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ABSTRACT

Many real world problems involve optimization of multiple objective functions on a feasible
variable space. aese objective functions are ofien conflicting and cannot be formulated as a
scalar fumction. Such problems are known as mulii-objective optimization (MOQ) problems
as there are multiple objectives which need to be optimized sinnltaneously. A recent MOO
problem in software engineering domain is the prediction of faulty classes in a software.
While faulty classes are predicted, finding a trade-off between two conflicting objectives is
essential. The first one is minimizing the number of classes fo& recommended and the
second one is maximizing the relevance of the solution which is based on the history based
and lexical based similarities between the Application pmgrmﬂreiface (AP1) document and
the bug description. Evolutionary algagighms (EA) seem to be well suited to solve such MOO
problems as they parallely generates a setf of solutions, ultimately exploiting similarities of
solutions by crossover. Previous studies have suggested that EAs show improved
performance over om search algorithms for solving MOO problems. This study evaluates
the use of two EA's namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) to predict faulty classes. The results aa
empirically validated on six open source Java projects. They point towards the superiority of
the NSGA Il algorithm over the SPEA 2 algorithm.

Keywords:

Multi objective optimization (MOQ), Evolutionary Algorithms (EA); fault prediction.
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CHAPTER 1

Introduction

Software testing is used to detect bugs in a software [1]. A bug is an erroneous behaviour of
the software which leads to an unexpected result. Bug reports typically consist of the
description of the bugs and are very useful for the maintenance of the software. It helps the
developer to understand the problem, which was encountered while using the software. Bug
reports inform the developer about those software components which need maintenance or
correction [3]. Thus, a developer relies upon the bug report’s description to find the
origination of a specific bug. However, due to insufficient and unclear information provided
in the bug report the task of the developer becomes tedious. This study automates the
approach of determining the code segments, which need to be investigated to eliminate bugs
in a software. This automation would make the process of correcting bugs less time
consuming and would improve the productivity of the developer [2]. Most of the present
approaches to this problem are based on lexical matching, but there 1s difference in the
language of the code and the bug descriptions, which limits the efficiency of existing

approaches.

The approach used in this study for predicting relevant components of a software for bug
correction overcomes the problems of existing approaches. It 15 based on the following
observations: The ﬁrﬁsen—’aﬁon is that the API of the classes and the methods is more
useful to derive the similarity between the bug description and the code fragment [2].
Secondly, the classes which have been fixed recently based on any bug report are more prone
to contain a bug if the bug reports are similar. Thirdly, the classes which have been fixed
recently are more prone to contain bugs than the class fixed long time back. Fourthly, the
classes fixed frequently are more prone to be erroneous. Apart from these observations, it
should also be noted that the number of recommended classes should be minimized in order

to make the task of bug location easier.

To solve this bug localization problem and provide an effective result, multi objective
optimization have been used. There is a need to balance two main conflicting objectives, i.e.
maximization of lexical based and history based similarities and minimization he number

of classes to be recommended. We investigate two EA for this purpose, namely NSGA II and




SPEA 2. The two algorithms are considered better than the other evolutionary algorithms on

the basis of better distribution and broader range of solutions [30, 43]. Both the investigated

algorithms are validated on six large open source projects which consist of over 2000 bug

reports and their descriptions. The results of the study indicate that both the investigated EA’s

perform better than mono objective algorithms. However, the NSGA II algorithm

outperformed SPEA 2 for prediction of relevant classes. The efficiency of the approach is

evaluated by assessing the correctness of the recommended classes for any bug report.

1.1 Research Questions

Thus, we explore the subsequent research questions in this study:

ROI: What is the predictive performance of NSGA II and SPEA 2 for
ﬁtennining relevant classes based on bug reports?

In this question, we validate the performance of NSGA II and SPEA 2 on six open
source projects and estimate their accuracy using five performance metrics

(precision, recall, F-measure g-mean and balance).

RO2: What 1s the comparative performance of NSGA II and SPEA2 algorithm to
mono-objective approaches?

To answer this qucsg)n the performance metrics mentioned in RQ1 are used. The
performance of the NSGA Il and SPEﬁ algorithm is statistically compared with
the mono objective algorithms which aggregates all the objectives into a single
one with equal weights. The comparison of the multi objective algorithm with the
mono objective 1s not as simple as it seems because Multi objective returns a set
of solution whereas mono objective returns a single optimal solution. Hence, we
use the nearest solution [19] as a candidate solution for multi objective algorithm,
which is compared with mono objective algorithm’s solution.

RQO3: Which 1s a better evolutionary algorithm amongst NSGA Il and SPEA 2 for
predicting relevant classes?

The main objective of the research question is to articulatt‘a\-'hich algorithm 1s
better for the purpose Uﬁredicting faulty classes. Wilcoxon statistical test is used

to compare the two EA in order to determine the variations in the performance of




both the algorithms. We also compared the two algorithms with respect to CPU
time consumption. CPU time is determined by the execution time taken by a

technique on all the six open source codes.

1.2 Motivation of study

As we know that bug reports are hard to be managed and even more difficult to provide a
feasible solution to those bugs. In todav’s world it is of utmost importance to solve those
bugs as soon as possible in order to evolve the software according to users’ ds. The main
motivation behind the study is the increasing use of EA in the fi f multi objective
optimization. T]chorc in this study we used two multi objective EAs 1in order to predict the
relevant classes in order to fix the bug according to the bug report provided by the user. This
study is closely related to the one performed by Rafi Almhana et al. [2]. They analysed the
working of NSGA II multi objective evolutionary algorithm for predicting faulty classes in a
software. However, this study is better in comparison to the existing one in terms of the

following parameters:

Rafi Almhana et al. [2] used only one EA algorithm for the prediction of the faulty classes
whereas in our analysis, two different EAs are evaluated and compared. This is important in
order to determine the suitability of EA to the task of recommending appropriate faulty

classes.

