Ikhouane,Victor Manosa,Jose Rodellar, The Bouc-Wen model, widely used

in structural and mechanical engineering, gives an analytical description of a

smooth hysteretic behaviour. It may happen that a Bouc-Wen model presents a good

matching with the experimental real data for a specific input, but does not necessarily keep

significant physical properties that are inherent to the real data ,independently of the
8



exciting input. This literature presents a characterization of the different classes of Bouc-Wen
models in terms of their bounded input-bounded output stability property,and their

capability for reproducing physical properties inherent to the true system they are to model.



CHAPTER 3

METHODS OF NONLINEAR STOCHASTIC ANALYSIS

3.1 Introduction

Classical methods: Perturbation methods, Fokker-Plank equation, stochastic averaging,

moment closure, etc.

Simulation methods: Monte Carlo Simulation (MCS), Importance Sampling (1S), Markov
Chain Monte Carlo (MCMC), Latin Hypercube Sampling (LHS), Orthogonal plane sampling,
etc.

Linearization methods: Classical Equivalent Linearization Method (ELM), Tail-Equivalent
Linearization Method (TELM).

The classical methods are important and elegant approaches, but are limited to specialized
systems or excitations. The broad family of simulation methods has no theoretical limits
however, some of these methods are computationally inefficient for high reliability problems
(such as most civil structures). The final class of methods offers an efficient and fairly
accurate estimation of the response distribution for many structural problems. However, the
standard ELM, which is a parametric method, is designed to accurately estimate the first and
the second-moments of the response distribution. Since the method is not meant for
estimating the tail of the distribution, it is not accurate for computing the probability of
failure for highly reliable systems. The TELM is a recent linearization method based on the
first-order reliability method (FORM) developed by Fujimura and Der Kiureghian. It aims at
providing a good estimation of the tail probability of the nonlinear response for this class of

problems.

3.2 Classical methods

3.2.1 PERTURBATION - Among the classical methods, perturbation methods are probably

the first ones to be used in nonlinear random vibration. First introduced in this field by

10



Crandall, these are fairly general methods to solve deterministic and/or stochastic nonlinear

mechanics problems.

Perturbation methods are based on power series expansion of the solution, where only
“significant” terms are retained. The differential equations are formulated for each term of the
expansion. The procedure is rather straightforward. However, due to the nature of the
formulation, the expansion terms rapidly increase in complexity when high-order terms are

considered. In addition, these methods are usually limited to lightly nonlinear systems.

3.2.2 FOKKER-PLANCK EQUATION - The Fokker-Planck equation was derived in the
context of statistical mechanics, it is a partial differential equation that describes the evolution
in time of the probability density function of a non-stationary process. The solution of this
equation provides the exact probabilistic structure of the response at all times. However,
solutions for nonlinear problems are scarce and typically are limited to situations where the
response process is Markovian. Moreover, the required computational effort rapidly increases
with the number of degrees of freedom of the structure.

3.2.3 MOMENT OF CLOSURE- Moment of closure is an approximate method for
estimating the statistical moments of a stochastic process. The method is based on the
derivation of the equations for statistical moment of the response from the FP equation. In
general, the statistical moments are governed by an infinite number of coupled equations; a
closure technique is used to obtain an approximate solution in terms of a finite set of
moments. The accuracy of the solution depends on the order of closure. However, this comes
at a price because the method turns out to be impractical for high orders, which are needed

for highly nonlinear systems.

3.2.4 STOCHASTIC AVERAGING- The stochastic averaging method was first introduced
by Stratonovich in solving nonlinear oscillations of electrical systems under noisy excitations,
while a robust mathematical foundation has been established in . In the field of stochastic
dynamics most of the works on this topic has been done by Roberts, Spanos and Zhu.
Essentially, the method approximates the response vector with a diffusive Markov vector
with the probability density function governed by the FP equation. The method is designed to
calculate the coefficient function in the FP equation by eliminating the effect of periodic
11



terms by stochastic averaging. The method is applicable to a wide variety of single degree of
freedom systems, but it finds its limitation when applied to multi-degree-of-freedom (MDOF)

systems.

3.3 Simulations methods

3.3.1 MONTE CARLO SIMULATION - Due to its simplicity, Monte Carlo Simulations is
the most frequently applied method to solve random vibration problems. There are no
theoretical limitations owing to the nature of the approach; however, for the crude version of
MCS, there are computational limitations when the tail of the response distribution is of
interest. For highly reliable systems, where the interest is in the far tail of the distribution,
many alternative simulation methods have been developed in the recent years. The two
principal categories are the IS and MCMC methods.

The importance sampling is a rather straightforward method. The inefficiency of the crude
MCS for low probability events lies in the fact that only few samples fall in the failure
domain. To avoid this problem, an importance sampling distribution is used in order to
generate more samples in the failure domain, making the method more efficient. However,
particular care must be taken in using this method in high dimensions, such as in conjunction
with discretized stochastic processes. For Gaussian processes in high dimensional spaces, a
suitable importance sampling distribution is formulated by Au and Beck. This method is
adapted to estimate the first-passage probability of the equivalent linear system obtained by
the TELM.

