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ABSTRACT 

Background: Software reliability prediction has become a key activity in the field of software engineering. 

It is the process of constructing models that can be used by software practitioners and researchers for 

assessing and predicting the reliability of the software product. This activity provides significant 

information about the software product such as “when to stop testing” or “when to release the software 

product” and other important information. Thus, effective reliability prediction models provide critical 

information to software stakeholders.  

Method: In this paper, we have conducted a systematic literature review of studies from the year 2005 to 

2016, which use soft computing techniques for software reliability prediction. The studies are examined 

with specific emphasis on the various soft computing techniques used, their strengths and weaknesses, the 

investigated datasets, the validation methods and the evaluated performance metrics. The review also 

analyses the various threats reported by software reliability prediction studies and statistical tests used in 

literature for evaluating the effectiveness of soft computing techniques for software reliability prediction. 

Results: After performing strict quality analysis, we found 31 primary studies. The conclusions made based 

on the data taken from the primary studies indicate wide use of public datasets for developing software 

reliability prediction models. Moreover, we identified five most commonly used soft computing techniques 

for software reliability prediction namely, Neural Networks, Fuzzy Logic, Genetic Algorithm, Particle 

Swarm Optimization and Support Vector Machine.  

Conclusion: This review summarizes the most commonly used soft computing techniques for software 

reliability prediction, their strengths and weaknesses and predictive capabilities. The suitability of a specific 

soft computing technique is an open issue as it depends heavily on nature of the problem and its 

characteristics. Every software project has its own growth behavior and complexity pattern. Hence, more 

number of studies should be conducted for the generalization of the results. The review also provides future 

guidelines to researchers in the domain of software reliability prediction.   

Keywords: Software reliability, soft computing technique, software quality, reliability prediction 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Reliability is defined as the ability of a system or component to perform its required functions under stated 

conditions for a specified period of time [1]. Software may face failures during its operational phase if bugs 

are present. Underestimation of the complexity of the projects may cause schedule and cost overruns. These 

overruns are primary concerns for project stakeholders and can adversely affect the quality of software. 

Thus, assessing and predicting software reliability is very important to ensure the quality of the final 

software product. It provides crucial information about the software product. It can be used to decide the 

amount of testing and release date of the software product by management team. Many studies have been 

conducted in literature for prediction of software reliability. As a result, hundreds of reliability prediction 

models are produced to estimate and predict the reliability pattern. However, there is not a single model 

that can be classified as a generic model which can be easily adapted to different project attributes in all 

conditions. This is because every project has their own growth behaviour and complexity patterns.  

Researchers have proposed the application of various Soft Computing Techniques (SCT) to software 

reliability prediction [2, 3]. SCT are typically useful for solving real life problems. These techniques are 

well suited in situations where problems are imprecise, uncertain and partially incorrect [4]. The 

implementation of SCT for assessing and predicting software reliability is beneficial because they can solve 

nonlinear real world problems only by using software failure history data. They do not need to consider any 

assumptions about organization, development process and nature of faults or their complexity. Previous 

studies have already established that the use of various SCT for assessing and predicting the software 

reliability has shown significant improvement over other traditional techniques [2, 3, 5]. SCT like Artificial 

Neural Networks (ANN), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Support Vector 

Regression (SVR) and Fuzzy Logic (FL) have been used for software reliability prediction because they 

produce more precise estimation results as compared to statistical or other traditional prediction techniques.  

Though, a number of studies have successfully used SCT for software reliability prediction, in order 

to identify research gaps and to provide future guidance to researchers, it is necessary to conduct a 

systematic literature review (SLR) of the existing literature in this domain. Thus, this thesis conducts a SLR 

of studies from 2005 to 2016 that use SCT for software reliability prediction. We summarize the current 

trends in the domain by extracting data from 31 primary studies. These studies were selected after 

application of strict quality assessment. We summarized current trends related to (1) most commonly used 

SCT, (2) strengths and weaknesses of the techniques (3) datasets investigated (4) validation methods used 

(5) performance metrics evaluated (6) predictive capabilities of SCT (7) statistical tests used and (8) the 
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identified threats for software reliability prediction. We have further provided future guidelines for the 

researchers in this domain.  

 

1.1.1 SOFTWARE RELIABILITY 

Today, the world around us is computerized. Along with this, many important activities are computer 

controlled, such as economical transactions, medical monitoring etc. Our dependencies on computer 

applications are increasing day by day. Thus the correct response of the software is very much essential.  

Hence, software reliability has become the most important quality characteristics of the software. In order 

to assess a particular reliability level, first we need to find current reliability of the software.  The 

characteristics of the software varies depending on many factors like type of software, operating 

environment etc. there is a need to establish a standardization of the software which represents the main 

purpose of the software Thus achieving desired software reliability with meeting user requirements are of 

great interest. “When should testing stop” or “when to release the software” are very relevant questions for 

different stakeholders of the software.  Extensive testing is required before the software is ready to be 

released in the market. Extensive testing requires huge cost and time.  Cost calculations and testing effort 

calculation has become mandatory activities in context of software engineering. It is necessary to find the 

milestone when the software reliability is of satisfactory and the costs are realistic. This involves the 

activities of software reliability estimation and prediction. Prediction is required to manage the software 

development and testing in respect of costs. First, the estimation of current reliability level is required and 

then prediction can be made for future reliability. The following activities are important with respect to 

software reliability; 

 Mapping of application for specifying the usage 

 Testing based on the specified operational profile 

 Modelling the results of testing in order to estimate the current level of reliability.  

 Predicting the future software reliability to restrict the software testing and development efforts. 