Rafi Almhana et al. [2] used precision, recall and accuracy metrices as the performance
measure for analysing the results. However, literature studies have criticized the use of
accuracy as an effective measure to determine the correctness of working of the algorithm
[44]. Therefore, we have additionally used two robust performance measures namely, G-
mean and balance as they are recommended by researchers. These measures are advocated in
literature studies [36, 43, 48, 49].Thus, our results are profoundly more generalizable. This
additionally strengthens the outcome of the study. The study will help the developer of the
software during the maintenance phase of the software model. They will be able to detect the
faulty classes and the results are then used to remove those bugs from the software

efficiently.

1.3 Organization of thesis




The paper is organized in various sections as follows: Section 2 gives an overview of the
related work of the study that is what is the various research works have been done in this
area and how all those work helped in evolution of our study, Section 3 summarized research
methodologies used in this paper including overview of the recommended framework and the
description of both the EAs. Section 4 describes empirical study design of the dataset
description, validation method, solution representation, objectives and performance
evaluation methods which are used in our studies. Section 5 states result of the study which
has been discussed with correspondence to each RQ. Section 6 states the threats to validity
and at last the section 7 summarizes the research work under conclusion and suggests some

future work.




CHAPTER 2

Literature Review

This section gives an overview of the research wc:rkﬁnc with relation to our study and 1s
further sub divided into 2 sections i.e. application of multi objective evolutionary algorithms
in various software engineering domains and defect prediction studies which recommend

relevant classes on the basis of bug reports.

2.1 Applications of Multi Objective EA in Software Engineering

The mechanism of natural selection and the process of optimization directed towards
evolutionary algorithm development [17]. The main goal of evolutionary algorithms is to
simulate the process of evolution in a computer. EA are well suited to solve the above
mentioned MOO problems. Unlike conventional methods, EA calculates the performance of
the candidate solution at different points simultaneously. The ongin of evolutionary
algorithms dates back to the late 1950s and, since 1970s, various evolutionary algornthms are
developed to optimize multiple objectives. The main motivation behind using evolutionary
algorithm for MOO is because it deals simultaneously with multiple solutions which allows
to calculate the Pareto optimal set by running the algorithm just once, whereas in traditional

algorithms a series of separate runs to arrive to a particular solution 1s used.
Applications on different fields:

o Software reliability prediction:
EA have been used in a various software engineering domains. Aljahdali and Telbany used

Genetic algorithm (GA) technique for software reliability prediction. They predicted the
extent up to which a software can be relied upon [44]. GA 1s u%in the study to overcome

uncertainties which may arise due to multi objective functions in order to achieve the best




result. The results prove that the use of multi objective algorithm has better performance in

comparison with the average method [44].
o Analysis of Multi-objective Evolutionary Algorithms

Anothwpplicalion of multi objective EA 1is for training ensemble models. In this research
work, different sets of performance measures are used to train ensembles and the outcomes of
these measures are then comparcdd' he result shows that out of all the performance measures
Logarithmic Standard Deviation, Mean Magnitude of the Relative Error and Percentage of

predictions. these three measures outperformed all the others [47].
s Cross project defect prediction using nulti objective algorithms:

In the other application of multi objective EA Cross project defect prediction is evaluat

This research work is used to predict the models which are prone to defects. They tries to
identify effective multi objective methods over cross-project (CP) environment. A harmonic
search meta-heuristic algorithm has been used to effectively summarize three conflicting
objectives in the context of class imbalance. The results are of this defect prediction models
binary in nature and just signifies the presence of defect in any model, Results are also

promising and shows that algorithm can be effectively used in various prediction model [46].
o Maintainability defect prediction and correction

Next application of multi-objective EA is Maintainability defect prediction and correction. In
this research genetic algorithim is used to predict defect and then correct them as a two-step
automated process [45]. The first step uses genetic algorithm in order to automatic rule
generation for defect detection reducing the efforts to do it manually. And in the second step
multiple objectives are compromised using NSGA II. The results shows that the algorithm
was successful in detecting most of the defect and then correctly fixing them with

insignificant exertion.

2.2  Defect prediction using Information Retrieval
Software defect prediction is a standout amongst the most research ranges in software
engineering [8]. Defect or bug prediction model effectively contributes towards the

development of the software by providing software reliability [12]. Defect prediction refers to




predicting the area of the code which is more prone to bugs [6]. Various works previously

done based on this information retrieval concept are explained below.
Different tools and approaches used to predict faulty classes are summarized as follows:

Buglocator
Iti a nethod based on information retrieval which recommends relevant files in order to

fix a bug [16]. It ranks all the files based onghe textual similarity between the source code
and the bug report description. It uses revised Vector Space Model (RVSM) and
iformation about the similar bugs which are fixed before in order to derive the lexical
similarity between the report of the bug and the sourc ¢ and to improve the ranking
performance. It works better than methods based on Vector Space Model (VSM) and
Latent Dirichlet Allocation (LDA).

DebugAdvisor
It is a svstem which investigates the bug by using the complete bug report as m*{t query

and then mine the bug repository to derive the required results [4]. It uses a fat query
which contains structured and unstructured data in kilobytes of size. This query contains
all the information about the issue being debugged, which includes natural language text,
the output of the debugger etc. The accuracy of this system depends upon the accuracy of
the bug report.

BugScout
It is an automated approach which has been used to minimize the searchﬁacc in order to
find the faulty code segment [13]. BugScout assumes that there is some textual similarity
between the contents of the report of the bug and the source code which can be used to
locate the buggy source files. It uses ﬂc Vector Space Model (VSM) and similar
information about the bug to derive the lexical similarity between the report of the bug
and the source code and rank the code fragments accordingly. The drawback of this
method is that it solely depends upon the bug report entered by the user which is not
always framed appropriately.

BLUIR
It is an open source toolkit avai]ﬁ for everyone [5]. The key feature of their algorithm
is that they have used strlmres information retrieval based on the constructs of the code
such as the name of the class and method and enghles more accurate bug localization.
This method is also based on comparison between source code and the report of the bug

to retrieve the information based on the class name method names or the code construct.