3.3.2MARKOQOV CHAIN MONTE CARLO METHOD - The Markov Chain Monte Carlo
methods are a collection of schemes for sampling from complex probability densities by
constructing a Markov chain that has the desired distribution in its equilibrium state . There
are different algorithms in this class. The most widely used ones, which can be considered as
the parents of all other schemes, are the Metropolis-Hasting algorithm and the Gibbs
sampling algorithm. Initially developed outside the field of statistics, these methods greatly
impacted statistical analysis in the early 90’s, especially in Bayesian computational statistics.
In particular, the Metropolis-Hasting algorithm was developed in physics in an attempt to
calculate complex integrals as the expected value of random variables by sampling from their
distributions. Gibbs sampling found its roots in image processing. Good references for

12



MCMC methods. MCMC methods are suitable for high-dimensional problems and can be

efficiently used to sample in rare failure domains. For this class of problems, the subset

simulation method proposed by Au and Beck represents one the most popular simulation

method to solve high reliability problems under stochastic excitations.

3.4 Linearization Methods

3.4.1 Equivalent Linearization Method

The equivalent linearization method is the most popular method used in nonlinear stochastic

dynamics. Its popularity is based on its simplicity and its wide range of applicability. In

particular, its complexity does not increase for MDOF systems and thus it is suitable for civil

structures. The general idea behind the method is to replace the nonlinear system by a

parameterized equivalent linear system. The method possibly finds its roots in the

deterministic linearization method introduced in mechanics by Krylov and Bogolubov. The

most appealing feature of every linearization method is that, once the linear system is

obtained, all the linear theory can be effortlessly applied.

Approximates the nonlinear response in terms of an “equivalent” linear
system.(Caughey 1963).That equivalent needs to be defined.

The ELS is determined by minimizing a measure of discrepancy between nonlinear
and linear systems. Different methods are characterised by what you are trying to
minimize.

Conventional ELM — minimize the variance of error between nonlinear and linear
responses; requires the assumption of a distribution, typically Gaussian (e.g. Atalik
and Utku 1976; Wen 1976).Gaussian distribution is used because it simplifies all the
calculations. This method works well if you are estimating the variance of the
nonlinear response.it provides quite accurate results. However you are interested in
tail probabilities (the probability that the response will exceed a
higher threshold),this method does not works well. this does not work well
particularly because of the Gaussian distribution function. we know that even if input
is Gaussian, the output of a nonlinear system is not Gaussian.so this Gaussian

distribution is rather limited.so the next two methods try to overcome this problem.

13



e Minimize higher moments of error (Naess 1995) — this method is used for particular
kind of elastic nonlinear system where the restoring force has a polynomial form.
because he is looking at higher moments, emphasis is placed in the tail and so he is
able to get better results in the tail. but the method is restricted again because of the
polynomial form.

e Minimizing the difference in mean crossing up rates at a selected threshold( Casciati
1993).by this we can get good results in the tail. however it is not clear how we

compute the up crossing rate response

3.4.2 Proposed tail equivalent linearization method

This method defines the linear system by equating the tail probability of the linear response
equal to the first order approximation of the tail probability of the nonlinear response
(Fujimara and Der Kiureghian 2007).Because it is dealing with the tails the accuracy is

enhanced in the tail region.
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CHAPTER 4

CHARACTERISTICS OF A LINEAR SYSTEM

—

= “X(t)
F(t) Phon s (

system

Fig 4.1 Linear System

Consider a linear system.it is subjected to one excitation F(t) and one response X(t).
e For one input-output pair (F(t),X(t)),a stable linear system is completely defined by
either of the following:
= h(t)=impulse response function(IRF),i.e. response to F(t)=0(t)
= H(w)=frequency response function(FRF);i.e. amplitude to steady state

response to F(t)=exp(iot)(complex harmonic function).
If you have either of these functions for a stable linear system, then you have completely

characterized the system. You don’t need to know the geometry, boundary conditions, etc. So

for any input you can contribute the corresponding output.
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CHAPTER 5
RELIABILITY

5.1 Reliability Analysis

5.1.1 Reliability:

Reliability is the measure of quality of geotechnical structure over a specified time under
standard conditions. In other words reliability is probability of success.

5.1.2 Methods of reliability:

1. First Order Reliability Method (FORM)
2. Second Order Reliability Method (SORM)
3. Monte Carlo Sampling (MCS)

4. Numerical Integration (NI)

5. Increased Variance Sampling (1VS)

Terminology used in reliability:

5.1.3 Mean:
First central moment which is defined as the average value of data set and measures central

tendency of data.

5.1.4 Variance:

Second central moment that measures spread in data about mean.

5.1.5 Coefficient of variation (cov):
It measures the dispersion of data. Higher value of cov represents the higher diepersion about

its mean.

5.1.5 Covariance:

Covariance indicates the degree of linear relationship between two random variables (x, y).

16



Cov (xy) = E ((x-mx) (y-my)) = E (xy- mx my) = E(xy) - E(X)E(y)

The uncertainties in a variable can be quantified using a mathematical model satisfying
different functions such as probability density function, probability mass function and
cumulative distribution function. Continuous random variable follows normal distribution

and beta distribution.

5.1.6 Normal distribution:

The normal distribution is the most widely known and used of all distributions.
Because the normal distribution approximates many natural phenomena so well, it has

developed into a standard of reference for many probability problems.

/@)
0.399 f—r e

i e E= 8
=3 =2 0 H 32 43 =
' k68262 —| | ‘
e 95.44%-’] |
fe 99.74% o

Fig. 5.1 Standard Normal Distribution Curve

5.1.7 Properties of Normal distribution:

e The parameter varies between — o to + .
e It is perfectly symmetric about mean.
e Mean, Median and Mode values are same.