 

1.1.2 SOFTWARE RELIABILITY GROWTH MODEL 

Software reliability is defined as the probability of failure free software operation for a specified period of 

time in a specified environment. The assessment of software reliability is one of the most important activity 

during the development of the software. A failure is a departure of system behaviour in execution from user 

requirements and it is the result of a fault. A fault is a defect that causes or can potentially cause the failure 

when executed.  Software reliability growth models (SRGM), are those models that attempt to predict 

software reliability from testing data of the software. These models try to find a correlation between testing 

data and functions like logarithmic or exponential functions. The effectiveness of these models are 

depending on the degree of correlation between mathematical function and testing data. SRGM are 

employed for estimating the software growth i.e. how software reliability improves as testing proceeds. 
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These models can be used for predicting the software reliability and also helps in deciding when to stop 

testing. SRGMs help in determination of many software development metrics such as failure rate, number 

of faults in the beginning, number of residual faults, reliability value within a specified interval of time 

period, release time and cost analysis etc. The utility of a SRGM is dependent to its predictive ability and 

stability. The prediction of number of faults remaining should be as close as actual faults discovered during 

the field test (predictive ability). Model parameters should not change majorly as the new data is included 

(Stability). 

Many SRGMs have a parameter that refers to the total number of defects present in a software program. If 

this parameter is known and the existing number of defects discovered is also known then we can know 

that how many more defects are remaining in the program.   (Figure 1.1). If we know the remaining defects 

in the program, it helps in decision making in deciding the release date of the software. Also, it helps in 

knowing that how much testing is required in future.. It provides an estimation about the number of faults 

that the customers will experience while operating the software. This estimation helps in deciding the 

resources required during the maintenance phase of the software. 

                     
Figure 1.1: REMAINING DEFECTS 

 

1.2 Motivation 

Software reliability prediction is the process of developing models that can be used by software practitioners for 

assessing and predicting the reliability of the software product. Software reliability prediction is very essential 

activity for the development of quality software. Many models have been developed for assessing and 

predicting the software reliability. SCTs have been used for solving real life problems efficiently and 

effectively. These techniques are well suited where the problems are uncertain, imprecise and partially 
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incorrect. The application of SCTs for software reliability prediction have shown enormous improvement 

over other traditional techniques.  

Several Soft Computing techniques such as ANNs, FLs, GAs, PSOs, and Hybrid approach have 

been proposed in the literature to solve classification and optimization problems. However, there is a lack 

of systematic literature review that provides comprehensive analysis about current trends related to the 

mostly used SCT, datasets, validation techniques and their strengths and weaknesses for software reliability 

prediction. Also, there is a lack of review which addressed the concern over threats to validity and statistical 

tests. There are five reasons to conduct this SLR. 

1. To make general conclusions about the SCT used for software reliability prediction. 

2. To analyse the methods, dataset trends, validation methods and statistical tests used in the 

studies based on usage of SCT for software reliability prediction. 

3. To summarize strengths and weaknesses of SCT for software reliability prediction. 

4. To identify the various threats to validity addressed in studies which use SCT for software 

reliability prediction. 

5. To identify different statistical tests used in the studies. 

   

1.3 Thesis Organization 

This thesis is organised as: In Chapter 2, the related work and background is given. Chapter 2 

includes related work about the existing literature on reviews and usage of SCT for software reliability 

prediction and background of software reliability. 

 In Chapter 3, the investigated research questions (RQs) and research methodology are given. This 

chapter includes various RQs formed and process of SLR followed throughout the conduction of the thesis. 

In chapter 4, the results and answers of research questions (RQ’s) are described. This chapter 

consists of discussion and findings while answering the RQs. 

In chapter 5, threats to validity is presented. This chapter addresses the limitations of the study 

conducted as part of thesis. 

In chapter 6, the conclusion and future directions are given in chapter 6. This chapter describes the 

summary of results and findings. Also, the chapter includes future directions to the researchers who are 

interested to work in the similar domain. 

In Chapter 7, the appendix A.1 is provided. This appendix is a summary about the primary studies 

which includes 5 attributes (year, primary studies, Journal/conference, datasets and methods used) and 31 

primary studies (from year 2005 to 2016). 

In Chapter 8, References are provided 
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CHAPTER 2  

 Related Work & Background 

 

2.1.1 Systematic Literature Review Studies 

Apoorva and Ankur (2011) [7] mainly focused on analysing Journals and Conferences publications on 

software reliability. They emphasised on the research methods, identification of journals and research topics 

selected for reliability studies. Afzal and Torkar (2011) [8] conducted a systematic review that analysed the 

effectiveness of genetic programming for developing predictive models in software engineering. However, 

the focused on only a specific SCT i.e. GP, while ignoring others. Jatain and Mehta (2014) [9] conducted 

a study which focused on the various parameters that affects the performance of the software reliability 

models. Sharma (2015) [10] performed a review of various software faults, detection of fault tolerance, 

performance testing, and evaluation of reliability of software systems. Ong L (2016) [11] has reviewed 

meta-heuristic techniques for software reliability prediction. He has analysed trends of meta-heuristics 

techniques, validation methods used and comparison criteria used for software reliability prediction. 

Malhotra R (2017) [12] has reviewed various search based techniques used for prediction purposes. This 

review focused on prediction of effort, maintainability, defect and change proneness. Yadav N (2016) [13] 

presented a review of different evolutionary algorithms used for software reliability prediction. He 

emphasised on role of well-known evolutionary algorithms for optimization of software reliability. 

Sangwan T (2017) [14] reviewed various intelligence approaches used for software reliability prediction. 

He focused mainly on metrics based approaches. The existing reviews are focused on some specific 

objectives like review by Yadav N mainly focused on evolutionary algorithms and review by Ong L mainly 

concerned with meta-heuristic techniques. Also, these review lack in some important aspects such as threats 

to validity and statistical tests concerns. So this review presents a comprehensive analysis of various SCTs 

used for software reliability prediction. This review involves trends in various SCT, dataset analysis, 

capability measures analysis, threats to validity concern, statistical tests concerns, strengths and weaknesses 

of mostly used SCT. Also, this review provides guidelines to future researchers who are interested to work 

in the similar domain.   