These studies are successful in establishing a relationship between the multi objective
problems and the evolutionary algonthms. TIBEAS can be widely used with MOO problems
because of the ability of the EAs to solution set in a single run of the algorithm. Most of the
work in t predication is done using single objectives. Only one study conducted by Rafi
Almhana et al. [2] used a multi objective algorithm to predict the bugs. Therefore, there is a
need to conduct more studies which analyze the effective of multi objective evolutionary
algorithms for predicting relevant classes corresponding to a bug report. This study also takes
into consideration different objectives and uses them to provide improved result as compared

to mono objective algorithms.




CHAPTER 2
Research Methodologies

This section first describes the framework used for prionitizing code fragment which need to
be investigated corresponding to a bug report. In the next segment the EAs used in the study

are described.

3.1 Overview of the Recommendation Framework

The approach aims at recommending faulty classes from the bug reports provided by the user.
A substantial search space is to be examined so as to locate the relevant classes. The
developers can then use these reports to fix the bugs. Also, sometimes more than one class 1s

to be rectified in order to remove the bug from the svstem.

A heuristic based approach is suggested based on two conflicting objectives to be simplified.
The first objective is correctness function which consists of two sub functions. The first sub
function maximizes the textual similarity between the API description of the classes and the
description of the bug. And the second sub function maximizes the history based similarities
i.e. when the class was last fixed and how often. The second goal 15 to limit the quantity of

classes to be recommended.

It clearly visible that the above two objectives are conflicting in nature. Therefore, in this
study the task of recommending relevant classes is modeled as a MOO problem. Two
different EA are used to tackle the problem, namely NSGA-II and the SPEA2. The results are

then compared to ascertain which algorithm is better.




INPUT Using MSGA Il and SPEA 2 ouTPUT

Finding relevant classes to inspect

1. API deseription
2. Bug report description Objective 1: Maximize lexical and
3. History of changes history based similarity

4. Previous bug reports

Recemmended classes
for inspection

Objective 2: Minimize the number of

classes to be recommended

Figure 1: Approach overview

A summarization of the approach used is described in figure 1. This algorithm takes a series
of input, i.e. API description of the source code, bug report description, history of the changes
made in the previous classes and the previous bug reports and the output 1s a sequence of
rank classes to be inspected for bug maximizing the lexical and history based similarity and
minimizing the classes to be 1 cted. Two algorithms have been used to implement the
above mentioned approach, i.e. NSGA-II and SPEA2 which recommends the classes for the

inspection of bug as an output

3.2NSGA Il

A non-dominated EA is a multi-objective optimization evolutionary algorithm. The algorithm
was proposed by Deb et al [39] in 2002. The NSGA algorithm was first proposed by Srinivas
and Deb [39], in 1995 and which was further extended as NSGA II.

v i - A

Nondominated sorting Crowding distance sorting ( £

¥
- Rejected

Figure 2: NSGA I
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NSGA II uses various genetic operators such as crossover and mutation. Along with this it
also uses two specialized multi objective operators and mechanism, 1.e. non-dominated
sorting and crowding distance to give a better generalization of different conflicting
objectives as shown in figure 2. The population is sorted and separated into different fronts in
non-dominated sorting where the primary front always denotes the Pareto front whereas
crowding distance is a parameter which is used to rank the members of the front based on

dominance

Generate Initial
Population P
Create Offspring
population C

¥ T e
[ Combine parent P |
L and offspring O

Meon - domintaed
sort

Create New Parent MO
P
Crowding distance =
assignment / \\
Creoate 00 using Criteria \
election, mutation Satisfied?
and crossower /

Output the optimal
result

Algorithm 1 NSGA II
1. Popg « Initialize population
2. Cy« Create offspring Population
3. while ( - stopping critenia )
a. U, « Union of Pyand Cq
b. f+« sorting based on non-dominance ( Uy)

Popy — O

A

e
e. while|Pop,,|+|F|= Ndo

1. Crowding-distance assignment ( F;)
ii. Popui < Popia U

i, je j++

11




f. end while

g Sort(fi<8)

h. Pop,.; < split and choose first (N- | Pop,,; |) elements
1. C., < create-new-population(Pop,.,)

J. te

4. end while

Figure 3: NSGA II flowchart and algorithm

As shown in figure 3 NSGA I algonthm begins by creating a new population randomly
known as the parent population, Pop, The population consist of N individuals and non-
dominance sorting is used to sort the population into different fronts. Fronts are then to be
minimized by eliminating the solutions which are not further useful. The reduction of the
front 1s based on dominance and in case if the dominance of the two population is similar
then the crowding distance between the two is used. Furthermore, every solution is assigned
with a rank or front which is based on its non-doﬁation level with minimum rank as the
best rank and so on. Then a new population C; (offspring population) of size S 1s created
using selection, recombination and mutation operators. A recombined population of size 28 is
created as U, Then further the population is sorted according to non-dominance. This
selection of the population is continued till the front is populated with S solutions. To choose
exactly S population members from the best non dominated set i.e. FI crowded comparison
operator < 15 used to sort the population in descending order and out of those, the best

ition is used to fill the population. Front t is then split and sorted in descending order.
Then a new child population t+1 is created using mutation, selection and crossover. The

above mentioned process 1s repeatedly executed.