The rule for a normal density function is

1

2102

e _(x_”)Z/ZO.Z

fl; po?) =

Reliability is the probability of success and its value is one minus probability of failure (1-
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Pf). If ‘R’ is the resistance and ‘S’ is the load on the structure, then the structure will fail if
‘R’ is less than “S’ and probability of failure can be expressed as Pf =P [R<S] = P [(R-S)
<0]

Probability density function

Value of SarR

Fig. 5.2 Overlapped area is the probability of failure of random variable R and Q

The probability of failure is the shaded area of overlapping as shown in the figure above and
mathematically denoted as
_ j+°° GR(r)Gs(s)ds
Pr =

— 00

Reliabilty,

+ oo

R = j GR(r)Gs(s)ds
—o00

Where GR(r) is CDF of resistance R and Gs(s) is CDF of load S.

Limit state function can be defined as a mathematical model which relates variables such

as load and resistance. It is expressed as
Z= (R-S)=f (R,S) = f(X1,X2,X3, .....Xn)

z = margin of safety
If the limit state function is zero then failure would occur and the equation is known as limit
state equation. i.e., f(X7,X2,X3, .....,Xn) = 0, defines the safe and unsafe which may be linear

or non linear.

18



Fig. 5.3 Distribution of safety margin (Melchers 2002)

Cornell gave expression for reliability index

p = % and Pr = ¢(—p) is CDF of standard normal variable.

5.2 First order reliability method (FORM)

It is a well developed method for structural reliability analysis.
e An approximate method for solving time-invariant reliability problems.
e X=vector of random variables.

g(x)=limit state function (g(x)<=0->failure event)

p(f)=Pr[g(x)<=0] probability of failure

Fig 5.4 Geometry of random variables
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The picture above describes the concept in terms of geometry in the space of this random
variables x1 and x2.The contours are representing the contour of the probability density
function of these random variables. The red line is the limit state surface where this limit
state function takes zero values and the grey domain is the failure domain. The task is to

compute the probability of the random variables to be in this failure region.

Fig 5.5 Transformation from X space to u space

The FORM solves this problem by making a transformation.We make a transformation from
the x space to u space (a vector of standard normal variables).There is no approximation
involved here and this can be done as long as the random variables are continuous and have a
strictly increasing joint cumulative distribution function (cdf).

e u=u(x) transformation to standard normal space.

o  G(u)=g{x(u) limit state function in transformed space.

The advantage of doing this(x>u space) is that in u space the probability densities have
contours that are spherical and hyper spherical in higher dimensions. So it is an canonical
space and in this space there are simple properties in terms of probability computations.

Next we find the point nearest to the origin and we call this the design point.
u*=minarg[(||ul| / G(u))=0] design point
We linearize the surface at that point.

B =l

in standard normal space the mean is at zero so the farther you are from the mean, the

reliability index is the distance from the origin to design point and

farther the failure domain is from the mean point, the more reliable it is.so this distance is the

measure of the reliability.
20



The first order approximation of the failure probability is described by the probability of
failure described by that hyperplane which would be half space probability in the
standard normal space that depends only on the distance of the origin due to rotational
symmetry.It is the standard normal probability function evaluated at minus the distance
from the origin.

P=®(-B),FORM approximation

Fig 5.6 Design point and reliability index representation
This works well because of the fact that in standard normal space probability density decays

exponentially with the distance from the origin, so as we go far away from the origin, the

discrepancies between the actual surface and the hyperplane become negligible.
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CHAPTER 6

DISCRETE REPRESENTATION OF STOCHASTIC PROCESS

To use a time-invariant stochastic problem we have to discretize that the stochastic

process can be only represented in terms of random variables.

6.1 General form of a zero-mean Gaussian process

F(t) = s(t).u

S(t) = [s(tl)........ sn(t)]  vector of deterministic basis function that carry time
evaluation of a process

U=[ul.....un] vector of standard normal variables that brings in the stochasticity.
This is a way of separating variation in time and stochasticity.

There are different ways of doing this.
6.2 Time domain discretization (modulated filtered white noise)

S1(t)=q(t)hf(t-t1) hf(.) = impulse response function of a linear filter.

Q = modulating function that modulates the process in time.

e — f
t AT

Fig 6.1 Time domain discretization

The picture above shows what it means. we have discretized time.At each time we have a

random impulse and the filter responses to that pulse and you can sum up because the first
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equation is nothing but a summation.so when you sum up you end up getting as in picture

shown below

Fig 6.2 Frequency domain discretization
This process is not only non-stationary in time but also non stationary in frequency domain.
6.3 Frequency-domain discretization (stationary process)

n/2

F(t) = z oi[u; sin(w; t) + u; cos( w;t)]

i=1

s;(t) = o; sin(w;t), s;(t) = o; cos(w;)

This is a very well known way of decomposing the process into its frequency components
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CHAPTER 7

FORM SOLUTION OF STOCHASTIC DYNAMIC PROBLEMS

How to use FORM to solve stochastic dynamic problems

7.1 Definitions
® F(t)=s(t).u discretized stochastic excitation

e X(t,u)=response to discretized stochastic excitation(the response now is a function of
time but also implicitly the function of this random variables u and there could be

many of them depending on how you discretize duration and so on.

® Pr(x<X(t,u))=tail probability at threshold x at time t.(the tail probability is the
probability that at a given time t, the response exceeds a threshold x.

7.2 Reliability Formulation

e G (ux) = x-X(tu) > here is the limit state function. G because the

random variables are already in the space.

o Pr (x<X(t,u) = Pr(G(u,x)<0) —>tail probability becomes the probability that the
limit state function takes the negative value.

e u*=argmin(||u|| / G(u,x)=0) >design point

o BE=N X

Fig 7.1 Reliability index (B(x))
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This is similar to shown before with the exception that the limit state function has the

threshold as a parameter also.

o Pr(x<X(t,u)) > ®(-p(x)) FORM approximation of tail probability.

