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ABSTRACT 

 

This study explaining the tail-equivalent linearization method, to the case of a 

nonlinear structure subjected to stochastic excitations. with reference to Fujumura Der 

Kiureghian (2007), this method works on a discrete representation of the stochastic 

inputs and the first-order reliability method. the genetics of TELM is first order 

reliability method, and each component of the Gaussian excitation is expressed as a 

linear function of standard normal random variables. For a specified response 

threshold of the nonlinear system at a specified time, the tail equivalent linear system 

is defined in the standard normal space by matching the “design point” of the 

equivalent linear and nonlinear responses. This leads to the identification of the TELS 

in terms of a unit-impulse response function for each component of the input 

excitation. tail equivalent linearization method is a new, non-parametric linearization 

method for nonlinear random vibration analysis. This method is overcome the 

inadequacy of conventional equivalent linearization method. 

our objectives are investigation and thorough understanding of analysis of stochastic 

non- linear system by tail equivalent linearization method as well computation of 

certain non-linear response characteristics. The excitations, that will be studied, are 

stationary Gaussian processes. These processes can be white noise processes. the 

primary motive of this study to present thorough investigation of nonlinear stochastic 

dynamic analysis using TELM (tail equivalent linearization method), and 

simultaneously we generate a random excitation by use of white noise simulation. we 

generate a computational program for white noise Gaussian process simulation. 

further more study presented on method of random vibration analysis especially on 

equivalent linearization method and also gives brief review on reliability analysis of 

structure, i.e. first order reliability method and second order reliability method. in this 

section describe the problems of interest characterized by simple geometric forms for 

linear systems subjected to Gaussian excitation. Approximate solutions for such 

problems are obtained by use of the first- and second-order reliability methods 

(FORM and SORM). Examples are solve for demonstrate the approach. 
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CHAPTER 1- INTRODUCTION 

 

1.1 General 

 

In many practical applications, due to the high intensity nature and complex nature of 

environmental loads such as earthquakes, wind loads, and sea waves, the systems 

subjected to these loadings may experience excessive stress or displacements that results 

in elastic or even hysteretic behavior. This is particularly the case under high intensity 

random excitation. Under these conditions, it is difficult to obtain the closed form 

solution for dynamic response of a nonlinear system. In this case nonlinear random 

vibration methods are the best methods in the analysis of the structures under sever loads 

associated with natural hazards. 

Random vibration for linear structures uses the superposition principle. However, this 

advantage is not applicable for nonlinear systems, but there are ways to transform a 

nonlinear system to an equivalent linear system that can benefit from this advantage. 

          Over the past few decades, a number of methods for nonlinear random vibration 

have been developed. These include methods using the Fokker–Planck equation, 

stochastic averaging, moment closure, perturbation, and equivalent linearization. Recent 

accounts of these methods can be found in the text by N.C. Nigam [1] Among these, 

equivalent linearization method (ELM) which is widely used because of its simplicity 

and applicability to general, In ELM the equivalent system is selected by minimizing the 

mean-square error between the responses of the non- linear and the linear systems based 

on the assumption of Gaussian response for the nonlinear system. Since the Gaussian 

assumption is not valid for high nonlinear systems, although the accuracy of the method 

is good in estimating the mean-square response, the probability distribution can be far 

from correct, particularly in the tail region. Thus estimates of response statistics such as 

crossing rates and first-passage probability, issues of which are of particular interest in 

reliability analysis can be grossly inaccurate at high thresholds. Another approach is 

Monte Carlo simulation, which is generally applicable, but is computationally 

demanding.  
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. Origin of the method lies in the first-order reliability method (FORM), which aims to 

solve this class of problems with good accuracy in the tail region. To overcome the 

shortcomings of the conventional ELM, Fujimura and Der Kiureghian (2007) presented 

tail equivalent linearization method (TELM), which uses the advantages of first order 

reliability method (FORM).  

TELM is also an equivalent linearization method. However, instead of defining the linear 

system by minimizing the mean-square error in the response, it is defined by matching 

the tail probability of the linear response to a first-order approximation of the tail 

probability.  For this reason, the name Tail-Equivalent Linearization Method (TELM) is 

used 

          In TELM, the input process is discretized and represented by a set of standard 

normal random variables. Each response threshold defines a limit state surface with the 

“design point” being the point on the surface that is nearest to the origin. Design point in 

FORM is the point on a limit-state surface that is nearest to the origin when the random 

variables are transformed to the standard normal space. 

 

           Linearization of the limit-state surface at this point uniquely defines a linear 

system, denoted as Tail-Equivalent Linear System, TELS. Previous study shows that 

design point on limit state surface of linear system and nonlinear system is same. The tail 

probability of the TELS response for the specified threshold is equal to the first-order 

approximation of the tail probability of the nonlinear system response for the same 

threshold. 

 

           Once the TELS is defined for a specific response threshold, methods of linear 

random vibration analysis are used to compute various response statistics, such as the 

mean crossing rate and tail probabilities of local and extreme peaks. The method has 

been developed for application in both time, Fujimura and Der Kiureghian (2007-09), 

and frequency domain, Garre and Der Kiureghian (2010), and it has been applied for 

inelastic structures as well as structures experiencing geometric nonlinearities. 
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1.2 Objective and scope of the study 

 

The objectives are investigation and thorough understanding of analysis of stochastic 

non- linear system by Tail Equivalent linearization method as well computation of 

certain non-linear response characteristics. 

This study to present thorough investigation of Nonlinear stochastic dynamic analysis 

using TELM (Tail Equivalent linearization method), and influence of various parameters 

on the tail equivalent linear system, such as discrete representation of stochastic 

excitation, characterization of linear system etc. Apart from TELM for the use of 

synthetic ground motion generating synthetic ground motions by use of white noise 

Gaussian process. For studying of TELM we want to basic idea about random vibration 

analysis and Methods of Structural Reliability Analysis. 

TELM is based on first order reliability method and equivalent linearization method of 

random vibration. 

TELM is combination of FORM and ELM means reliability analysis and random 

vibration analysis. In this study we give brief review of both the methods. 

The method was initially developed in the field of earthquake engineering, where a 

discretization in time domain is convenient. A corresponding definition of the tail-

equivalent linear system was then obtained in terms of its unit impulse-response 

function. 