3.3 SPEA 2

The Strength Pareto evolutionary algorithim is used to solve MOO problems to find an
approximate Pareto solution. SPEA2 was proposed by Zitzler [10] and has shown good
performance result. SPEA2 comprises of different operations such as a good fitness function
and density estimation. The algorithm is also able to obtain the population with both

“precision” and “diversity” [9].
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Initialize population &
| Create empty archive

| Calculate fitness J

Evaluntion of Solution | mutation: alter
recombined salution

Recombination : Pairs of
solution are mixed

&

|
Selection ; pairs of fit
solution selected

Qutput the optimal
result

Figure 4: Flowchart of SPEA 2 algorithm

According to the flowchart given in figure 4 SPEA 2 starts with an initial population P, and
repeats the following steps for each iteration. SPEA 2 as shown in figure 5 starts with, an
empty archive (external set) is created along with the initial population. Fitness value is then
initialized to both population and archive 1.e. Py and C, All the non-dominated members of
Py and C, are copied to the archive C,; and if any member is dominated or is repeated then
those members are removed from the archive. Also, if the members count exceeds a limit N
than those elements are truncated using clustering techniaes otherwise 1f the size is fewer
than N then we fill C.; with dominated individuals. These steps are repeated until the
maximum size of generation N is reached or other stopping criteria is met. In the next step,
selection is performed using binary tournaments. And at last after applying recombination

and mutation a new population is created which replaces the old population.

Algorithm 2 Pseudo code SPEA 2
1. Py < Initialize the population
2. C, < O Create an empty archive
3. Foreacht->0toN
a. Calculate fitness values of each individual in Ptand Ct

b. Ci+— Union of Ptand Ct

13




c. If|Cu|>N
i. Truncate C,,,
d. Else
i. Insert dominated individuals
e. Ift=T
1.V« vectors of non- dominated individuals in
4. Perform binary tournament selection with replacement C
5. Cyy < New Population by recombination and mutation operator

6 t—t+1

Figure 5: SPEA 2 Algorithm

In SPEA 2 density information is the key attrib@ to fitness assignment. Also, the
magnitude of the archive is fixed and if the number of non-dominated individuals are not as
much as the archive size than dominated individuals are to be filled in the empty space. And

if the number of individuals increases, truncation is the option.

14




CHAPTER 4

Empirical Study Design

This section discuss different design consideration of our study.

4.1 Description of Data Sets
For the evaluation of the two algorithms NSGA II and SPEA 2 the following six open source

projects have been used:

1. Aspect] :

An aspect — oriented programming extension for java
2. Bir:

An Eclipse-based business intelligence and reporting tool.
3. Eclipse Platform UI:

The user interface of an integrated development platform.
4. JDT:

A suite of Java development tools for Eclipse.
5. SWT:

A widget toolkit for Java.
6. Tomcat:

A web application server and servlet container.

Aspect] which is a java programming extension, Birt which i1s an Eclipse based tool. Eclipse
Platform Ul which is a Ul for integrated development, JDT is the tool for development of

java, Tomcat which is a web server and SWT which is a widget toolkit.

Table 1 shows statistics of the six systems along with including features such as bug reports
count for each open source project, number of API file's description of the classes, time range
of the bug report and the number of classes that are fixed per bug report is described in the

table.

15

Project Bug reports # API Time # fixed files/ classes

per bug report




Eclipse Ul 2135 1314 102001 -01/2014 | 2
Bert 3584 957 06/2005 - 12/2013 |1
IDT 5978 1329 10/2001 -01/2014 | 2
Aspect] 524 54 03/2002 - 01/2014 | 1
Tomcat 987 389 07/2002 - 01/2014 |1
SWT 3578 161 02/2002 - 01/2014 (3

The count of the project files on which the algorithm has been run is more than 5,000 for six
open source projects. For the purpose of validating the source code just before the bug was

registered 1s used.

Table 1: Data Set Description

4.2 Validation Method

The collected data is categorized into two sets: the training data set and the test data set. The
bug is organized according to the time on which they are reported and then are divided into
10 folds. The first contains the newest bug report, whereas the tenth fold contains the
oldest. The last fold is used as the training set and just the previous fold as the testing data set
and the process is repeated for all the ten sets. Finally, the output is compared to the expected

solution of the problem.

4.3 Solution Representation

The candidate solution representation is done using a vector. Classes to be inspected are
represented in each element of the vector. The main aim is to minimize the number of classes
to be recommended on the basis of multi objective algorithms used. The solution is in the
form of a list of classes to be inspected for the bug report. The classes are to be inspected in
the same order as the class being the first element of the vector has a higher probability of

having a bug.

Figure 6 represents the bug report from the Eclipse Ul Project (Bug ID 34810) description
using which we need to find out the solution that is the classes to be inspected. A bug report

is a summary of what actually the bug 1s. This bug report describes a bug about no progress

16




shown while executing test in the Junit view icon. The solution would consist of a series of

classes to be inspected.

Build id: 384108
Summary : JUnit view icon no lenger shows
progress while executing tests

Description : Before [ upgraded to Juno this mormng [
nsed to happiy rom tests with the TUnat view: mmmized,
and enjoy sesing the progress of the tasts on it Now |
don't see any change on the icon until if passes or

fails The animation of the kttle preenred squares,
showing progress of the suite is gone, which is very
frustrating and means T have to waste screen real estate
having the funit view open

Reported : 2012-07-03 03:39:25

Figure 6: An eclipse bug report (Bug ID: 384108)

4.4 Description of Objectives

Correctness Objective: This objective is just the mean of lexical based similarity (LS) and the

history based similarity (HS) between the bug report and the classes.

fl:HS+LS (l)

2

The lexical similarity refers to htextual similarity between the API and the bug report.

The lexical similarity is calculated by computing the cosine s'ﬂi]arity between the API and
the bug report description. A series of steps are followed to calculate the lexical similarity

between the two. The steps are described below:

L Camel Case Splitter is used to perform the tokenization process to access the
identifiers.
II. Stop word reduction 1s used in order to remove the irrelevant information forim

the source code as well as the bug report description.
III. Porter Stemmer is used to reduce the words to its stem in order to eliminate the

redundant information on any particular word.
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IV. Finally, the cosine similarity is used to compare the APl and the bug described in

order to derive the lexical similarity between the two.