2.1.2 Soft Computing Techniques Studies 

Several SCTs such as ANNs, FLs, GAs, PSOs, and Hybrid approach have been proposed in theory to solve 

classification and optimization problems (Yogesh Singh. 2010, 2011; Sultan Aljahdali 2011; Mohammed 

E. El-Telbany 2008; TaehyounKim 2015; Malhotra et al. 2013; Manjubala Bisi 2015; Eduardo et al. 2010; 

Raj and Ravi 2007).  

There are several studies which applied ANNs for software reliability prediction successfully (Yogesh 

Singh. 2010, 2011). However, effectiveness of NN based prediction models depend on the type of dataset 
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that is of changing nature. Therefore ANNs have the problem of  overfitting the results. This happens when 

dealing with unknown data sets. Overfitting occurs mostly due to the reason that model gets tuned well 

with training data but for new data the performance of the model degrades. So overfitting is the main issue 

with NNs. The usage of fuzzy logic systems in software reliability prediction is found to be efficient and 

decisive. Because of huge computation and small learning rate of the model, the soft computing techniques 

based of FIS is more effective than other soft computing techniques (Sultan Aljahdali 2011). However, the 

challenge is to make it make it more efficient by employing new technique that require less resources and 

provide improved predictive accuracy.  

The GAs soft computing technique have the capability of optimal parameters estimation in process 

of learning through historical data (Mohammed E. El-Telbany 2008). The proposed models are constructed 

using linear ensemble, However the non-linear models are also required to be built for performance 

comparison. The real-valued GA (RGA) provides improvement over simple GA technique (TaehyounKim 

2015). Simple GA requires extra processes for encoding and decoding the chromosomes and binary genetic 

operator produces useless chromosomes that produces unstable parameter estimation. RGA eliminate the 

need of binary genetic operator and hence improve the performance over GA technique. 

The Particle Swarm Optimization (PSO) has been applied successfully in many optimization 

problems. PSO is used for SRGM parameter estimation and comparative study is carried out (Malhotra et 

al. 2013). The results shows lesser mean errors for PSO than GA and hence better performance of PSO. 

The hybrid approach (ANN-PSO) has shown better predictive capability (Manjubala Bisi 2015). A 

novel ANN based approach is proposed with an additional layer in between hidden and input layer for 

increasing the input values using Log function. PSO is used for training the ANN. 

.  

2.2 CLASSIFICATION OF SRGM 

SRGMs have been classified into two categories of models: S-shaped and concave. Fig. 1.2 shows both 

types of models. The most important aspect of both models is that they demonstrate the same behaviour, 

that is, As the test time progresses (no. of defects detection and repairing increases), the defect detection 

rate decreases.  

 

Figure 2.1:  S – SHAPED AND CONCAVE MODEL 
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The measurement of the reliability of software can be done in many ways. Failure intensity is mostly used 

metric to describe software reliability. It is defined as the number of failures experienced per unit "time" 

period. It is also known as failure rate. Another measure for software reliability is the mean time to failure 

(MTTF). MTTF is calculated mostly by making the inverse of the failure rate. The computation of failure 

rate can be done for different cases (total discovered failures, total sole failures, or for some particular 

category of failures). Failure rate represents the user perception about the quality of software. When the 

software testing is under progress, the failure intensity decreases over the period of time. The software 

reliability can be described for systems with no repair as follows:  

R(t)   ~   e -Lt ---------------  (1) 

Where, 

R(t) denotes reliability of the system, and "t" is the mission time. 

For example, suppose that the system is operational under specified conditions, and repairing of faults is 

not done. 

Suppose the number of failures experienced over the operation of 10,000 hours is 8. Then, failure intensity 

is 0.0008 (8/10000 = 0.0008) failures per hour, and the related MTTF is about 1250 hours (1/0.0008 =1250). 

If the system operates as expected at time t=0 hours. We can find the reliability of the system functioning 

without failure for 10 hours using equation (1)  

R(10) = e-0.0008*10 = 0.991. 

When the software is under test, failure intensity, decreases with time t during which software is under test 

and usage as per specified conditions. Most of the software reliability models address this aspect of software 

reliability, but before any model is selected, it is a necessary to ensure the presence of the growth using 

testing data. Each model has certain strengths as well as weaknesses. Thus, It is very important to choose a 

suitable model for a particular environment. 

If failure intensity data is known, estimation of model parameters can be done. There are several ways of 

estimation. Two traditional methods for estimation includes maximum likelihood and least squares. There 

are two different ways of using a model. One way is to describe the historical data. The other is the 

prediction of future reliability measures and activities when the software is under testing or operation. 

Prediction can be done about some important activities like "when software can be released" or “when 

reliability will reach a specified value". Predictions are more useful for different stakeholders of the 

software product, but also it involves high risk. No single model can be recommended for all situations, 

and model performance can change significantly depending on different conditions. 
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2.3 Terms related to software reliability 

 

2.4 Popular Software reliability Models 

Following are the popular software reliability models 

1) Jelinski-Moranda Model 

2) Goel-Okumoto Model 

3) Generalized Goel NHPP Model 

4) Inflected S-Shaped Model 

5) Logistic Growth Curve Model 

6) Musa-Okumoto Model  
 

These models are described briefly in subsequent sections. 

 

2.4.1 Jelinski-Moranda Model 

 

This model was introduced in 1972. It is one of the most popular SRGM.  This is a continuous time-

independently, identical error behaviour and distributed inter failure times model. The rate at which 

software failure occurs at any time is propotional to the current fault density of the program. The order 

statistics distribution is the Exponential distribution.  

Following are the primary assumptions of the model:  

1. When testing begins, there are constant no. of faults available in the program.  

2. All faults belongs to the same category.  

3. Faults are repaired immediately and perfectly.  
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4. The detection of faults is independent with each other. 

5. The number of residual faults are exponentially distributed with time between failures. 

6. The severity of the faults which causes failures are equal..  

7. The failures are detected randomly, i.e. given N0 and 𝜑 the times between failures differs (Δ𝑡1 ,Δ𝑡2 

,....,Δ𝑡𝑛0). 

8. The faults are removed instantly, whenever failure occurs and repair does not introduce any new 

fault in the software. 