A number of applications of this method in the civil engineering field have been 

investigated for both stationary and non-stationary problems, single and multi-degree-of-

freedom systems, and a variety of non-degrading, hysteretic material models, 

demonstrating its validity and accuracy. 
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1.3 Organization of Report 

 

This report is organized into nine chapters. In first chapter of the section is a short review 

of TELM and importance of this method are given which we discussed in preceding 

sections. This gives a idea about the method of structural analysis of system. For 

understanding the TELM .We required some good knowledge of random vibration 

analysis and reliability analysis of structure so that we also require a review of both 

method of analysis first after that  we go on TELM. TELM is based on FORM i.e. 

Reliability analysis and after obtaining the TELS we apply random vibration analysis on 

that and get required characteristics. 

This report is written in this format, after a review of previous literature on TELM and 

other linear nonlinear analysis of structural system, are discussed in 2
nd

 chapter,  we 

started from random vibration analysis to TELM. In this sequence we briefly study the 

random vibration analysis of structure is discussed in chapter 3. It has different methods 

of analysis in the form of short note and Gaussian processes are discussed. In this chapter 

also describe the white noise and their simulations by use of programming on macro in 

MS excel with generating the random variable of zero mean and unit variance. 

After this we go on chapter 4 which has second part of our study that is reliability 

analysis of structural systems. In this we try to introduce basic of TELM, by means of 

first order reliability analysis and second order reliability method of reliability analysis. 

Here describe FORM method which is a parent method of TELM. In this method and 

TELM, more similarities are available, for example in FORM And TELM first step is 

dicretization of input excitation.     

For the knowledge of FORM discussed in previous chapter  are used  in the chapter 5 In 

this  section of report describe the TELM, which is our interest of study. Chapter 5 is 

also sub divided in deferent section for  make a simple understanding of TELM, TELM 

is non-parametric method it‟s not depends on the uncertainty of system parameters. We 

apply FORM method on system and obtained the TELS and after obtaining equivalent 

system we apply random vibration analysis. That is the reason we introduce chapter 6 

which contain only random vibration analysis on TELS. It‟s a last step of TELM. 
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For demonstrate the method we work on some example which is given in this chapter 7 

mainly two examples are solved one of them deals with the response of a linear oscillator 

to two different non Gaussians excitations. Second example is determine the 

characteristic of a column of six storey building by the use of FORM and main objective 

of this examples are to demonstrate the applications of FORM an their accuracy.                                                                                                                                                                                                                                                                              
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CHAPTER 2 LITERATURE REVIEW 

 

Kazuya Fujimura, Armen Der Kiureghia [1], presented tail equivalent linearization 

method which uses the advantages of first order reliability method (FORM). In this 

method stochastic excitation is discretized and represented in terms of a finite set of 

standard normal random variables. TELM is new, non-parametric linearization method 

for nonlinear random vibration analysis. For a specified response threshold of the 

nonlinear system, the equivalent linear system is defined by matching the “design 

points” of the linear and nonlinear responses in the space of the standard normal random 

variables obtained from the discretization of the excitation. Due to this definition, the tail 

probability of the linear system is equal to the first-order approximation of the tail 

probability of the nonlinear system, for this property motivating the name Tail-

Equivalent Linearization Method (TELM). He is shown that the equivalent linear system 

is uniquely determined in terms of its impulse response function in a non-parametric 

form from the knowledge of the design point. He is  examine the influences of various 

parameters on the tail-equivalent linear system, presents an algorithm for finding the 

needed sequence of design points, and describes methods for determining various 

statistics of the nonlinear response, such as the probability distribution, the mean level-

crossing rate and the first-passage probability. Applications to single- and multi-degree-

of-freedom, non-degrading hysteretic systems illustrate various features of the method, 

and comparisons with results obtained by Monte Carlo simulations and by the 

conventional equivalent linearization method (ELM) demonstrate the superior accuracy 

of TELM over ELM, particularly for high response thresholds. 

        

 

Luca Garrè , Armen Der Kiureghian [2]  extended the previous work on the 

Tail-Equivalent Linearization Method (TELM) to the frequency domain. The extension 

defines the Tail-Equivalent Linear System in terms of its frequency-response function. 

This function is obtained by matching the design point of the nonlinear response with 

that of the linearized response. The proposed approach is particularly suitable when the 

input and response processes are stationary, as is usually the case in the analysis of 

marine structures. When linear waves are considered, the Tail-Equivalent Linear System 
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possesses a number of important properties, such as the capability to account for multi-

support excitations and invariance with respect to scaling of the excitation. The latter 

property significantly enhances the computational efficiency of TELM for analysis with 

variable sea states. Additionally, the frequency-response function of the Tail-Equivalent 

Linear System offers insights into the geometry of random vibrations discretized in the 

frequency domain and into the physical nature of the response process. The proposed 

approach is applied to the analysis of point-in-time and first-passage statistics of the 

random sway displacement of a simplified jack-up rig model. A basic requirement of 

TELM is the discretization of the input excitation in terms of a finite set of standard normal 

random variables. In fact, the equivalence in TELM is established in the space of these random 

variables by matching the design points of the linear and nonlinear responses, which are points 

on their respective limit-state surfaces with minimal distance to the origin in the standard normal 

space. The method was initially developed in the field of earthquake engineering, where a 

discretization in time domain is convenient. A corresponding definition of the tail-equivalent 

linear system was then obtained in terms of its unit impulse-response function. A number of 

applications of this method in the civil field have been investigated for both stationary and non-

stationary prob- lems, single and multi-degree-of-freedom systems, and a variety of non-

degrading, hysteretic material models demonstrating its validity and accuracy. 