Cosine similarity between two vectors measures the angle of cosine between them.
P.Q =||P||2[|Ql|2 cos & (2)

Similarity = cos (O)

P.Q

IPI|2. [1QI|2

cos 6 =

2T PiQ (3)

Where P;and Q, are elements of the two vectors P and Q respectively awwn in equation 3.

cosf =

The weights of each clemcnm vector P; and Q; can be calculated using an information
retrieval te@que known as Term frequency — Inverse Term Frequency (TF-IDF) method.
The lexical sﬂarit}r between the source codes 1.e. the API description of the classes and the

bug report 1s calculated using the cosine similarity function.

The API description of the source code consists of various words matching to the bug
description so the use of API description is more beneficial for our purpose to derive the
lexical similarity. However, use of just the lexical similarity between the two will not be

enough.

The other function which comes under correctness objective is history based similarity. The
history based similarity computation consists of three functions and the final result value is

considered to be the average of the three functions.

L size(S) :
g NoBugFixed (Cj
.= Xy oBugFixed (C;) (4)

Size(S) » Max(NoBugFixed(C;))

The first function is used to compute that how many times any given class has been
previously fixed in order to derive the value for the elimination of bugs based on the history
of the class and the formula for its computation is shown in equation 4. In the eggation the
submission of number of bugs fixed for a class is divided by the product of the size of the

solution set S and the maximum number of times any class was fixed.
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ES:'ze(S] 1
i=1 reportdate- lastreport (Ci)+1 o
H, = 8 (%)

Size (8)

The second function checks whether the class which has been recommended has been
recently fixed. If the class have been recently fixed or modified there are higher chances of
the class being buggy. The time period can be computed by taking the difference between the
date on which the bug was reported and the last time the class was modified. If the date of
class modification and bug reporting is same then the value becomes 1. The formula for the

second function is defined in equation 3.

H3 = cir (6)

Size(s)

The third and the last function defines consistency among the recommended classes on the
basis of the previous bug report. The class has higher chances of having a bug involving all
the recommended classes if those classes are recommended previously for the similar bug.
This value can be calculated by using equation 6. Cir is the value corresponding to the

intersection of a set of classes between set of classes recommended and the solution S.

4.5 Performance Evaluation

The outcomes of the developed models i1s evaluated using precision, recall. F-measure, g-
mean and balance. Further Friedman test along with Wilcoxon test has been used to
statistically analyze the results.A confusion matrix is a 2 x 2 matrix which helps in visualizing
the performance of the algorithms. The metrices to study the performance of this study are
described below:

e Precision: It refers to the fraction of correctly recommended files in top k of files
which are recommended to the minimum number of files to be inspected. It can also
be defined as out of the number of classes selected, what percentage of them is the
algorithm classify correctly.

{Relevent classes} n{Retreived classes}| (?)

P - |
Precision (P) = Retrieved classes
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Recall: It refers to the fraction of correctly recommended files in top k of filesgsghich
are recommended to the total number of expected files to be recommended. It is also

known as probability of detection (PD).

| {Relevant classesin{ Retreived classes}|

Recall (R) = Relevant Classes [8)
F-measure: It is a weighted harmonic mean of recall and precision.
Fl =N Precision = Recall (9)

Precision + R

Probability of false alarm (PF): It refers to the number of non-relevant and non-

retrieved classes divided by classes which do not contain bug.

PF = |{Nen—Relevant classesin{retrieved classes}| « 100 (11)

Non relevant classes

G-mean: G-mean is used maintain a balaﬁe between high positive as well as high
negative accuracy. It is calculated as a geometric mean of positive and negative

accuracy. Higher the value of g-mean better the performance of the algorithin.

l{inon relevant classesjn{non—retreived classes}|

Non-retrieved classes

gmean = J

Balance: In balance measure Euclidean distance is found between the percentage of
classes which are correctly detected as buggy know as probability of detection (PD) to
the percentage of classes which are incorrectly detected to be non-buggy classes
known as probability of false alarm (PD). Higher value of balance implies better

performance of the algorithms.

_ o Jo-ERpe a-GR)
PF= 1- —

(13)
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CHAPTER 5
Result and Analysis

5.1 Studied Projects:

This section elaborates the result of our research work and answer different RQs mentioned

in section [ of the paper.

5.1 RQ1: What is the predictive performance of NSGA II and SPEA 2 for determining

“Iewmt classes based on bug reports?

In order to validate the con‘ccms of the two algorithms to recommend relevant classes,
we evaluate precision, recall, f~measure, g-lﬁn and balance performance metrics. The
values in figure represents the median value of ten-fold cross validation results of all the
30 runs executed for each technique. Each bar ga the figure represent median value of
precision, recall, f-measure, g-mean and balance for NSGA Il and SPEA 2 for the 6 open
source projects respectively for top 5 of the recommended files 1.e. k=5. The values
corresponding to NSGA 11 algorithm are depicted using dark grey bars whereas for SPEA
2 algorithm light grey bars are used.

The median value of precision ranges from 75% to 54% for both the EAs. The best
precision value is for the EclipseUI data set whereas the lowest precision value is for
Aspect] dataset. The lowest value of the precision 1s around 54% for k=5 which is still
considered good enough because for each bug it is not necessary that we have to inspect
multiple classes [2]. Similarly, the value of recall for NSGA II ranges from 68% to 51%
and for SPEA 2 ranges from 63% to 44%. After analyzing the precision and recall results
we can say that both the algorithm are successful in predicting the classes. However, we
need a more meticulous method for the comparison, so just the precision and recall are
not enough. Thus, we use some other performance metrices for the verification of the

result.
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Figure 7: Median performance metrices values of 30 mns for k=5