          Z(Δt|ti-1 )= ф[n0 – M(ti-1)] = ф[n0 – (i-1)]……….(1) 

The failure intensity function can be described as the product of the residual faults and the probability 

density function of the time till activation of a single fault, 

𝑑𝑚(𝑡)

𝑑(𝑡)
= n0[1- exp(ф𝑡) ]……………....(2) 

Mean value function m(t) can be described as 

m(𝑡) = 𝑛0 [1−exp −ф𝑡  ]…………………..(3)                          

The failure intensity function can be given as [from equations (2) and (3)], 

    
𝑑𝑚(𝑡)

𝑑(𝑡)
 = ф[n0 –m(t)]…………………..(4) 

As per eq. (4), the failure intensity of the software at time t is proportional to the probable no. of residual 

faults in the software. Several SRGMs can be stated in a form corresponding to equation (4). One of the 

most commonly discussed assumptions of the J-M model is the equation (2) due to the reason that this eq. 

shows that hazard rate decreases with repair of faults. This phenomena is shown in Figure 2.2. 

 

Figure 2.2: Hazard rate of Jelinski-Moranda Model 
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2.4.2 Goel-Okumoto Model  

 

This model was suggested in year 1972. It is popularly known as Non homogeneous Poisson process 

(NHPP) model in the area of software reliability modeling. It is also called the exponential NHPP model. 

Above mentioned equations (2), (3) and (4) of the J-M model are also applicable for Goel-Okumoto model. 

Considering failure detection as a NHPP with an exponentially decreasing rate function, the mean value 

function can be expressed as:  

𝑚 (𝑡) =𝑎 (1−exp (–𝑏𝑡)) , 𝑎>0,𝑏>0 

 and the intensity function of this model is given as  

𝜆 (𝑡) =𝑎𝑏∗(exp (–𝑏𝑡)) , 𝑎>0,𝑏>0  

Where parameter a is the probable total number of faults that would be detected and parameter b represents 

the rate of fault detection. 

A typical plot of (𝑡) for the Goel-Okumoto model is shown in Figure 2.3 where (𝑡) is shown when 𝑎 = 11 

and 𝑏 = 0.14. The parameter a is related to the scale and b is related to the shape of the mean-value function. 

 

 

Figure 2.3: Mean Value function of G-O Model  

 

2.4.3 Generalized Goel NHPP Model  

Goel has proposed a model that is generalized form of G-O model. He has described the situation that 

software failure intensity increases marginally at the start and then begins to decrease as the testing 

proceeds. There is an additional parameter c in the Goel model. The mean value function and intensity 

function are given as follows: 
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𝑚 (𝑡) = 𝑎 (1−exp [-𝑏𝑡]c) , 𝑎>0,𝑏>0,𝑐>0 

 𝜆 (𝑡) = [𝑎𝑏𝑐𝑡](𝑐−1)exp –[-𝑏𝑡]𝑐 , 𝑎>0,𝑏>0,𝑐>0  

Where, a refers to the probable total number of faults that would be detected and b and c are parameters 

that refers to the quality of testing. 

 

2.4.4 Inflected S-Shaped Model  

This model provides solution to the technical problem of G-O model. It was proposed by Ohba and its main 

concept is that the detected software reliability growth follows S-shape if faults in a program are dependent 

mutually, i.e., some faults are not visible before some others are corrected. The mean value function of S-

shaped model is as under:   

 

    𝑚 (𝑡) = a * 
1−exp⁡[−𝑏𝑡]

1+𝛙(𝐫)∗𝐞𝐱𝐩[−𝐛𝐭]
            ψ(r) =  

1−𝑟

𝑟
 , 𝑎>0,>0,>0 

Where, 

Parameter r is the inflection rate that denotes the ratio of the number of visible faults to the total number of 

faults in the software, a is the probable total number of faults that would be discovered, b is the rate of fault 

detection, and is the inflection factor.  

If we take ψ r =β then the inflection S-shaped model mean value function and intensity function are given 

as follows: 

 

(𝑡)=𝑎∗[  
1−exp⁡[−𝑏𝑡]

1+β∗exp[−bt]
    𝑎>0,𝑏>0,β>0 

 

𝜆 (𝑡) = 
𝑎𝑏𝑒𝑥𝑝[−𝑏𝑡](1+βt)

(1+β∗exp[−bt])2
,  𝑎>0,𝑏>0,β>0 

 

   

2.4.5 Logistic Growth Curve Model  

 

The general behaviour of the software reliability is that it improves as the testing proceeds, hence, this 

phenomenon can be considered as growth process. The growth happens due to detection and repair of faults 

during testing phase. Therefore, under specified conditions, the models that are developed to predict 

economic population growth could also be utilised to predict growth of software reliability. These models 

attempt to correlate the collective number of detected faults at a given time with a mathematical function 
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such as exponential or logarithmic. Logistic growth curve model is one of them and it follows an S-shaped. 

Its mean value function and intensity function are given as under: 

 

𝑚 (𝑡) =
𝑎

1+𝑘∗exp⁡[−𝑏𝑡]
, 𝑎>0,>0,k>0 

 

𝜆 (𝑡) =
𝑎𝑏𝑒𝑥𝑝[−𝑏𝑡]

(1+𝑘∗exp⁡[−𝑏𝑡])2
   , 𝑎>0,>0,k>0 

              

Where, a is the probable total number of faults that would be discovered and k and b are estimated 

parameters using test data. 

 

2.4.6 Musa-Okumoto Model  

 

Musa-Okumoto have observed that the reduction in rate of failure resulting from detection and repair of 

faults during early failures are often bigger. This is because there is a tendency of most frequently occurring 

once. They incorporated this characteristics of faults in their model. The mean value function and intensity 

function of the model given as under: 

𝑚 (𝑡) =𝑎 ∗ln (1+𝑏𝑡), 𝑎>0,>0  

𝜆 (𝑡) = 
𝑎𝑏

(1+𝑏𝑡)
  , 𝑎>0,>0 

 

Where parameter a is the probable total number of faults that would be discovered and parameter b is the 

rate of fault detection. 
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CHAPTER 3 

Research Methodology 

 

3.1 METHODOLOGY 

This section discusses the steps for conducting the review and states the research questions. 
 