In marine problems, it is customary to define the wave-induced excitation in the 

frequency domain. In that case, identification of the TELS in terms of a frequency-

response function is advantageous, as it facilitates frequency-domain random vibration 

analysis, In the present paper, TELM is developed for a frequency-domain discretization 

of the input excitation and it is shown that the frequency- response function of the TELS 

can be directly computed from the design point of the nonlinear response. An extension 

of the Tail-Equivalent Linearization Method (TELM) for nonlinear stochastic dynamic 

analysis in the frequency domain is presented. It is shown that, when the input excitation 

is discretized in the frequency domain, the frequency-response function (FRF) defining 

the tail-equivalent linear system is directly obtained from the design point of the 

nonlinear response. Formulations are derived for the computation of the modulus and 

phase of the FRF. The so-found equivalent FRF possesses a number of properties, such 

as the capability to account for multi-support excitations and invariance with respect to 

scaling of the excitation when linear waves are considered. The latter property is 

particularly useful with regard to long-term analyses of the response of marine 

structures, for which several sea states must be considered. The equivalent FRF 
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encompasses all the nonlinearities included in the equation of motion. In the present 

simplified application the nonlinear drag term of the Morison‟s equation, relative 

velocity with respect to rig legs and inundation effects were included. Additionally, the 

FRF offers insight into the geometry of the random vibrations discretized in the 

frequency-domain. 

 

 

Armen Der Kiureghian and Kazuya Fujimura, [3] A new alternative 

approach for computing seismic fragility curves for nonlinear structures for use in PBEE 

analysis is proposed. The approach makes use of a recently developed method for 

nonlinear stochastic dynamic analysis by tail-equivalent linearization. The approach 

avoids repeated time-history analysis with a suite of scaled, recorded ground motions. 

Instead, the ground motion is modeled as a stochastic process and, after determining the 

TELS for each response threshold, simple linear random vibration analyses are 

performed to compute the fragility curve. In the present application, the same stochastic 

model was used for all intensity levels. However, this is not necessary. One can easily 

vary the parameters of the stochastic model with the intensity level to more realistically 

characterize high-intensity motions. In doing this, since the TELS remains invariant of 

the scaling and frequency content of the excitation, one will only need to change the 

excitation model in the linear random vibration analysis of the TELS for different 

intensity levels. 

While offering a viable alternative for fragility analysis, the proposed method has its 

limitations. For example, at the present time it is only applicable to non-degrading 

systems, and only one component of ground motion was considered in the present 

application. Furthermore, response gradient computations are required and, therefore, a 

dynamic analysis code with this capability must be used. Nevertheless, the proposed 

method offers an alternative to a type of analysis for which few other viable alternatives 

are presently available. 

 

 

Sanaz Rezaeian and Armen Der Kiureghian, [4] described in there report 

stochastic modeling and simulation of ground motion time-histories for use in response-

history or stochastic dynamic analysis. Ultimately, this research benefits the emerging 
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field of performance-based earthquake engineering (PBEE) by providing a convenient 

method of generating synthetic ground motions for specified design scenarios that have 

characteristics similar to those of real earthquake ground motions. The major 

developments and findings of this study are summarized as follows: 

A new site-based, fully nonstationary stochastic model to describe earthquake ground 

motions is developed. The model is based on time modulation of the response of a linear 

filter with time-varying characteristics to a discretized white-noise excitation. It is 

concluded that for a typical strong ground motion the filter frequency can be represented 

by a linear function, whereas the filter-damping ratio can be represented by a constant or 

a piece-wise constantfunction.

Acceleration time-histories obtained by simulating the stochastic model are high-pass 

filtered to achieve zero velocity and displacement residuals. The selected filter is a 

critically damped oscillator. The oscillator frequency determines the level of high-pass 

filtering and helps to avoid overestimation of simulated response spectrum ordinates at 

long periods. 

The stochastic ground motion model has advantages over existing models: 

(a) The stochastic model represents both the temporal and spectral non-stationary 

characteristics of real earthquake ground motions. As a result, the modulating function 

characterizes the variation of the intensity in time, whereas the time-varying filter 

describes the evolving frequency content. 

(b)  The model has a small number of parameters with physical interpretations. These 

parameters can be as few as six, with three parameters controlling the evolving intensity 

of the motion, two parameters controlling the evolving predominant frequency of the 

motion, and one parameter controlling the bandwidth. 

(c) Modeling is done entirely in the time-domain. 

(d) The discretized form of the model facilitates digital simulation as well as nonlinear 

stochastic dynamic analysis. 

(e) Simulation of a synthetic ground motion for specified model parameters is simple and 

requires little more than generation of standard normal random variables, their 

multiplication with deterministic time-varying functions, and post-processing through a 

high-pass filter. It maintains the natural variability of real ground motions. 
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Caughey TK [5] proposed generalized to the case of nonlinear dynamic systems with 

random excitation. The method is applied to a variety of problems, and the results are 

compared with exact solutions of the Fokker-Planck equation for those cases where the 

Fokker-Planck technique may be applied. Alternate approaches to the problem are 

discussed including the characteristic function. 

 

A. Der Kiureghian, [6] The geometry of random vibration problems in the space of 

standard normal random variables obtained from discretization of the input process is 

described. For linear systems subjected to Gaussian excitation, simple geometric forms, 

such as vectors, planes and ellipsoids, characterize the problems of interest. For non-

Gaussian responses, non-linear geometric forms characterize the problems. Approximate 

solutions for such problems are obtained by use of FORM and SORM. This article offers 

a new outlook to random vibration problems and an approximate method for their 

solution. Examples involving response to non-Gaussian excitation and out-crossing of a 

vector process from a non-linear domain are used to demonstrate the approach. 

 Given a discrete representation of the input process in terms of standard normal random 

variables, it is shown that many statistical quantities of interest in random vibrations can 

be represented in geometric form in the standard normal space. These interpretations 

offer a new outlook to random vibration problems and potentially provide new tools for 

the approximate solution of non-Gaussian or non-linear problems. In this article, solution 

methods by FORM and SORM were explored. Possibilities for developing efficient 

simulation methods that exploit the geometric forms also exist. The numerical examples 

presented in this article indicate that FORM and SORM can be effective methods of 

solution, but they should be used with caution. 

 

Heonsang Koo, Armen Der Kiureghian, Kazuya Fujimura [7], provided A key step 

in finding the design-point excitation, which is that realization of the input process that is 

most likely to give rise to the event of interest. It is shown in this paper that for a non-

linear elastic SDOF oscillator subjected to a Gaussian white-noise input, the design-point 

excitation is identical to the mirror image of the free-vibration response of the oscillator 

when it is released from the target threshold. With a slight modification, this result is 

extended to problems with non-white and non-stationary excitations, as well as to 

hysteretic oscillators. For these cases only an approximation to the design point is 
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obtained. If necessary, the approximation can be used as a „warm‟ starting point in an 

iterative algorithm to obtain the exact design point. The paper also introduces a simple 

and accurate method for estimating the mean up- crossing rate of random vibration 

response by FORM analysis. 