The other performance measures used are f-measure, g-mean and balance. From figure 7

we can conclude that performance metric values for NSGA 11 ranges from 71% to 52% for

f-measure and 76% to 65% corresponding to balance. The performance of SPEA 2 ranges
from 65% to 51% for f~measure and 74.01% to 60.64% corresponding to balance. After
analyzing it can be declared that NSGA Il and SPEA 2 both gives appropriate balance

values and can be successfully used for recommending relevant classes. Figure 7 also

shows the G-mean value for all the data sets. After analysis it can be said that the highest
value of G-mean is for NSGA II algorithm that is 0.89 whereas for SPEA 2 algorithm the

value 15 0.82 for EclipseUI data set. So this feature along with all the performance metrices

discussed above clearly shows that most of the buggy classes were recommended correctly

using both NSGA II and SPEA 2 algorithins.
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Figure 9: Median Performance metrices values of 30 runs for k=15
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Figure 8,9,10 summarizes the result of performance metrices for k=10, 15, 20 of both the
investigated algorithms where K= n means top n of the recommended files. The
cumulative range for k=10,15 and 20 in majority of the cases lies between 75%-51% for
precision , 75%-52% for recall , 71%-50% for f~measure . 0.89-0.62 for g-mean and 76%-
65% for balance with respect to NSGA 11 algorithm. Whereas for SPEA2 the range lies
between 69-53% for precision, 74%-55% for recall, 66%-34% for f-measure, 0.82-0.57 for
g-mean and 75%-60% for balance. In certain cases, the SPEA2 gave better performance
metrics than NSGA 1I. Figure 6 demonstrates that for the data set tomcat SPEA2 gives
better precision value than NSGA II, and for data set SWT precision values obtained by

both the algorithms were same.
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Figure 10: Median Performance metrices values of 30 runs for k=20

Figure 7 depicts that for the data set Tomcat, SPEA2 gives better precision value than
NSGA II. Figure 8 shows that for Tomeat and SWT dataset SPEA2 obtains better recall
values than NSGA I1. In all other cases shown in figure 8 to 10 NSGA II is performing
better than SPEA 2. Other than one or two cases NSGA II more precisely predict faulty
classes using bug reports. These results confirm the results obtained by Rafi Almhana et

al. [2], which advocate NSGA II for predicting relevant classes corresponding to a bug
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report. However, our study additionally evaluated SPEA2 which was also found to be

competent in prediction of relevant classes.

The performance of our bug detection model was evaluated using difﬁn performance
metrics. The investigated EAs are effective in predicting relevant classes to localize the bug
based on the description of the bug report. The G-mean values for k=35 range from 0.89-0.73
for NSGA I and 0.82-0.70 for SPEA 2 and Balance values for NSGA Il ranges from 76%-
65% and for SPEA 2 it is 74%-60%.

5.2 RQ2: What is the comparative performance of NSGA II and SPEA2 algorithm to

mono-objective approaches?
The results in RQ1 indicate the effectiveness of NSGA Il and SPEA 2 for predicting faulty
classes. Further, we validate whether these multi objective EAs are able to perform better
than mono objective algorithm. The multi objective EAs are compared with three mono-
objective algorithms based on five metrics i.e. precision, recall, F-measure, g-mean and
balance in all the 6 open sources projects. The results are then vahdated using Friedman

test.
The 3 mono objective algorithms can be defined as:

L LS: It 1s a mono — objective which 1s based on lexical similarity.
IL HS: Mono-objective defining history based similarity.
III.  GA: It aggregates both LS and HS objectives.

The results of the multi objective algorithms are compared with the mono objective

algorithms LS 1e. the lexical similarity and the HS i.e. the history based similarity and
finally the GA which is also mono objective which takes the average of both the
objectives. As indicated in figure 11, the median value of precision for mono objective
algorithms range from 64% to 45%, value of recall, f-measure, g-mean and balance ranges

from 60%-51% ., 61.93% to 44.04% . 0.77 to 0.66 and 71.72% to as low as 55.71%
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respectively. From these observations, we can clearly state that the performance of our

multi objective EAs are much better than those of mono objective.
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Figure 11: Median value of 30 runs on different mono objective technique for k =5

We can also deduce that the performance of GA i.e. the aggregate of both the objective is

also better than that of the history based similarity or lexical similarity. We can say that the

average g-mean for LS and HS is 0.6941 and 0.6954 whereas combining both the objectives

into GA the g-mean becomes 0.7236 which shows the performance on combining the two

objectives into one improves the performance significantly. The values of wvarious

performance metrices for k=10, 15 and 20 also shows the similar results as that of k=5 and

the result tables are shown in Appendix A.

In order to assess the superiority of the employed EAs, we performed Friedman test. The test

was performed on all the evaluated performance measures using six open source java data

sets. It allocates a mean rank to each technique. The lower the rank, the better the algorithm.
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The test is on the basis of chi square distribution. Performance of these algorithms are then

compared for 6 datasets on the basis of median of 30 runs of the investigated performance

metrics.

Algorithms Precision Recall F-measure G-mean Balance

NSGA 11 1.08 1.00 1.25 1.00 1.42

SPEA 2 1.92 217 1.83 2.00 1.58

GA 3.08 2.83 3.00 3.00 3.00

LS 4.67 417 4.58 4.17 4.17

HS 425 4.83 433 483 4.83
Table 2: Friedman test ranking for k=3

Algorithms Precision Recall F-measure G-mean Balance

NSGA 11 1.58 1.08 1.00 1.00 1.00

SPEA 2 1.67 242 2.00 2.00 2.00

GA 321 3.67 342 3.00 3.08

LS 483 4.83 5.00 4.00 4.00

HS 371 3.00 3.58 500 4.92
Table 3: Friedman test ranking for k=10

Algorithms Precision Recall F-measure G-mean Balance

NSGA I 1.25 1.00 1.00 1.00 1.00

SPEA 2 192 2.08 200 2.00 2.00

GA 283 3.25 3.00 3.00 3.00

LS 4.58 4.67 4.83 417 4.17

HS 442 4.00 4.17 4.83 4.83
Table 4: Friedman test ranking for k=15

Algorithms Precision Recall F-measure G-mean Balance

NSGA I 1.00 2.50 1.00 1.00 1.00

SPEA 2 2.08 1.50 200 2.00 2.17
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GA 3.17 283 3.17 3.00 292
LS 4.17 3.83 4.17 4.00 4.17
HS 4.58 4.33 4.67 3.00 4.75