This distribution is not Gaussian because [ is not necessarily proportion to X.

7.2.1 Realibility formulation- in case of linear system

We can use superposition principle.

X(t,u) = a(t).u ai(t)=collection of responses to deterministic functions
si(t).The response is a linear function of u.

G(u,x) = x-a(t).u -> the limit state function is a linear function of u

u* (X) — x(a(t))

(la®11?)
Bx) = Ha?—t)” - reliabilty index is proportional to threshold.

Pr (x<X(t,u)) = ®(-B(x)) > tail probability  is proportional to x, so this
shows that the response is Gaussian.
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CHAPTER 8
IDENTIFICATION OF THE LINEAR SYSTEM

Given the design point, one can identify the linear system (for the input-output pair) - if we
are given u*,we can find the linear vector a and once we have vector a, we can identify the
system either in time domain or in frequency domain.

u* 2> a(t)

8.1 Time domain analysis:

Solve for h(t) in system of equations

n
Z h(t —t)si(t)At = a;(t), i=1,....,n
j=1
The vector a; are responses to the deterministic functions s;. This is the discretized version of
the Duhamal’s integral.
If we know a; and s; we can compute h at different time steps.so we can obtain the unit
impulse response function if we have the design point.so even if we don’t know the linear

system. By knowing design point we can know which type of linear system we are using.

8.2 Frequency domain analysis :

(| = U+ @02
w;i| = -
(@)
0; = tan [C_li (t)]

H(w;) = |H(w;)|exp (i6;)

Given the a we can compute the modulus and the phase angle of the frequency response

function.
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CHAPTER 9
THE TAIL EQUIVALENT LINEARIZATION METHOD

9.1 Introduction

TELM is a new linearization method for nonlinear stochastic dynamic analysis introduced by
Fujimura and Der Kiureghian.

It makes use of the time- invariant first-order reliability method (FORM) to accurately
estimate the tail of the distribution of the response of a nonlinear system that is subjected to a
stochastic input.

In TELM the input process is discretized and represented by a set of standard normal random
variables. Each response threshold defines a limit state surface in the space of these variables
with the “design point” being the point on the surface that is nearest to the origin.
Linearization of the limit-state surface at this point uniquely and non- parametrically defines
a linear system, denoted as the tail-equivalent linear system, TELS. The tail probability of the
response of the TELS for the specified threshold is equal to the first-order approximation of
the tail probability of the nonlinear system response for the same threshold.

Once the TELS is defined for a specific response threshold of the nonlinear system, methods
of linear random vibration analysis are used to compute various response statistics of interest,
such as the mean crossing rate and the tail probabilities of local and extreme peaks.

The method has been developed for application in both time and frequency domains and it
has been applied for inelastic structures as well as structures experiencing geometric

nonlinearities.

9.2 Stepsin TELM

e For selected threshold x and time t, formulate tail probability problem in terms of
limit state function
G(u,t) = x-X(t,u)
e Find the design point u*

xu*
[lu*]|?

e Find the gradient vector of the tangent plane a(t) =

e ldentify the tail-equivalent linear system TELS that corresponds to gradient vector a
in terms of its IRF h(t) or its FRF H(w)>TELS is defined by the tangent at that
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hyperplane. The computation is straightforward. The most difficult thing is finding
the design point.

9.3 Iterative algorithms for solving design point

u*(x) = arg {% = O} requires repeated computations of X(t, u) and gradient of

response for selected values of u.

The design point is the solution to constraint optimization problem. We want to
minimize the distance from origin to limit state surface.

So to find the design point we have to repetitively solve the nonlinear problem. Not
many times ,we typically converge in 10-20 steps.

To find the gradient of response, if we use finite difference method, it can be very
costly because number of random variables used is large.

So we make use of direct differentiation method.

For many thresholds—>

For an ordered sequence x1<x2<.....<xn.

X(.u) =x,.,
X(tu) =x,

X(tu)=x,_,

Fig 9.1 Representation of design point

First we find out two points on the trajectory, then extrapolate to get the remaining points.
u () —u(x-1)

a* (xjp)=u" (x))+ A1 - -
i l [wr () — w (x4 ||
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CHAPTER 10

CHARACTERICTICS OF THE TAIL EQUIVALENT LINEARIZATION

METHOD

For a given threshold x and time t,

The tail probability of the TELS response = first order approximation of the tail
probability of the nonlinear system response. Hence the name Tail Equivalent
Linearization Method (TELM).

Limit-state surface

Fig 10.1 TELS of the non linear response for a given threshold x and point in time t

As opposed to ELM and other linearization methods, TELM is a Non-parametric
method. The conventional equivalent linearization method is a parametric method
i.e. you have to define a parameterised linear system and through optimization we
can find the parameters of the linear system.

There is no need to define a parameterized linear system. The tail-equivalent linear
system, TELS, is introduced and numerically identified in terms of its IRF and/or
FRF for a specific response threshold. A one-to-one relationship exists between the
design point of the tail distribution and the IRF/FRF of a linear system. In
particular, the coordinates of the design point are sufficient to determine the
IRF/FRF. In the nonlinear case, this one-to-one relationship completely
characterizes the TELS when linearization is employed at the design point of the
nonlinear system. Remarkably, TELS is a non-parametric linear system in the
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sense that no parameterized model needs to be defined. Even the order of the
system need not be determined

e The design point excitation F*(t)= s(t).u* represents the most likely realization of
the stochastic excitation to give rise to the event {x<X(t,u)} > once we find
the design point u* and we put it back in the expression of discretized point
excitation, we find the design point excitation. The meaning of this is that it is the
most likely realization of the excitation process to give rise to the event of

interest.