 

Yan-Gang Zhao, Tetsuro Ono, [8] stated that the FORM/SORM accuracy is 

generally dependent on three parameters,  

a. The curvature radius at the design point, 

b. The number of random variables and  

c. The first-order reliability index.  

In this literature, the ranges of the three parameters for which FORM/SORM is accurate 

enough are investigated. 

For practical application of FORM/SORM, a general procedure is proposed which 

includes three steps:  

1. Point fitting limit state surface,  

2. computation of the total principal curvatures Ks , 

3. failure probability computation according to the range of Ks. 

The procedure proposed in this paper can be used only for limit state surfaces that have 

only one design point, a restriction that also applies to other FORM/SORM methods. 

Otherwise local convergence may occur, and error results may be yielded, and the ranges 

of applicability of FORM/SORM cannot be used in the case that the curvatures at the 

design point have different signs and extremely unevenly distributed. 

 

M. Ababneh*, M. Salah, K. Alwidyan, in his paper, a comparison between the optimal 

linear model and Jacobian linearization technique is conducted. The performance of 

these two linearization methods are illustrated using two benchmark nonlinear systems, 

these are inverted pendulum system; and Duffing chaos system. Linearization of 

nonlinear dynamical systems is a main approach in the designing and analyzing of such 

systems. Optimal linear model is an online linearization technique for finding a local 

model that is linear in both the state and the control terms. 
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Fayçal Ikhouane, Víctor Mañosa, José Rodellar, They Bouc-Wen model, widely used 

in structural and mechanical engineering, gives an analytical description of a smooth 

hysteretic behavior. It may happen that a Bouc-Wen model presents a good matching 

with the experimental real data for a specific input, but does not necessarily keep 

significant physical properties that are inherent to the real data, independently of the 

exciting input. This literature presents a characterization of the different classes of Bouc-

Wen models in terms of their bounded input-bounded output stability property, and their 

capability for reproducing physical properties inherent to the true system they are to 

model.
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Chapter 3 Brief review of random vibration analysis 

 

3.1 Introduction  

3.1.1 General 

When an excitation function applied to a structure has an irregular shape that is described 

indirectly by statistical means, we called of a random vibration. 

Such   a function is usually described discrete or continuous function of the existing 

frequencies, in a manner similar to the description of the function by Fourier series. A 

random variable is a variable that takes on numerical values according to a chance 

process. Random variable generally two types 

Discrete random variable, is a countable values i.e. number of coursed selected by the 

students in university. 

Continuous random variable, all values in intervals like (0,1) i.e. height of randomly 

selected adult candidates in range of 1 to 2 meter. 

In structural dynamics, the random excitations most often encountered are either motion 

transmitted through the foundation or acoustic pressure both of these types of loadings 

are generated by explosions occurring vicinity of the structure. Common sources of these 

explosions are construction work and mining. 

Other type of loading, such as earthquake excitation, may also be considered random 

function of time. In this case the structural response is obtained in probabilistic terms 

using random vibration theory. A record of random vibration is a time function such a 

shown in figure.1. The main characteristics of such random function are that its 

instantaneous value cannot be predicted in a deterministic sense. The description and 

analysis or random processes are established in a probabilistic sense for which it is 

necessary to use tools provided by the theory of statistics. [9] 

 

 

 

 



14 

 

 

Figure 1 random function simulation 

 

                           

 

3.1.2 Statistical Description of Random Function 

 

In any statistical method a large number of responses is needed to describe a random 

function. For example, to establish the statistics of the foundation excitation due to 

explosions in the vicinity of a structure, many records of type shown in fig 2 may be 

needed. 

 

 

Figure 2 An ensemble of random function 
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Each record is called sample, and the total collection of samples an ensemble. To 

describe an ensemble statistically, we can compute at any time ti the average value of the 

instantaneous displacements xi. If such averages do not differ as we select different 

values of ti, then the random process is said to be stationary. In addition if the average 

obtained with respect to time for any member of the ensembles is equal to the average 

across the ensemble at an arbitrary time ti, the random process is called ergodic. Thus In 

a stationary ergodic process a single record may be used to obtain the statistical 

description of a random function. We shall assume that all random process considered 

are stationary and ergodic. The random function of time shown ing fig has been recorded 

during and interval of time T. several averages are useful in describing such a random 

function. The most common are the mean value  ̅ which is defined as 

 

 ̅   
 

 
∫  ( )  

 

 
                                                     (3.1) 

And the mean square value   ̅̅ ̅ defined as 

  ̅̅ ̅ = 
 

 
∫   ( )  

 

 
                                                   (3.2) 

Both the mean and the mean square values provide measurements for the average value 

of the random function x(t). The measure of how widely the function x(t)  differs from 

the average is given by its variance   
  defined as 

 

  
   

 

 
∫ , ( )   ̅-   

 

 
                                       (3.3) 

When the expression under the integral is expanded and then integrated, we find that 

 

  
    ̅̅ ̅   ̅                                                        (3.4) 

This means that the variance can be calculated as the mean square minus the square of 

the mean. Quite often the mean value is zero, in which case variance is equal to the mean 

square value. The root mean- square RMSx of the random function x(t) is defined as 

RMSx = √  ̅̅ ̅ 

The standard deviation 

    √  ̅̅ ̅   ̅  
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3.1.3 Probability density function and Cumulative distribution function 

 

Probability density function 

 

Fig 2 shows as portion of a record of a random function x(t). Through the value x1 & x2, 

and then measure the corresponding time intervals    . The ratio given by  

P(x1     )  
              

 
                                                          (3.5) 

and calculated for the entire record length T, is the probability of x having the value 

between x1 & x2 at any selected time ti during the random process. 

Similarly the probability of x(t) being a smaller than a value of x can be expressed as 

 

 P(x)=P[x(t)<x]=      
 

 
∑                                        (3.6) 

 

 Where the time interval     are now those for which the function x(t) as a value smaller 

than the specified x. 