Table 5: Friedman test ranking for k=20

As shown in the table 2-5, the finest rank is obtained by NSGA II followed by SPEA 2. From
these ranks we can also derive that both the multi objective EAs are better in predicting faulty
classes than mono objective algorithms. On the other hand, after multi objective EAs, GA 1s
statistically better in comparison to LS and HS. Table 3, 4 and 5 also demonstrates similar
results that are demonstrated in figure 2 i.e. the rank of NSGA II is the finest among all the
algorithms compared. However, in just one case i.e. when k=20, SPEA2 algorithm attains a
better rank than NSGA 11 corresponding to values of recall. NSGA I still dominates SPEA 2
in all the other cases. The Friedman results are sigmficant for all performance metrics at a=
0.05. From all the above observations we can say that our multi objective EAs outperform the
mono objective algorithms significantly, thus concluding that our formulation of the approach

was adequate.

The statistical result of Friedman test advocates that both the investigated EA are ranked
better than the mono objective algorithms. This result indicates that in order to predict
relevant faulty classes the conflicting objectives can be properly addressed only by using EA.
Since, conflicting objectives cannot be properly represented by mono-objective algorithms,

thev give poor results.

5.3 RQ3: Which is the better evolutionary algorithms amongst NSGA II and SPEA 2 for
predicting rﬁam‘ classes?

We concluded that the NSGA II and SPEA 2 algorighms are better than the three mono

objective algorithm namely GA, LS, HS. However, the main aim of the paper is to determine,

which of the two EA’s among NSGA II and SPEA 2 is better, giving an edge to one

algorithm over the other. To validate this result, we have used Wilcoxon test. This test is used

two compare two samples anddctcrminc and rank the samples according to the absolute

values. The comparison test 1s performed at significance level of 0.05 using all the
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performance mctri@ used in the study 1.e. precision recall, F-measure, g-mean and balance.

The Wilcoxon test results are shown in Table 6. The results are tested for different values of k
1e. 5, 10, 15 and 20.

NSGA II vs | Precision Recall f-measure g-mean balance
SPEA 2

K=3 @ S+ S+ S+ NS+
K=10 NS+ S+ S+ S+ S+
K=15 NS+ 5+ S+ S+ S+
K=20 S+ S+ S+ S+ S+

Table 6: Wilcoxon test result

To represent the result of the Wilcoxon test four variables are used:

S+ -= NSGA 1I algorithm outperform SPEA 1I algorithm significantly.

S- -=SPEA II algorithm outperform NSGA II algorithm significantly.

NS+ -= NSGA II outperform SPEA 2 but not significantly.

NS- -= SPEA 2 outperform NSGA 11 but not significantly.

According to table 6 NSGA I significantly outperform SPEA 1I in seventeen out of twenty

cases for all the evaluated performance metrics values. In the other three cases also, the

performance of NSGA II was better, although 1t was not significant. Thus the statistic results

of Wilcoxon advocate that NSGA II algorithm is the best technique for defect prediction.

We also compare the CPU times of the two EA’s. Figure 8 presents the execution time

performance of our multi objective approaches. The average execution time of NSGA 1I on

all the six databases was around 9530millisecond and for SPEA 2 the execution times

aggregates to 2145 millisecond. In terms of execution time too, the NSGA Il gives a better

running time as compared to SPEA 2. The execution time was reasonable. Also, the

execution time depends upon number of files in our dataset and the history of the bug report.
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Comparing both the algorithms, NSGA II performs better in noisy environment for latter
generations. Regardless of the noise present in the environment NSGA 1I is able to give
appropriate results [42]. NSGA II also have a broader range of solution sets as compared to
SPEA II. The solutions found by NSGA II closer to pareto optimal font whereas SPEA 11
perform better in case of high dimensional objective spaces [42]. Also, SPEA2 consumes
more time as compared to SPEA 2 so we can say that SPEA 2 1s computationally expensive
[30].

The pair wise comparison of NSGA II algorithm with SPEA 2 algorithm 1s statistically
evaluated using Wilcoxon test to determine which algorithm performs better for determining
relevant classes. The results clearly advocates that NSGA II outperform SPEA in almost all
the cases. And for almost all the cases NSGA II perform significantly better than SPEA 11 as
derived from Wilcoxon test. The comparison on the bases of CPU time indicates that NSGA

II is faster in terms of predicting buggy classes as compared to SPEA 2 algorithm.
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CHAPTER 4
Empirical Study Design

Factors which mawult in affecting the outcomes of our study refers to threats to validity.

Threats to validity can be classified into two tvpes: Internal validity, External Validity.

Internal Validity:

Internal validity ensures that the study follows the principle of cause and effect on
independent variables. In our study, we have used EAs which are stochastic in nature
therefore the results vary for each run of the algorithm. This can be consid as one of the
internal threat. In order to overcome this threat, this study performs 30 runs for each data set.
Moreover, the results of the study are statistically analvzed using@edman test and Wilcoxon
test with a confidence level of 95% (alpha = 5%). The other threat to the validity of our
experiment is that not much of the work is done in this area of bug localization using multi
objective EAs. So, the validation of the re was a difficult task. Thus, we compared mono

jective algorithms as well as another multi objective algorithm in order to venfy the

results.

External Validity:
External Validity of our study refers to generalization of the results. It can also be defined as

to what degree the outcomes of any study can be generalized to different situations. This
validity is not easy to be achieved and is the basis on which we can say whether the study is
successful or not. External Validity can be classified into two main types that is population
validity and ecological validity. Both the types of external validity 1s useful in determining

the strong point of the experimental design.
Threats to external validity:

Aptitude: The example may have certain components that may collaborate with the

autonomous variable, restricting generalizability.