3.1.1 Review Method 

 A systematic approach for reviewing the literature on the software reliability prediction using SCT is 

chosen. Systematic literature reviews (SLR) have become a well-established method for analysing current 

trends and identifying research gaps in software engineering. An SLR is defined as a process of identifying, 

assessing, and interpreting all available research evidence with the purpose to provide answers for specific 

research questions [6]. This literature review has been undertaken as a SLR based on the original 

recommendations given by Charters and Kitchenham (2007). 

As shown in Fig. 3.1, SLR is accomplished using three steps namely: planning phase, conducting 

phase and reporting phase.  In the planning phase, the requirements are identified (Step 1). The goals for 

performing the review are presented during introduction of this paper. Then, the existing systematic reviews 

on software reliability prediction are identified and reviewed. The review protocol was designed in such a 

manner so as to reduce the chances of any preferences by the researcher (Step 2). Firstly, the research 

questions have been stated, the search strategy was developed, the process of study collection along with 

exclusion and inclusion criteria was defined. The quality evaluation of all the collected studies is performed, 

and finally data extraction is performed with respect to the research questions. The final phase includes 

reporting the results of the review according to the investigated research questions.  
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Figure 3.1: Steps involved in systematic review 
 

 

 

 

3.1.2 Research Questions 

Formulation of research questions is a very important step of review. It provides significant information to 

the readers about the review and what it investigates. These questions are primarily of interest to 

researchers. The research questions and motivation for selecting the research questions addressed by this 

literature review are listed in Table 3.1. 
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Table 3.1: RQ’s on Literature review 

 

The objective of this thesis is to analyse and provide empirical guidance based on the studies which use 

SCT for software reliability prediction. Table 3.1 shows the eight RQs addressed in this SLR. The data 

corresponding to all the RQs (RQ1 to RQ8) are extracted from the primary studies.  
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3.1.3 Search Strategy 

The search method i.e. Step 4 involves activities such as choosing the digital libraries sources, describing 

the search terms, performing a model search, filtering the search terms and producing a preliminary list of 

major studies from various sources corresponding to the search terms.  

The following five electronic databases were searched for collecting the primary studies: 

1. IEEE xplore 

2. Google scholar 

3. ACM digital library 

4. ScienceDirect 

5. Web of Sciences 

The search terms have been established based on the following steps:  

1. Selecting search terms based on RQ’s.  

2. Selection of search terms based on related titles, keywords and abstracts.  

3. Selection of substitutes, alternative antonyms of search terms.  

4. Creation of refined search string by selecting suitable terms in conjunction with Boolean ANDs 

and ORs. 

The search string is described as:  

(Application OR Software * OR systems) AND (reliability * OR quality OR error-prone) AND (predict* 

OR prone* OR probability OR assess* OR detect* OR estimation* OR classification*) AND (soft 

computing*OR *Neural*OR Particle Swarm*OR*Genetic*OR*Fuzzy*OR*Hybrid*OR*Support 

Vector*) AND (Machine Learning*OR*ant*OR*perceptron) AND (meta-

hueristics*ORdifferential*OR*evolutionary*)  

 

 

3.1.4 Inclusion and Exclusion criteria 

Deciding the proper inclusion and exclusion criteria is essential to assess the suitability of each chosen 

study. The selection or rejection of a study is derived from the criteria of exclusion and inclusion 

respectively. This criteria is shown in the Table 3.2. 
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Table 3.2: Criteria of Inclusion and Exclusion 

 

 

3.1.5 Selection of relevant studies 

This study is focused on the literature based on the reliability prediction of software using SCT in their 

prediction processes. Other than that, studies that published online in the time frame of these 11 years, 

which are from year 2005 to 2016, are included to make sure only latest and updated studies are reviewed. 

The studies published in conference or journal are included because professional reviews have been done 

to these studies and the results or findings of the studies are reliable. We have included journal publication 

of study in case if the study is published in the conference and extended to journal.    

The total number of papers collected from the various conference/Journal on the usage of SCT for software 

reliability prediction were 49. After applying criteria of exclusion and inclusion 42 studies were selected. 

Then, the full texts of 42 studies were analysed for further quality analysis. After analysing studies based 

on quality question assessment 11 studies were dropped. Finally, 31 studies were considered in this SLR. 

3.1.6 Quality assessment criteria 

We analysed the following quality questionnaire (Table 3.3) for studies assessing the quality of the studies. 

The table states 10 questions where each study was given a score of either NO (0), PARTLY YES (0.5) or 

YES (1) according to each quality question. The studies can have score of maximum 10 or minimum 0. A 

score of 10 shows that the study is having information to answer all the RQs and score 0 means the study 

cannot answer any of the investigated RQs. 
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TABLE 3.3: List of Quality Questions   

 

 

3.1.7 Data Extraction and data synthesis 

The data extraction was done by filling forms for each study. The form was utilised to extract the 

information about which RQs are answered by which studies. All the studies were tabulated as author name, 

dataset used, year of publication, method used and publishing details. These details were mentioned in the 

data extraction cards. These templates were used to collect the desired data. Further the data was stored in 

the excel file for data synthesis purposes. 

 The data synthesis involves gathering of information from all the studies with respect to a particular 

RQ and summarising the facts obtained from the analysis. Both kind of analysis quantitative as well as 

qualitative were performed for answering the RQs. Quantitative analysis involves values of performance 

measures and qualitative analysis involves strengths and weaknesses of SCT, classification of various SCT 

and data set used. 
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CHAPTER 4 

Research Results and Discussion 

 

4.1 Research Result and discussion 

In this section, we have analysed various research questions formulated and discussed each RQ in depth. 