The function P(x)  in equation (3.6) is known as the cumulative distribution function of 

the random function x(t). This function is plotted in fig-4 as a function of x. The 

cumulative distribution function is a monotonically increasing function for which 

 

P(- )       ( )     ( )                                   (3.7) 

 

Now the probability that the value of the random variable is smaller than the value x+   

is denoted by P(x+  ) and that x(t) takes value between x and x+   is P(x+  )   ( ). 

This allows us to define the probability density function as 

 

p(x)=      
 (    )  ( )

  
 

  ( )

  
                                     (3.8) 

 

Thus the probability density function p(x) is represented geometrically by the slope of 

the cumulative probability function P(x). The functions p(x) and P(x) are shown in that 
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fig (3.3) &(3.4) . From equation (3.8) we conclude that the probability that a random 

variable x(t) has a value between x and x+  is given by p(x) dx,where p(x) is the 

probability density junction. 

P((       )  ∫  ( )  
  

  
                                       (3.9 

 

 

 

 

 

 

 

 

 

    

 

 

 

Figure 4 Cumulative probability function   
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3.1.4 Some Useful Probability Distributions 

 

In this section, some probability distributions of continuous random variable and their 

properties, which are used in practical applications mostly, are presented briefly. 

3.1.4.1 Normal (Gaussian) Distribution 

 

The Normal or Gaussian probability density function of a random variable X is the one 

mostly used in practice. It is defined in general as 

 

 ( )   
 

√   
 

 
 
 
(   ̅) 

                                                  (3.10) 

 

In which  ̅ and    are respectively the mean and standard variation of X. The 

Corresponding CDF is calculated from: 

 

 ( )    ∫  ( )
 

  
      .

   ̅

 
/                               (3.11) 

 

where  (-) is called as the Standard Normal Distribution function and its PDF is denoted 

by  (-), which are defined: 

 

                                 ( )    
 

√  
∫  

   

 ⁄                                          (3.12) 

                                    ( )    
 

√  
∫  

   

 ⁄
 

  
                                  (3.13) 

 

If multivariate normal variables are involved in a process, then a multivariate normal 

PDF will be required. In this case, a vector process is used and the multivariate normal 

PDF is stated as, 

                                       ( )    .
 

  
/
    

√| |
   

  

                          (3.14) 

 

Where  ̅ is a vector of p-dimensional random variable,  ̅ is a vector of their realizations 

and  2 is a scalar calculated from the product 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   ( ̅   ̅)     ( ̅   ̅)                         (3.15) 

 

In which  ̅ is a vector of mean values and   is the covariance matrix of  ̅ and | | in 

(3.15) denotes the determinant of  .  

These definitions are written: 

Vector of Multivariate random variable:          ̌  *          +
  

 

Vector of realizations of  ̌           ̌  {          }
 
 

 

Vector of mean values of  ̌           ̌  {          }
 
 

 

The covariance matrix   is defined as 

 

Covariance matrix of  ̌       [

  
         

     
    

        
 

]                                        (3.16) 

 

As it is seen from equation the diagonal terms of this matrix are the variances of the 

random variable Xi, for uncorrelated random variable, the off diagonal terms will be zero 

and the matrix becomes diagonal. 

 

3.1.4.2 Lognormal Distribution 

 

One other commonly used distribution in practice is the Lognormal Distribution. If the 

random variable X has a Normal distribution with the mean and variance, mX and   
2, 

then the random variable. Y = eX is said to be log normally distributed. It is written as 

 

Exponential Function of X:        Y =  eX and X = ln Y 

 

Using eq. the PDF of the random variable     , Can be obtained as written 
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Lognormal PDF:       ( )
 

  √  

 

 
 

 
 

 
.
      

  
/
 

     for (y>0)                                   (3.17 ) 

 

In the region of (y<0), PDF of the random variable will be zero, i.e. fy(y)=0 for (y<0). 

The mean and variance of a lognormal random variable, are calculated from 

 

Mean of the random variable       Y=               
  
 

  

 

Variance of the random variable   Y=        
    

 4 
  
 

   5 

If my and   are given, then the variance and mean of X are calculated from the following 

statements 

 

  
    0  (

  

  
) 1                                                (3.18) 

And 

    (       
   )                                              (3.19) 

 

 

3.1.4.3 Gamma Distribution 

 

The Gamma Distribution represents the sum of r independent exponentially distributed 

random variable, and random variable that take always positive values. Its PDF and CDF 

functions are defined as written 

 

Gamma Dist., PDF:   ( )    
 

 ( )
(  )                 if (x      )             (3.20) 

 

  Gamma Dist., CDF:   ( )      ∑
 

  
(  ) (  )    

       if (x      )         (3.21) 
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In which  ( ) represents a Gamma function which is defined 

Gamma function:     ( )  ∫     (   ) 

 
                                                     (3.22) 

 

The mean and variance of the Gamma distribution are calculated to be 

 

Mean:         
 

 
    and variance:       

  
 

   

 

The parameters r and   are respectively the shape and scale parameters of the 

distribution. For different values of r and  , different type of distributions are obtained. 

When (r=1), it gives the exponential distribution. If (r<1), Then the distribution is 

exponentially shaped and asymptotic to both horizontal and vertical axes. If (r>1), its 

shape is unimodal and skewed with the mode equals (   (   )  ). The skewness 

reduces with increasing value of r as it is seen from the coefficient of skewness, (   

 

√ 
). If (r=s/2) and (     )  Then the gamma distribution becomes the    distribution 

with s degree of freedom. In engineering applications, Gamma distributions occur 

frequently in models of failure analysis, for rainfall studies since the variables are always 

positive and the results are unbalanced. 

 

3.1.4.4 Rayleigh Distribution 

 

The Rayleigh Distribution is used as a probability model describing the distribution of 

wind speed over 1-year period. It is often used for the probability model of the absolute 

value of two components of a random field, e.g., if X and Y are two independent 

normally distributed random variables, both with zero mean and variance equal to    

and if we define a function    √       then this function has a Rayleigh distribution 

with the parameter  . It also describes the probability distribution of maxima of a narrow 

band random process with Normal distribution. The PDF and CDF of the Rayleigh 

distribution are given as 
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Rayleigh PDF:      ( )    ( )  {
 

      ( 
  

        

                              
                     (3.23)        

Rayleigh CDF:       ( )          ( 
  

   )                                                     (3.24)    

 

In which   is the only parameter of the distribution, which is equal to the standard 

deviations of the independent random variables X and Y with Normal distributions and 

zero mean. The mean and variance of the Rayleigh distribution are calculated to be 

 

Mean:      √
 

 
                                                     (3.25) 

Variance:   
     .  