Situation: These threats are specific to a particular situations. This can be used to generalize

the potential of the research work.
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Pre-test effects: If only after performing the pre-test we are able to find out the cause effect

relationship, then it can limit the generalizability of our work to a great extent.

Post-test effects:  If only after performing the post-test we are able to find out the cause

effect relationship, then it can limit the generalizability of our work to a great extent.

To overcome this treat we can perform the studies repeatedly on multiple data sets and then
compare the results. In this study we have used six different open source java projects for
validation of the result. However, in all the dataset the programming language used 1s java,
which implies that the results cannot be generalized for all the programming languages. To
reduce the external threats to validity, some additional comparable studies needs to be

conducted for a better generalizable result.
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CHAPTER 6

Conclusion and future work

6.1 Conclusion

We have proposed an approach to automate the process of finding the relevant classes
corresponding to bug reports in this study. Two multi objective algorithms are evaluated to
find a trade-off between minimizing the number of classes to be recommended and
maximizing the correctness of the recommended classes. The correctness function includes
lexical and the history based similarity. The two algorithms used for this purpose are NSGA
Il and SPEA 2 The results is performed using 30 independent runs for six open source
datasets. The results are then statistically verified using Friedman test with 95% confidence
level. We also used Wilcoxon test to pair wise give a comparison study of both the

algorithms.

The results of our study are summarized as follows. In our study we validated the
performance of two algorithms NSGAII and SPEA 2. The results verified that both the multi
objective EAs were able to successfully predict the relevant classes to be inspected. The
average g-mean for all the dataset under the value of k ranging from 5 to 20 is 0.75 for NSGA
IT and 0.70 for SPEA 2 and for balance thsmlues are 75% for NSGA II and 72% for SPEA2
and for f-measure the values are 61% for NSGA II and 56% for SPEA2. The results shows
that the performance is improved by 19%-12% for g-mean, 16%-12% for balance and 22%-
12% in most of the cases in comparison to mono-objective algorithm. We also concluded

using Friedman test that both the algorithms were better than mono objective algorithms and
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thus applying multi objective EAs for solving this problem is a successful approach. The
Friedman results shows that NSGA Il was ranked best in all the cases except one where
SPEA 2 gave a better result. Finally. the pair wise comparison of both the algorithms clearly
stated that NSGA 1l outperformed SPEA 2 and the when the results were statistically
validated using Wilcoxon test. The comparison on the basis of CPU time also advocated
NSGA II. Therefore, the bug prediction model used in our study shows that the proposed
appmachnw‘e promising and can be effectively applied to predict relevant classes to be
inspected with respect to the description of the bug report. The results can be efficiently used

by the researchers and software developers for efficient planning and resource allocation.

6.2 Proposed Work
And as a part of the future work, the algorithms can further be implemented in different

languages and then the result can be evaluated. Also, the bug descriptions of the same bug
with different user are almost similar but are registered as a different but so we can also work

on eliminating the duplicate bug reports and further prioritizing can also be considered.
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Appendix

This appendix represents statistical results of mono objective algorithms for all the values of

kie. 10,15 and 20, Table A.1 represents the results of 5 performance metrices: precision,

recall, g-mean, f-measure and balance for all the six open source data sets.

Precision LS HS GA HS GA LS HS
K=10 K=10 K=10 K=15 K=15 K=15 K=20 K=20 =210
EclipseUT] 58 48 47 36 45 40 31 45 38
Tomeat 30 38 49 53 35 47 32 31 29
Aspect] 45 35 44 43 3z 40 35 32 40
Birt 46 34 46 39 31 31 29 28 26
SWT 47 38 42 45 35 33 36 35 30
DT 43 35 4 41 32 37 35 32 31
Recall LS HS GA HS GA LS HS
K=10 K=10 K=10 K=15 K=15 K=15 K=20 E=20 =20
EclipseUT 66 38 68 69 59 68 70 68 67
Tomeat 56 55 54 59 56 56 68 65 65
Aspect] 53 51 56 51 50 49 65 61 59
Birt 48 47 43 47 47 48 o4 64 o4
SWT 52 48 53 63 51 62 69 68 o8
DT 56 51 57 57 53 57 05 63 62
f- GA HS GA LS HS GA LS HS
measure | K=10 K=10 E=10 K=15 K=15 K=15 K=20 E=20 K=20
Eclipsell 62 53 50 62 51 50 59 54 48
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Tomeat 52 49 48 55 43 51 43 41 40
Aspect] 49 45 44 47 39 44 45 41 47
Birt 46 44 43 43 37 38 39 38 36
SWT 48 44 44 52 4 43 47 46 41
DT 50 46 44 48 40 45 45 42 41
g-mean LS HS GA “ HS GA LS HS
K=10 K=10 K=10 K=15 K=15 K=15 K=20 K=20 K=20

Eclipse

Ul 0.774 0.744 0.739 0.724 0.714 0.709 0.692 0.661 0.641
Tomcat 0.713 0.677 0.651 0.683 0.677 0.651 0.663 0.637 0.621
Aspect] 0.696 0.656 0.634 0.666 0.636 0.618 0.626 0.602 0.574
Birt 0.596 0.586 0.572 0.596 0.586 0.572 0.524 0.511 0.501
SWT 0.644 0.626 0.619 0.614 0.577 0.579 0.565 0.523 0.514
DT 0.676 0.652 0.647 | 056627 0.532 0517 0521 0.500 0.472
Balance n; LS HS GA “ HS GA LS HS

K=10 K=10 K=10 K=15 K=15 K=15 K=20 K=20 K=20

EclipseUT 72 65 G5 71 64 66 69 65 G4
Tomcat 67 66 G0 72 70 G4 73 72 6o
Aspect] 62 61 58 G8 65 G0 70 67 635
Birt 63 63 60 70 66 62 71 70 68
SWT 65 63 6l 65 64 63 67 66 6
DT 63 62 57 64 62 59 635 64 635

Table A.1 : Median value of 30 runs on different mono objective technique for k =10,15 and 20
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