Answers to each RQ is provided with interpretation and discussion on the findings. This section also 

provides the overview of primary studies and their rankings based on quality assessment questions. This 

discussion provides significant information regarding the present state of research in the field of software 

reliability and propose future guidelines to the readers with respect to RQ’s. 

4.1.1 Description of primary studies 

We considered 49 studies that applied SCT for software modelling and prediction. After evaluating the 

studies based on the criteria of exclusion and inclusion, 07 studies [43-49] were removed. We further 

analysed the studies with quality assessment questions and 11 studies [50-60] were removed after quality 

assessment. Finally, we included 31 primary studies [2, 3, 5, 15-42] for conducting the SLR. 

4.1.2 Publication Source 

Table 4.1 presents the journals of the selected primary studies. The number of studies in a journal along 

with their relative percentages are given. Maximum number of primary studies were found in the Journal 

of systems and software. The other Journal includes Int J of Syst Assur Eng Manage, J of comp Science 

etc. and conferences includes IEEE conference on reliability, Int conf on recent trends in computing etc. 

The 68 percentage of studies were taken from journals and 32 percentage of studies were taken from 

conferences. Hence majority of the studies were selected from journals.  

Table 4.1: The details of publications 
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4.1.3 Quality Assessment Questions 

We have assigned scores to the questions of quality assessment. We have formed the categories according 

to the scores. The categories are: Extreme high(10<score<8), high(8< score <6), average(6< score <4), 

low(4< score <2), extreme low(2< score <0). The largest score that a study could get was 10 and the smallest 

was 0. The studies which obtained extreme low score were dropped from the SLR. Total number of 11 

studies were dropped due to their low score factor. Six studies obtained the score in extreme high category 

(SR5, SR9, SR14, SR16, SR24, SR26). The readers who wish to study further on the usage of SCT for 

software reliability prediction should consider these studies.   

 Table 4.2 displays the unique ID given to each study with their references. The details of the studies 

consisting publishing year, method used, dataset used and year of publication is given in appendix A.1.  

 

Table 4.2: Paper ID and the reference of primary studies 

 

 

4.1.4 Publication Year 

The Fig 4.1 depicts the details about the publication year of studies. The period of studies selected if from 

year 2005 to 2016. The figure shows that the average number of studies conducted every year is 2. The 

highest number of studies were published in the year 2014 and 2015. This indicates increased interest of 

researchers in exploring soft computing techniques for software reliability prediction. The least number of 

studies were published in the year 2005.The figure indicates that the trends of conducting studies on using 

SCT for software reliability prediction has increased over the years. 
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Figure 4.1: Year-wise distribution of studies  

 

4.2 RQ1: Which are the various SCT used in literature for software reliability prediction? 

During the period of 2005 to 2016, many soft computing methods have been applied and proposed as the 

method for prediction of software reliability. The identified SCT are as follows:- 

 Neural Network (NN) 

 Particle Swarm Optimization (PSO) 

 Genetic Algorithm (GA) 

 Fuzzy Logic (FL) 

 Genetic Programming (GP) 

 Ant Colony Optimization (ACO) 

 Support Vector Machine (SVM) 

 Differential Evolution (DE) 

 Simulated Annealing (SA) 

 Grey wolf optimization 

 Decision TREE 

 Bagging 

 Hybrid Approach (NN+PSO, (GA-SA)+Support Vector Regression (SVR), Adaptive Neuro Fuzzy 

Inference System (AFNIS)) 

Fig 3 shows the distribution of various SCT used and Table 6 presents the number of studies and their 

relative percentages. The most frequent SCT used was NN. There were many variants found of NN 

technique including backpropagation neural network (BPNN), Pi–Sigma network (PSN), threshold-

accepting-based neural network (TANN), generalized regression neural network (GRNN), Multi-layer 

perceptron (MLP) and multivariate adaptive regression splines (MARS). Nine primary studies used NN 

technique and its variants for software reliability prediction purpose (SR2, SR5, SR10, SR13, SR14, SR18, 

SR23,SR26, SR28). The top five SCT used were NN (25%), FL (11%), SVM (11%), GA (8%) and PSO 

(8%). There were studies which used relatively new optimization techniques such as Grey wolf 
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optimization (SR31), Decision Tree (SR25) and bagging (SR28). There were studies which used techniques 

that can be classified under evolutionary techniques (PSO, GA, GP, ACO, DE). Evolutionary techniques 

are inspired by nature and are population based. They are also known as meta-heuristics search techniques. 

The 52% of primary studies used evolutionary techniques for software reliability prediction. Evolutionary 

techniques requires multiple runs (minimum 10) for obtaining better results as these techniques are 

stochastic in nature. Very few studies (about 10%) which are under evolutionary category used multiple 

runs for obtaining the results. There were studies which used hybrid approaches for software reliability 

prediction. Hybrid approaches are used to enhance the performance of the developed models. The idea 

behind hybrid approach is to combine the best features of the constituent techniques. The hybrid approaches 

found in the studies are: ANN+PSO, (GA-SA)+SVM and AFNIS. The 10% of the studies used hybrid 

approaches for software reliability prediction purpose. 

 

Table 4.3: SCT applied for reliability prediction of software 
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Figure 4.2: Distribution of SCTs Used 
 

 

4.3 RQ2: Which datasets are used for developing software reliability prediction models using SCT? 

In order to create a software reliability prediction model using SCT, a data set is required for training as 

well as validating the model. Thus, a dataset consists of two portions, first portion is a training set and 

second is a test set. A training set consists of data points that are provided as inputs to a learning system 

that analyses the data and learns from it for future predictions. A test set or evaluation set consists of data 

points that are used for assessing the model i.e. how well the model has learnt from the training data so that 

it can predict unseen data points correctly. 