 

 
/                                        (3.26) 

 

 

3.1.4.5 Gumbel Distribution 

 

The Gumbel Distribution is usually used to model the distribution of the maxi- mum, or 

the minimum, of a number of samples or various distributions. It can also be used to find 

the probability that an extreme event, such as earthquake, flood or other natural disaster, 

will occur. The Gumbel distribution is also known as the Extreme Value Type I 

Distribution. It has two forms as one is for extreme maximum (Extreme Value Largest I) 

and one is for extreme minimum (Extreme Value Smallest I), which are respectively 

defined below. 

 

Gumbel (EV Largest-I):           ( )      (   )     (  (   ))         

                                                  ( )       (  (   ))    for (-     )        (3.27) 

 

Gumbel (EV Smallest-I):                  ( )     (   )     ( (   ))                  

                                                  ( )         ( (   ))for (-     )       (3.28)  

 

In which   is the location parameter and   is the scale parameter, which is defined 

(    )  The Gumbel distribution supports the range of outcomes of the random 
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variable. X between (-     ). The means and variances of both largest-I and 

smallest-I distributions are calculated from 

 

Mean :           
             

 
  ( Largest-I)                                                 (3.29) 

 

     
             

 
 (smallest –I)                                               (3.30) 

 

Variance:     
 =

  

   
 ( Largest-I and smallest – I)                                               (3.31) 

 

The value (0.57722156649) in (3.30) is the Euler‟s constant. 

 

 

3.1.5 Correlation 

 

Correlation is a measure of the dependence between two random processes. Consider the 

two records shown in fig.5 

 

 

Figure 5 Correlation between x1(t) and x2 

 

 

Multiplying the coordinates of these two records at each time ti and computing the 

average over all values of t calculate the correlation between them. It is evident that the 
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correlation so found will be larger when two records are similar. For dissimilar records 

with mean zero, some products will be positive and other negative. Hence their average 

product will approach zero. 

 

3.2 Random Processes 

 

The theory of random processes has evolved as a generalization of the concept of 

random variable. In many problems the outcome of a event is not a real number but a 

function of one or more parameters, such as time or space or both, In such cases the 

outcome of each trial is called a realization or a sample function and the collection of all 

possible functions is called the ensemble of the random process. The random processes 

have found increasing application as models of a large class of natural phenomena. Some 

examples of phenomena modeled as random processes are [10] 

1. Particles in suspension undergoing Brownian motion as function of time, 

2. Ground motion a point during earthquakes as function of time, 

3. Unevenness of road surface as a function of distance along the center line, and 

4. The pressure field due to jet noise as function of both the time and space coordinates 

  As a brief definition, a random process is an infinite collection of grasps of an random 

variable. In a similar way to the definition of a random variable, a random process is a 

mapping from the sample space into an ensemble of time functions known as sample 

functions. The random variable X(x, t) for a fixed random x value, say  x1, is a specific 

time signal that it is called as the realization of the random variable. X(x, t) at x = x1, 

which is denoted by x1(t). For a fixed time, say t1, the random variable. X(x, t1) is a time-

independent random variable, that probability principles are applied. For both fixed 

values of x and t, say (x = x1 and t = t1), the random variable. X(x, t) will be a real 

number with the value of X(x1, t). The ensemble of all realizations of the time-dependent 

random variable, represents the stochastic process that we use the notation X(t) to 

indicate it, disregarding its dependence on the outcome x. Such an ensemble, which 

represents a stochastic process, is shown in Fig.6 with four realizations, or samples, x1(t), 

x2(t), x3(t) and x4(t). As indicated above, a stochastic process represents a single number, 

a time function, a random variable and a process with time function and random variable 

Thus, 
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1. if x and t are both fixed (x = x1 and t = t1), then X(x1, t1) is a single number, 

2. if x is fixed (x = x1) and t is a variable, then X(x1, t) is a time function as x1(t), 

3. if x is a variable and t is fixed (t = t1), then X(x, t1) is a random variable at t = t1, 

4. if x and t are both variables then X(x, t) is a stochastic process. 

If we consider an infinite number of samples, at a specific time, say t = t1 as shown in 

Fig.6, the stochastic process will be a continuous random variable. With the outcomes x, 

as (x1, x2, …, xn) where (n!1).  

 

 

 

Figure 6 Ensemble of time-dependent random variable 

 

 

3.2.2 White Noise 

3.2.2.1 Introduction 

 

In random Vibrations, white noise is extensively used to model excitations with a broad- 

banded frequency spectrum. The name „white noise‟ comes from the fact that its average 

power is uniformly distributed in frequency, which is a characteristic of white light. 

This it has a constant power spectral density. This means that all frequencies contribute 

equal amount of energy to stochastic process up to infinite frequencies. Consequently, a 

white noise process has infinite variance. The fact that the infinitely high frequencies 

contribute to the process implies that it has zero memory [10]. 
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When the excitation is a white noise process, the response generally is a Markov process. 

So, if a system is nonlinear or if multiplicative random excitations are present, or both, 

then, mathematically exact solution is not always obtainable. When such an exact 

solution is obtained, it is usually based on the assumption that system response is a 

Markov stochastic process or related to Markov process in some sense. 

 

3.2.2.2 Gaussian White Noise Simulation on VBA(Macro) 

 

A class of probabilistic model can be used to model random process. There are three 

basic approaches: 

The model takes form of a non process like the Gaussian process Markov and the 

parameters of the model are estimated by using available data from actual records. 

Somewhat similar to the first, sample function of the random process are generated at 

discrete values of the indexing parameters by passing a sequence of a random number 

through appropriately design filter. The filter weights, which are the parameters of the 

model, are estimated by making use of the actual observation of the random 

phenomenon. 

 This is non parametric in nature in the interest is mainly limited to the estimation of few 

order statistics of the random process. 

Here we take first one for generating the white noise simulation and proceeding section 

we also modeling by third approach. 

 

3.2.2.2.1 Random Number Generation 

 

The most important step in application of Monte Carlo simulation is the generation of 

random number corresponding to prescribe probability distribution functions. Automatic 

generation of random number is most effectively and efficiently done on the digital 

computer. 