10.1 Numerical Example

In this section the properties of TELM are numerically investigated by considering a single
degree of freedom (SDOF) oscillator with inelastic material behaviour. The problem is
solved both in frequency and time domains. We use a symmetric Bouc-Wen material model
to describe the force-displacement relationship. Other inelastic material models can be used

in the formulation.

However, there is a fundamental condition for application of TELM: the limit-state function
and therefore, the response of the system must be differentiable with respect to the
random variables u at the design point. This guarantees that the limit-state surface has a
tangent hyper plane at the design point. It has been proven in that, for an inelastic material, a
necessary condition for the differentiability of the response is a smooth transition
between material states except for elastic unloading. This condition is satisfied for the
Bouc-Wen material model, but in other cases the material model may have to be modified to

have smooth transitions.

Fig. 10.2 SDOF oscillator with inelastic material behaviour
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To gain insight into the nature of the TELS, consider a hysteretic oscillator defined by the

differential equation

mX() +cX+k[ aX(t)+ (1 —a)Z(t)] = F(b)
wherem = 3.0x10° (kg) , c=1.5x10% (kN s/m) and k=2.1x10* (kN/m) are assumed.
The parameter o, which controls the degree of hysteresis, is set to a=0.1.

The excitation is defined as F(t) = —mUg(t),where Ug(t) denotes the base acceleration

modelled as a white-noise process.

The TELS is independent of the scale of the excitation. Therefore, any finite value for the
intensity of the white noise produces the results given below. The term Z(t) in follows the

Bouc-Wen hysteresis law
2@t = —y|X[1Z@O"* Z(6) - nlZ@"X () + AX(0),

5_mSm?

where the y = n = 1/200™ and parameters are selected as n=3,A=1,and g, is the

mean square responseof the linear (@ = 1) oscillator

We can change the values of stiffness, mass,damping ratio, initial displacement,

velocity,natural period and the graph given above will change correspondingly.

The following example which investigates the properties of TELM is solved on MATLAB.

The various parameters whose values are given is used in the code and some values of other
parameters have been assumed.Some predefined function such as
“pwelch,linsquare,hilbert,linsquare” have been used which are already defined in MATLAB.
We plot the graphs between ground acceleration vs time,show the variation of impulse
response functions(IRFs) and frequency response functions(FRFs) to show the exact nature

of TELM.The problem has been solve both in time and frequency domain.
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Fig.10.3 ground acceleration vs time graph
The above figure shows that the ground acceleration Ug(t) reaches a peak and then its effect

diminishes after some time.

e The TELS is independent of a scaling of the excitation since the direction of the
design point or the shape of the limit-state surface is invariant of this scaling.
I.e. h(t,x) and H(w,x) for excitation sF(t) are invariant of s.
This characteristic is central in obtaining fragility curves. Fragility is conditional

probability of event of interest conditioned on scale of excitation.

Fragility curve for threshold x = 3a,
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Fig.10.3 Fragility curve for given threshold
33



All this curve has been developed from one design point.

For broad-band excitations, the TELS is mildly dependent on the frequency content
of the excitation. Hence, a white-noise approximation can be used to determine the
IRF/FRF. For narrow-band excitations, this is no longer valid and the IRF/FRF

must be determined for the specific input power spectral density.

T, =0.214; c=0.295;t =239
90 n

T T T T T T

Typical Earthquake
Broadband Tuned | |
White Noise

0 5 10 15 20 25 30 35 40 45 50
time (s)

Fig.10.4 IRFs of TELS for hysteretic oscillator response to white noise
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Fig.10.5 FRFs of TELS for hysteretic oscillator response to white noise

e Influence of non-stationarity on TELS.

Suddenly applied white noise

3.5 L) T T T
t=4
sl t=7
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2.5
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x
=
£
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1
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Fig.10.6 Influence of non-stationarity on the IRFs of the TELSs

The above figure compares the corresponding IRFs for t,=4s,7sand 10s,which are plotted for
interval (0,5s). For the case of a suddenly applied stationary excitation, little dependence of
IRF on t, is evident. It follows that, whereas for a stationary process a single IRF per
threshold is adequate, for a non-stationary process one may need to determine the IRF at each
time point where the response statistics are required. This is similar to the ELM, where for
non-stationary excitation the equivalent linear system must be determined at each time step.

e The TELS strongly depends upon the selected thresholds:
h(t) 2 h(tx), H(o) > H(o,x)

In conventional linear system there is one linear equivalent linear system that you find
and you have to apply for all thresholds but here for each linear system you end up
having different linear system and for that reason we designate the unit impulse
response function and frequency response function of the equivalent linear system as

functions of threshold x also.

IRF of the TELS for selected thresholds
025 - - - - —205c

x 10

10

responce m

Fig.10.7 variation of IRF of the TELS for selected thresholds
As the threshold x increases, the dissipation is faster. These curves are not typical of the unit

response function of the linear oscillator.
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FRF of the TELS for selected threshold
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Fig.10.8 variation of FRF of the TELS of selected threshold
As the threshold increases the peak drops.
e Because of the dependence of the TELS on the threshold, TELM is unable

to capture the non-gaussian distribution of the nonlinear response.