Table 4.4 presents the different datasets used along with their brief description and the studies which 

investigated them. Fig 4.3 shows the distribution of dataset types used in the studies. The dataset used are: 

DACS/Musa, Private/Industrial, Lyu and Wood. The percentage categorization of these datasets are: 

58.06% of the research studies used DACS/Musa dataset, 32.25% of the research studies used 

private/industrial datasets, 6.45% of the research studies used Lyu dataset and 3.22% of the research studies 

used Wood dataset.  
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Figure 4.3: Distribution of dataset 
 

Table 4.4: Commonly used Data sets 

 

 

4.4 RQ3: Which performance measures are used to evaluate software reliability prediction models 

developed using SCT? 

Many performance measures are employed to gauge the correctness of the models proposed in the studies. 

These performance measures are used for comparison and evaluation of the models which are developed 

using SCT for software reliability prediction. Table 4.5 shows the used performance measures, their brief 

description and the studies in which they are evaluated. Fig 4.4 shows the distribution of performance 

measure used in the studies. It was found that the most commonly used performance measure was Root 

Mean Squared Error (RMSE) followed by Mean Squared Error (MSE). Both of these measures provides 

the differences between actual and predicted values. So, the lower the values of RMSE or MSE, the better 

is the performance of the developed model. The percentage distribution shows that 32% of studies used 

RMSE and 20% of studies used MSE as their performance measures. 

58%
32%

7% 3%

DACS/Musa Private/Industrial Lyu Wood
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Table 4.5: Performance measures used 
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Figure 4.4: Distribution of performance measures used 

 

4.5 RQ4: What is the predictive capabilities of mostly used SCT for software reliability prediction? 

During the analysis of RQ4, it was found that the most commonly used performance measures are RMSE 

and MSE for software reliability prediction using SCT. We have shown the distribution of studies in which 

they are used while answering RQ4. Table 4.6 summarises the average values (Min, Max and correlation 

coefficient) of the RMSE performance measures along with the techniques. Table 4.7 shows the average 

values (Min, Max and correlation coefficient) of the MSE performance measure along with the techniques. 

The correlation coefficient is the measure to show degree of relationship between actual and predicted 

values. The range of correlation coefficient is from -1 to +1. The relationship becomes stronger as the value 

reaches near +1. The correlation coefficient is more than 0.8 for all the techniques, hence the usage of SCT 

are effective for software reliability prediction purposes. We have selected these tuples of the tables after 

analysing more than two studies, which have used same SCT, same predictive capability measure in order 

to avoid any biases in the observations. 

Table 4.6: Predictive capability of SCT in terms of RMSE  

SCT RMSE 

 

Min Max Correlation coefficient 

NN 0.9234 4.7867 0.9901 

SVM 0.8777 3.9734 0.9987 

PSO 11.4541 15.5135 0.9781 

 

Table 4.7: Predictive capability of SCT in terms of MSE 

SCT MSE 

 

Min Max Correlation coefficient 

GA 25.0881 32.3467 0.8453 

SVM 0.2012 0.8456 0.9324 
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4.6 RQ5: What are the strengths and weaknesses of various SCT for developing software reliability 

prediction models? 

Each soft computing technique has some advantages as well as disadvantages with respect to software 

reliability prediction capabilities. Table 4.8 shows the strengths and weaknesses of SCT for software 

reliability prediction along with the studies in which they are discussed. These strengths and weaknesses 

are the opinion of the different authors. The applicability of any SCT depends on the many factors like, 

type and characteristics of the problem. We have drawn the conclusion about strengths and weaknesses 

based on more than two studies. This is to avoid any biases in the conclusion.       

       

Table 4.8: Strengths and Weaknesses of SCT 

 

4.7 RQ6: Which validation methods are used for developing software prediction models using 

SCT? 

Validation methods are employed for comparing and evaluating the performance of prediction models. Two 

methods for validation are identified as dataset and case study. The most commonly validation method used 

is dataset, as the dataset method provides the real environment data that is documented for reliability 

prediction purposes. Table 4.9 shows the validation methods used along with the studies that employed 

them. The table shows that majority of the studies have used datasets as their validation method. The dataset 

usually contains information like cumulative number of fault, time duration between successive failure, etc. 

The validation is done through comparing the estimated values with the actual values.  

Some studies have used case study as their validation method (SR25, SR26). Case study method is 

employed to validate the model at early phases of software development life cycle. Case study method is 

used during design and implementation phases when the test data is not available. Various metrics (object 
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oriented metrics, traditional software metrics and process metrics) are used for case study method of 

validation. 

Table 4.9: Validation Method Used 

 

 

4.8 RQ7: Which statistical tests have been used for comparing the predictive abilities of software 

reliability prediction models using SCT? 

Statistical tests are used to compare the results obtained using different techniques. They provide strong 

support to the results and conclusions made in the study. Only 10% of studies included statistical tests for 

validation of the results. Table 4.10 shows the different statistical tests used along with the unique ID of 

the studies.  

Table 4.10: Statistical tests used 

 

4.9 RQ8: What are the possible source of threats to validity for developing software reliability 

prediction models using SCT? 

Identification of possible sources of threats is important before setting up experiment. This enables readers 

to know the possible limitations of the studies. Cook and Campbell has given four categories of possible 

threats to a study namely: Conclusion validity threats, construct validity threats, internal and external 

validity threats [61]. We have identified the limitations reported in our primary studies and classified them 

according to cook and Campbell guidelines. Table 4.11 shows the threats identified their classification and 

supporting studies. The identified threats are categorized either internal or external validity threats. No 

threats are found which can be categorised under conclusion or construct validity category. About 10% of 

studies included threat to validity concern in their studies. 
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Table 4.11: Classification of threats 
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CHAPTER 5 

Threat to Validity 

 

 

5.1 Threats to Validity 

The objective of this review is to analyse the studies on reliability prediction of software based on 

techniques of soft computing. This review is not aware about the existence of any biases in the chosen 

studies. There may be more studies on the usage of SCT for software reliability prediction but not included 

in the review. This study does not include any unpublished results.  

 Selection of the primary studies based on quality assessment questions was done independently so 

that any biases are avoided. In order to answer various RQs, the data were extracted from several studies. 