The 1
st
 step in the generation of random number associated with the specific probability 

distribution function is to generate random numbers corresponding to the uniformly 

distribution random variable over the interval 0 to 1.  

Let X be the random variable with the given probability distribution functions Fx(x).  
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We are required to generation random numbers which can serve as a sample values of 

random variable X. it can be easily verified that the transform random variable given by 

the functional relation U= Fx(x) is uniformly distributed over the interval 0 to 1 . 

If [un]= [u1,u2,u3……un] is a set of sample value of U obtained by some procedure, the 

corresponding set of value [xn] =[x1.x2,x3……xn ] obtained by the inverse transformation 

xi=Fx
-1

(ui) will be random numbers associated with the random variables X. Thus the  

 

generation of uniformly distributed random number between 0 to 1 is most basic to 

generation of random numbers with general probability distribution. 

The recursive relation which is often used in for this purpose is  

Xi+1=(aXi+b)(modulo m)=  (aXi+b)/m                                                                   (3.32) 

a , b & m are non negative integers 

if Ki= integer part of the ratio  (aXi+b)/m. 

then the corresponding residue of the modulus m is  

 

Xi+1= aXi+b-mKi                                                                        (3.33) 

 

Divided the value obtained in eq. (3.33) by the modulus m, we obtained 

 

Ui+1 = Xi+1/m 

 

Which form a set of uniformly distributed random number in the interval (0,1) 

In the computerized procedure mentioned above the random are generated in a purely 

deterministic way. Hence are not strictly random. They can be duplicated exactly. For 

this reason they are called pseudo random numbers. The generated pseudo random 

number sequence is periodic with the period being less than the modulus m. in the Monte 

Carlo simulation method the period of random sequence should be greater than the 

number of random numbers that will be used in the simulation procedure. This will 

insure the randomness of the sequence in the particular application. The large value of m 

is needed for sufficiently large period. It can be show that the number generated with the 

large m appear to be uniformly distributed and statistically independent (Knuth.1969) 

satisfactory results have been observed (Rubinstein 1981) with m=2
35

, a= 2
7
+1  & b=1 

for binary computers.  
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Another common recursive relation for generation uniform random numbers is the 

congruently generator defined by 

Xi+1 = axi *(modulo m)                                              (3.34) 

 

&     ui  = xi/m                                                                 (3.35) 

 

 

Equation (3.34) & (3.35) are used in the IBM system 360 as a uniform random number 

generator with 

                                            

a=16808   &   m = 2
31

-1. 

 

3.2.2.2.2 White Noise Simulation 

 

To generate sample function which approach a stationary Gaussian white noise process, 

first a sequence of pairs of statically independent random numbers 

[u2n] = [u1, u2, u3……u2n-1,u2n] all of which have a uniform probability distribution over 

the range       is  generated. 

Given this sequence [u2n ] of uniform random variants one can construct a new sequence 

of pairs of statically independent random numbers 

 

[x2n] = [x1, x2, x3……x2n-1,x2n] 

 using the relation 

 

 X2i-1  = (-2ln u2i-1)
1/2

 cos(2  2i)       i=1,2,3…….n     (3.36)          

 

X2i     = (-2ln u2i-1)
1/2

 sin(2  2i)         i=1,2,3……n     (3.37)          

 

It can be shown that the sequence [x2n] from independent samples of the Gaussian 

distribution with mean 0 & variance 1(Box & Muller-1958, Franklin-1965].   

A sample function a1(t) can now be constructed by assigning the values x1, x2, x3……xn  

to n successive ordinate spaced at equal intervals    along a time abscissa and by joining 

them by straight lines implying linear variation of the ordinates over each time of 
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interval. The time scale is chosen such that the initial time is a uniform random variable 

in the time interval 0<t<    

Taking Fourier transforms of Rww(t) give the power spectral density function of the 

random process . 

The time interval may be chosen sufficiently small to approximately generate the white 

noise process to within a given tolerance to any desired frequency. 

 

 

3.2.2.2.3 Generate a program on VBA(macro) using excel for Gaussian white noise 

 

In this section describe the coding for program on VBA for simulation of Gaussian white 

noise of zero mean and unit variance.  

For example we take 10,000 random numbers in the programing we change the number 

of random variable easily how much we required. 

For doing programing on excel sheet we go to developer and record the macro file and in 

the sheet one workbook wizard we type our program which is given below: 

 

 

Sub randoma() 

a = 2 ^ 7 + 1 

b = 1 

m = 2 ^ 35 

xi = 1 

For x = 1 To 100000 

xiplus = (a * xi + b) / m 

ki = Int(xiplus) 

xiplus1 = a * xi + b - m * ki 

uiplus1 = xiplus1 / m 

xi = xiplus1 

Sheet1.Cells(x, 1) = uiplus1 

 

Next x 

For x = 1 To 100000 Step 2 
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 t = Sheet1.Cells(x, 1) 

 s = Sheet1.Cells(x + 1, 1) 

         

 

x2iminus = ((-2 * Log(t)) ^ 0.5) * Cos(2 * (3.141592654) * s) 

x2i = ((-2 * Log(t)) ^ 0.5) * Sin(2 * (3.141592654) * s) 

 

Sheet1.Cells(x, 5) = x2iminus 

Sheet1.Cells(x + 1, 5) = x2i 

 

Next x 

End Sub 

 

 

 

For make this program we refer Application of  Random vibration by N.C. Nigam , 

By use of this programming we get any number of random numbers white noise 

simulation and using this we also find power spectral density of the random process by 

taking Fourier transform.  

For our simulation process shown in fig- 7  

 

 

 

Figure 7 Gaussian White noise Simulation 
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 3.2.3 Markov Process 

 

A stochastic process X(t) is said to be a scalar Markov process if it has the property 

 

Pr* (     )| (    )           (  )    +                     (3.38) 

 

Pr* (     )| (    )      +                                                 (3.39) 

 

Where Pr[ - ] denotes the probability of an event, and where the statement following a 

vertical specifies certain conditions under which such a probability is defined. In the 

present case, the conditions are known values of X(t) at earlier time instants, t1,...,tn-1. 