Pr{x<X(t,w)] = O(-p(x))

Because the reliability index is not proportional to x, the TELM is able to capture the non-

gaussian distribution of the nonlinear response.

o= Unear
—©— TELM Freq
==%~= TELM Time

N "
h 4 8s 1 15 2 FI3 3 15 4 15 B
x/6y

Fig.10.9 Variation of reliability index with threshold

Blue-linear(o=1) Red-nonlinear(a=0.1)
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Fig.10.11 Variation of probability density function with threshold.

If the response is Gaussian, the curve would appear to be parabolic. For linear response the

curve is parabolic. The curve shown above is not parabola. The tail goes down as a straight

line.

For stationary response TELS is invariant of time t. Thus TELSs determined for one

time point are sufficient to evaluate all statistical properties of the response e.g.,

= Point-in-time distribution Pr[x<X(t,u)]

= Mean up crossing rate

= First passage probability i.e., the probability distribution of
the maximum response over an interval of time is presented. You do not want
point in time, you want the distribution throughout.

TELM is easily extended to MDoF systems-number of random variables remain the

same.
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CHAPTER 11
LIMITATIONS AND SHORTCOMINGS OF TELS

The classical drawbacks of FORM also apply to TELM. In particular, there is no
measure of the error due to the linearization approximation, which means that the
accuracy of TELM cannot be estimated in advance. Moreover, TELM requires far
more analysis than ELM, if one is interested only in the first and second moments of
the nonlinear response. Thus, for second-moment analysis, ELM is the appropriate
method, while TELM is the appropriate method to use for estimation of tail
probabilities.

TELM requires many repeated computations. We use Direct Differentiation method
for this purpose.

The nonlinear response must be continuously differentiable-must use smooth or
smoothened constitutive laws otherwise you cannot define the tangent plane. we
cannot use purely elasto-plastic oscillator. we have to smoothen that elasto-plastic
oscillator. the transition between different systems have to be smooth.

The limit state surface must be well behaving. TELM does not works well for
strongly stiffening systems(e.g. Duffin oscillator with a strong cubic term) or when
non linearity involves abrupt behaviour in the system behaviour.

TELM is not applicable to degrading systems.
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CHAPTER 12
CONCLUSIONS

TELM is an alternative linearization method for nonlinear stochastic dynamic
analysis.

TELM is non parametric

Captures non-gaussian distribution of nonlinear response.

Offers superior accuracy for tail probabilities.

Is particularly convenient for fragility analysis.

Can be applied to stationary and non-stationary response.

Can be applied to MDoF systems, multi-component excitations.

TELM requires continuous differentiability of the nonlinear response.

As other linearization methods, the accuracy of TELM depends on the nature of the

nonlinearity.
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APPENDIX-I

Matlab code for numerical example solved in chapter 10:

1.Main.m-

%% Tail-equivalent linearization method for nonlinear random vibration
clear all;close all;clc; warning off;

f = linspace(0,40,2048); % frequency vector

zeta = 0.3; % bandwidth of the earthquake excitation.

sigma = 1; % standard deviation of the excitation.

fn =2; % dominant frequency of the earthquake excitation (Hz).

T90 = 0.3; % value of the envelop function

eps = 0.4; % normalized duration time

tn = 20; % duration of ground motion (seconds).

fo =0;

Fs =100; % (in Hz) Frequency sample

NFFT = 2712; % number of frequencies for discretization of IFT (4096)

% function call
[y,t] = seiTELS(sigma,fn,zeta,f, T90,eps,tn);
% y: acceleration record

% t: time

input.Vs =[232] % (mls)

input.rho = [2000 2100 2400]; % psd (kgr/m3)

input.damp =[0.04 0.030.01]; % damping ratio

input.freq = linspace(f0,Fs,NFFT);% frequency range
input.layer_thick = [10 10]; % (m) ! no thickness for bedrock!

% Call function
[f, U, A, B] = HOR_IRF(input);
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% Frequency response function

FRF_linear = U(1,:)./U(end,>);

FRF_firstorder = U(2,:)./U(end,:);

FRF_secondorder = U(3,:)./U(end,>);

FRF_thirddorder = U(2,:)./U(end,:)+1;

%% plot

figure

plot(t,y);

xlabel(‘time (s)")

ylabel(‘ground acceleration (m/s"2)")

axis tight ;xlim([0 20]);

set(gcf,'color','w")

%% Fitting the ground acceleratoin record to target spectra & envelop

guessEnvelop=[0.33,0.43,50]; % guest for envelop

guessKT =[1,1,5]; % guess for spectrum

[T90,eps,tn,zeta,sigma,fn] = KTPSD(t,y,guessEnvelop,guessKT,...
'dataPlot’,"'yes")

% plot

figure;

plot(f,abs(FRF _linear));

hold on;

plot(f,abs(FRF _firstorder),r);

hold on;

plot(f,abs(FRF_secondorder), k');

hold on;

plot(f,abs(FRF_thirddorder),'m");

xlim([0 Fs/2])

xlabel('Time (s)")

ylabel('h(t,x)")

title('Suddenly applied white noise");

legend('t=4",'t=7",'t=10");

42



2.5eiTELS.m-

function [y,t] = seiTELS(sigma,fn,zeta,f, T90,eps,tn)

% [y,t] = seiTELS(sigma,fn,zeta,f, T90,eps,tn) generate one time series

% corresponding to acceleration record from a seismometer. The function
% requires 7 inputs, and gives 2 outputs. The time series is generated in
% two steps: First a stationnary process is created based on the Kanai-

% Tajimi spectrum, then an envelope function is used to transform this

% stationnary time series into a non-stationary record.