The performance measures data were taken from multiple studies. However, the studies were performed 

under varied experimental set up (selection of optimal parameters, validation method used, performance 

measures used etc.). So this could be a threat to the study. The strengths and weaknesses presented are 

based on the opinion of the respective authors. We have only reported strengths and weaknesses of SCT 

which have been mentioned in more than two studies. 
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CHAPTER 6 

Conclusion and Future Directions 

 

 

6.1 Conclusion and Future Work 

This section discusses the results obtained during the study and provides future guidelines to the 

researchers who intend to work in this domain.  

The main objective of this thesis is to select and analyze the SCT, datasets trends, validation 

methods, strengths and weaknesses of the SCT used, performance measures, statistical tests and threats to 

validity for software reliability prediction studies. The review is performed based on the studies published 

between year 2005 and 2016. Depending on the designed quality assessment questions, finally 31 software 

reliability prediction studies were chosen and investigated.  

 

6.1.1 Discussion of results 

 (RQ1) The study revealed that fourteen SCT are used for software reliability prediction (NN, SVM, 

FL, GA, PSO, Hybrid, ACO, GP, DT, SVR, GWO, DE, SA, Bagging). Top five mostly used 

techniques found are: NN, FL, GA, PSO and SVM. The distribution of percentages are: NN (25%), 

FL(11%), SVM (11%), GA (8%) and PSO (8%). Only 10% of studies used hybrid approaches of 

SCT (ANN+PSO, AFNIS and GA-SA+SVR) for software reliability prediction. These studies 

showed improved performance over statistical techniques and other SCTs. 

  (RQ2) The dataset analysis revealed that mostly four different datasets are used in the studies. The 

identified datasets are: DACS/Musa dataset (58.06% of studies), Private/Industrial dataset (32.25% 

of studies), Lyu dataset (6.45% of studies) and wood dataset (3.22% of studies).  

 (RQ3) There are various performance measures used in the studies to assess the predictive 

capabilities of the models developed using SCT. The performance measures identified are: RMSE, 

AE/RE, VAF, MSE, MAE, MRE and NRMSE. Two most commonly used performance measures 

are identified as RMSE and MSE. The RMSE was used in 32% of the studies and MSE was used 

in 20% of the studies. 

 (RQ4) Two mostly used performance measures were identified as RMSE and MSE. Both these 

measures provides the difference between actual and estimated values.  Correlation coefficient is 

used to measure the degree of relationship between actual and predicted values and it was found to 

be more than 0.8 for mostly used SCT with RMSE as well as with MSE performance measures. 

Hence the predictive capability of SCTs were found quite satisfactorily.  
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 (RQ6) The strengths and weaknesses of each SCT are identified. NN provides better predictive 

performance when limited test data is available but they suffer from overfitting. FL is efficient and 

decisive but have poor validation capabilities. GA is effective technique when search space is 

complex but requires large number of runs. PSO provides faster convergence. PSO also reduces the 

time and space complexity but not suitable for small datasets. 

 (RQ7) The validation techniques identified are either by dataset or by case study. Mostly dataset 

method is used. The dataset technique utilises the data obtained through real environment for 

predicting purposes. Subsequently, the validation is done by comparing the actual and predicted 

values. The case study method is used in early phases of development lifecycle (Design and 

implementation). The case study method is based on software metrics. 

 (RQ7) The statistical tests used to validate the results were identified.  Only 10% of the studies used 

statistical tests. The statistical tests found are: ANOVA, t-test and Wilcoxon signed rank test.  

 (RQ8) The possible threats to validity are identified and found to be under the category of internal 

and external validity threats. No threats were found in the studies which can be classified under 

either conclusion or construct category. 

 

6.1.2 Future Directions  

The following are the guidelines for the researchers interested in conducting the research work using 

SCT for software reliability prediction 

1. It was found that only 10% studies included the limitations or threats to validity concerns. A 

researcher should analyse the probable sources of threats during the design of experiment. This 

would help in effective implementation and accurate results of the experiment. Thus, in future the 

researchers must analyse the possible sources of threats to validity in the study and list them in their 

publications.    

2. Only 4% studies used ensembles in their prediction processes and the results were found 

encouraging. Hence, more number of studies should be conducted using ensembles. 

3. Most of the studies (about 90%) used public datasets. The studies which use public datasets can be 

easily replicated. Hence the researchers should use public dataset in their study 

4. The strengths and weaknesses of the SCT should be considered before selection of any SCT for 

software reliability prediction.  

5. Only three studies used a hybrid SCT (ANN+PSO, AFNIS and GA-SA+SVR) for software 

reliability prediction which showed enhanced performance. Hence, more number of studies should 

be conducted based on hybrid SCT.  

6. The researchers should make datasets public so that more numbers of studies can be conducted 

using that dataset and further, the results can be generalized.  
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7. The researchers should explore and use industry datasets to achieve practical usefulness of SCT for 

software reliability prediction activity.  

8. Very few studies (about 10%.) used statistical tests for the validation of the results obtained. The 

validation tests provide strong support to the results obtained. The researchers should conduct the 

statistical tests in their studies. 

9. Out of 31 studies, 16 studies used evolutionary techniques. Out of 16 studies, only 5 studies included 

the execution of multiple runs of technique used for reporting the results. Since the SCT are 

stochastic in nature so multiple runs (minimum 10) are required to established the results effectively. 

The researcher should use multiple runs of the SCT used and the results should be reported 

accordingly. 

10. Very few studies (25%) compared the performance of SCT used with either statistical techniques 

or other SCTs. Due to insufficient number of such studies, the performance analysis among various 

SCTs could not be established. The researchers should include comparative analysis of SCT used 

with either statistical techniques or other SCTs so that the performance of the SCT used can be 

analysed with respect to other SCTs.   

   

Finally, the list of primary studies is given in chapter7 (appendix A.1). This list has of 5 attributes 

(year, primary studies, Journal/conference, datasets and methods used) and 31 primary studies (from 

year 2005 to 2016). 
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CHAPTER 7 

Appendix A.1: List of primary Studies used in the review 
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