%% Initialisation

w = 2*pi*f;

fs = f(end);

dt = 1/fs;

fO= median(diff(f));
Nfreq = numel(f);

t = 0:dt:dt*(Nfreg-1);

%% Generation of the spectrum S

fn = fn*2*pi; % transformation in rad;

sO = 2*zeta*sigma.”2./(pi.*fn.*(4*zeta."2+1));
A = fn. M+(2*zeta*fn*w)./2;

B = (fn.A2-w."2) A2+(2*zeta*fn.*w)."2;

S =s0.*A./B; % single sided PSD

%% Time series generation - Monte Carlo simulation
A = sqrt(2.*S.*f0);
B =cos(w"™t + 2*pi.*repmat(rand(Nfreq,1),[1,Nfreq]));

X = A*B; % stationary process

%% Envelop function E
b = -eps.*log(T90)./(1+eps.*(log(T90)-1));
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c =b./eps;
a = (exp(1)./eps)."b;
E = a.*(t./tn)."b.*exp(-c.*t./tn);

%% Envelop multiplied with stationary process to get y

y = X.*E;

end

3.HOR_IRF.m-
function [f, U, A, B] = HOR_IRF(input)

if length(input.Vs) ~= length(input.layer_thick)+1
disp(‘There is a problem with the number of velocities Vs assigned to the various layers')
disp(")
disp(‘Solution: Assign velocities for the all soil layers and for the bedrock’)

end

% frequency vector ((fO Fs NFFT)=(0 100 4096) 0 to 100 in 4096 parts)
f = input.freq;

% circular frequency vector again angular frequency vector

omega = 2*pi*input.freq;

% imaginary "i" i is defined here

clear i; i=sqrt(-1);

% complex shear wave velocity input.Vs=[2 3 2]

Vsstar = input.Vs.*(1+i*input.damp);

% thickness of the soil layers

h = input.layer_thick;
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% number of soil layers + bedrock, it shows size of vector here it is 3

layernum = length(input.Vs);

% complex impendance ratio on layer interfaces

az=zeros(layernum-1); % 0 matrix of 2x2

for il = 1:layernum-1 % it shows loop will run for layernum - 1 times that is 2
az(il) = input.rho(il) * Vsstar(il) / ( input.rho(il+1) * Vsstar(il+1) );

end

% Initialization of matrices

kstar = zeros(layernum,length(input.freq));% matrix size 3x4096
A = zeros(layernum,length(input.freq));

B = zeros(layernum,length(input.freq));

U =zeros(layernum,length(input.freq));

% Calculate transfer functions

for il = 1:layernum % Loop for the soil layers

for i2 = 1:length(input.freq) % Loop for the frequencies

kstar(i1,i2) = omega(i2)./Vsstar(il); % complex wave number kstar=omega/\/sstar

ifil==
A(i1,i2) = 0.5%exp(i*kstar(i1,i2)*input.layer_thick(il)) + ...
0.5*exp(-i*kstar(i1,i2)*input.layer_thick(il));

B(i1,i2) = 0.5*exp(i*kstar(i1,i2)*input.layer_thick(il)) + ...
0.5*exp(-i*kstar(i1,i2)*input.layer_thick(il));

U(i1,i2) = A(i1,i2) + B(il1,i2);
else
A(i1,i2) = 0.5*A(i1-1,i2) * (1+az(il-1)) * exp(i*kstar(il-1,i2)*input.layer_thick(il-
1)+ ..
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0.5*B(il1-1,i2) * (1-az(il1-1)) * exp(-i*kstar(il-1,i2)*input.layer_thick(il-1));

B(i1,i2) = 0.5*A(i1-1,i2) * (1-az(i1-1)) * exp(i*kstar(il1-1,i2)*input.layer_thick(i1-1))

0.5*B(il1-1,i2) * (1+az(i1-1)) * exp(-i*kstar(il-1,i2)*input.layer_thick(i1-1));

U(i1,i2) = A(i1,i2) + B(i1,i2) ;
end %end if

end %end i2

end %end il

N = length(input.freq);

% Complex conjugates for "perfect" ifft
if round(rem(N,2))==1
ia=2:1:(N+1)/2;
ib = N:-1:(N+3)/2;
else ia = 2:1:N/2; ib = N:-1:N/2+2;

end

A(:,ib) = conj(A(:,ia)) ;
B(:,ib) = conj(B(:,ia)) ;
U(:,ib) = conj(U(:,ia)) ;

4. KTPSD.m-

function [T90,eps,tn,zeta,sigma,fn] = KTPSD(t,y,guessEnvelop,guessKT,varargin)

%

%Kanai—Tajimi model psd to ground acceleration

%

%%%%%%% %% %% %% %% %% %% %% % %% %% %% %% %% %% % %% % % %% %% %%
%%%%0%%% %% %% % % %% %% %% %% %% %% % %% %%
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% INPUTS

%%%%6%%%%%%% %% %% % %% %% %% %% %% %% %% % %% %% % %% % % %% %% %
%%%9%6%%%% % %% % % %% %% %%% %% %% %% %% %%

% y:size: [ 1 x N ] : aceleration record

% t: size: [ 1 x N ] : time vector

% guessEnvelop: [1 x 3 ]: first guess for envelop function

% guessKT: [1 x 3 ]: first guess for Kanai—Tajimi spectrum

% varargin:

% 'F3DB' - cut off frequency for the low pass filter

%  'TolFun' - Termination tolerance on the residual sum of squares.
% Defaults to 1e-8.

% TolX' - Termination tolerance on the estimated coefficients

% BETA. Defaults to 1e-8.

% 'dataPlot’ - 'yes': show the results of the fitting process

%%%%0%%% %% %% %% %% %% %% % %% %% %% %% %% %% %% % %% %% %% %% %%
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %%

% OUTPUTS

%%%9%6%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %% %%
%%%%0%%% %% %% % %% %% %% %% %% %% %% %% %%

% sigma: [1 x 1 ]: Fitted standard deviation of the excitation.

% fn: [1 x 1]: Fitted dominant frequency of the earthquake excitation (Hz).

% zeta: [1 x 1 ]: Fitted bandwidth of the earthquake excitation.

% f: [ 1 x M ]: Fitted frequency vector for the Kanai-tajimi spectrum.

% T90: [1 x 1 ]: Fitted value at 90 percent of the duration.

% eps: [1 x 1 ]: Fitted normalized duration time when ground motion achieves peak.

% tn: [1 x 1 ]: Fitted duration of ground motion.

%% inputParser

whiteNoise = inputParser();

whiteNoise.CaseSensitive = false;

whiteNoise.addOptional(‘f3DB',0.05);%3 decibel frequency
whiteNoise.addOptional('tolX',1e-8);% Adds an optional argument to the input scheme.
tolerance 10"(-8)

whiteNoise.addOptional(‘tolFun’,1e-8);
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whiteNoise.addOptional(‘dataPlot’,'no’);

whiteNoise.parse(varargin{:});

tolX = whiteNoise.Results.tolX ;

tolFun = whiteNoise.Results.tolFun ;

f3DB = whiteNoise.Results.f3DB ;

dataPlot = whiteNoise.Results.dataPlot ;

% check number of input

narginchk(4,8)% narginchk(LOW,HIGH) throws an error if nargin is less than LOW or
greater than HIGH

%% Get envelop parameters
dt = median(diff(t));

h1=fdesign.lowpass('N,F3dB',8,f3DB,1/dt);

d1 = design(hl, butter');

Y = filtfilt(d1.sosMatrix,d1.ScaleValues, abs(hilbert(y)));%Y = filtfilt(B, A, X) filters the
data in vector X with the filter described by vectors A and B to create the filtered data Y.

Y =Y./max(abs(Y));

options=optimset('Display’,'off', TolX',tolX, TolFun',tolFun);

coeffl=Isqcurvefit(@(para,t)
Envelop(para,t),guessEnvelop,t,Y,[0.01,0.01,0.1],[3,3,100],0ptions);

eps = coeffl(1);
T90 = coeffl(2);
tn = coeff1(3);

%% Get stationary perameters for the spectrum

E =Envelop(coeffl,t);

X = y./E; % there may be better solution than this one, but I don't have better idea right now.
x(1)=0;

% calculate the POWER SPECTRAL DENSITY
[PSD,freq]=pwelch(x,[],[].[],1/median(diff(t))); %%

48



coeff=lIsqcurvefit(@(para,t)

KT (para,freq),guessKT,freq,PSD,[0.01,0.01,1],[5,5,100],options);
zeta = coeff2(1);

sigma = coeff2(2);

fn = coeff2(3);

%% dataPLot (optional)
if strcmpi(dataPlot,'yes’),
spectra = KT(coeff2,freq);

figure

% subplot(211)
plot(t,y./max(abs(y)),t,Envelop(coeffl,t),t,Y,r")
legend('Typical Earthquake','Broadband Tuned','White Noise")
title(]' T_{90} = ',num2str(coeffl(2),3),; \epsilon =",...

numa2str(coeff1(1),3),; t_{n} =" ,num2str(coeffl(3),3)]);

xlabel(‘time (s)")
ylabel('h(t,x)");
axis tight ;
figure;

% subplot(212)
plot(freq,PSD,freq,spectra,'r')
legend('Measured','Fitted envelop’)
legend('Typical Earthquake','Broadband Tuned’)
title([' \zeta = ",num2str(coeff2(1),3),"; \sigma =",...

numz2str(coeff2(2),3),"; f {n} =" ,num2str(coeff2(3),3)]);

xlabel(‘frequency (Hz)")
ylabel("H(w,x)")
axis tight

xlim([0 10));
set(gcf,'color’,'w")

end
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%09%0%%%%%%%%%%%%%% %% %% %% %% %%%% %% %% %% %% %%%%% %% %%
%09%%%%%%%%%%%%%%% %% %% %% % %%%%% %%

%% NESTED FUNCTIONS

%9%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % % %% %% %% %% %
%09%%%%%%%%%%%%%%% %% %% %% % %%%%%%%

function E = Envelop(para,t)
eps0 = para(l);
eta0 = para(2);
tn0 = para(3);
b = -eps0.*log(eta0)./(1+eps0.*(log(eta0)-1));
¢ = b./eps0;
a = (exp(1)./eps0)."b;
E = a.*(t./tn0).”"b.*exp(-c.*t./tn0);
end
function S = KT(para,freq);
zetaO = para(l);
sigma0 = para(2);
omega0 = 2*pi.*para(3);
w =2*pi*freq;
s0 = 2*zeta0*sigma0./2./(pi.*omega0.*(4*zeta0."2+1));
A = omega0.4+(2*zeta0*omega0*w)."2;
B = (omega0./2-w."2)."2+(2*zeta0*omega0.*w)."2;
S =s0.*A./B; % single sided PSD
end

end
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