A sufficient condition for X(t) to be Markov process is that its increment in any two non 

The conditional probability,     * ( )   | (  )     + of a Markov process X(t) is 

called the transition probability distribution function. A Markov process is completely 

characterized by its probability distribution and its probability distribution at an initial 

time. If the transition probability distribution function of a Markov process is 

differentiable, its transition probability density function can be obtained, which is often 

easier to deal with. Transition probability density function can be obtained by: 

 (   |    )  
 

  
    * ( )   | (  )    +                     (3.40) 

 

The concept of scalar Markov process is readily generalize to a vector Markov process. 

Thus  ( )    *  ( )   ( )     ( )+  is an m dimensional Markov vector if it has the 

property of 

 

  [⋂ {  (  )    }
 
   | (    )         (  )    ]                         (3.40) 

 

  [⋂ {  (  )    }
 
   | (    )      ]               tn >tn-1>….>t1           (3.41) 
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Where   denotes the joint occurrence of multiple events. A sufficient condition for 

vectorially valued stochastic process to be a Markov vector is that its vectorial increment 

be independent in non-overlapping time intervals. The transition probability density of a 

Vector Markov process is a generalization of 

 

 (   |     )  
  

         

    [⋂ {  ( )    }
 
   | (  )    ]                  (3.42) 

 

The higher order probability densities, describing the behaviour of a Markov process at 

several instants of time, can be constructed from initial probability density and transition 

probability density as follows; 

Pr(x1,t1;x2,t2;……;xn,tn)   =q(xn,tn|xn-1,tn-1),q(xn-1,tn-1|xn-2,tn-2)…q(x2,t2|x1,t1)p(x1) 

                                                                                           t1<t2<tn             (3.43) 

 

3.3 Exact Response Methods for Randomly Excited Systems 

 

Mathematically exact solution of randomly excited nonlinear system is difficult to 

obtain. The possibility of solution does exist, however when random excitations are 

independent at any two instant of time, in which case the system response, represented as 

a vector in a state space, is Markov vector. The probability density of a Markov vector is 

governed by parabolic partial differential equation called the Fokker-Planck equation, 

which has been derived, in previous chapter. 

Still the full solution to a Fokker-Planck equation, which shows how the probability 

structure evolves with time, know for very special first order systems for which system 

response is Markov scalar process. 

For higher order non-linear systems, solution has been obtained in few cases for reduced 

Fokker-Planck equation without the time derivative term. The unknown in a reduced 

Fokker-Planck equation is the probability density of system response when it reaches to 

state of statistical stationary. Of course, a stationary response exists only if several 

necessary conditions are met, including: 

(1) Every random excitation is stationary process, 

(2) System parameters are time invariant, and  



33 

 

(3) Some energy dissipation mechanism exists in the system such that the energy input 

from the random excitations is balanced statistically by energy output from dissipation. 

A stationary solution, if obtainable, is very useful. It is needed for computing the 

statistical averages for some system response variable to cross over specified boundaries, 

which are useful or reliability assessment. Stationary response also provides information 

on the possibility of instability and/or bifurcation of the response. 

The class of nonlinear systems, for which this procedure is applicable, is termed the class 

of generalized stationary potential, and is claimed to be the broadest class of solvable, 

nonlinear, stochastic systems up to that date. The method is said to be also applicable to 

MDOF systems. However, the class of generalized stationary potential is too narrow 

with respect to the class of systems that we strive to cover. 

 

 

3.4 Approximate Response Methods for Randomly Excited Systems 

 

When a multidimensional nonlinear system is subjected to both parametric and external 

random excitations of Gaussian white noises, the reduced Fokker-Planck equation can be 

solved in closed form only with certain highly restrictive relation between the system 

parameters and the spectral densities of the excitations. Under Practical condition such 

restrictive requirement rarely met. Therefore approximate solution techniques are 

generally needed. 

The approach to the problem of determining the time-dependent probability density 

function is to solve the FPK-equation by numerical means. A simple and efficient 

numerical scheme can be formulated by employing the random walk analogue Roberts 

[1981]. This method can only be applied to 1-dimensional FPK equations and is, 

therefore, not applicable to MDOF systems. 

The numerical integration of the FPK-equation for MDOF systems quickly becomes 

very cumbersome, because of the high dimension of the probability space that is to be 

discretized. Summarizing, it can be concluded, that the Fokker-Planck equation method 

is not suitable to be applied to a wide class of practical MDOF systems. An even more 

important shortcoming of the method is that is does not provide information on the 

power spectral density of the response. 
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3.4.1 Perturbation Method 

 

The basic appreciation is to expand the solution to the nonlinear set of equations in terms 

of a small scaling parameter, which characterizes the magnitude of the nonlinear terms in 

these equations. The first term in the expansion is simply the linear response, which is 

the response when all the nonlinearities in the system are removed. [10] 

The subsequent terms express the influence of the nonlinearity. As with perturbation in 

general, the calculations are usually lengthy and rapidly become more tedious as the 

order of the scaling parameter increases. In practice, results are usually obtained only to 

the first order in the scaling parameter. The method is, therefore, only valid for small 

perturbations. Consequently, the perturbation method can only be applied effectively 

when weakly nonlinear systems are considered. 

The Perturbation method can be extended to MDF systems. By expanding the response 

in powers of perturbation parameter, the equation can be reduced to hierarchy of a 

system of linear differential equation that can be solved sequentially by linear system 

theory. 

 

3.4.2 The Fokker-Planck-Kolmogorov Equation Method 

 

The Fokker-Planck (FPK) equation method can provide information on the stationary (or 

non-stationary) un-normalized probability density function of the response of a dynamic 

system. The FPK equation is a partial differential equation for the probability density 

function of the response incorporating partial derivatives to this response (and time, in 

case of a non- stationary probability density function). This equation should be solved 

under appropriate boundary (and initial) conditions. One could distinguish between 

methods providing exact solutions and methods providing approximate solutions of the 

FPK-equation. 
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3.4.3 Stochastic Averaging 

 

In these methods the response of lightly damped systems to broad band excitation is 

approximated by a diffusion process. The coefficients of the associated FPK equation are 

derived based on an appropriate averaging of the equations of motion. The appeal of 

these methods lies in the fact that they often reduce the dimensionality of the problem 

and significantly simplify the solution procedures. On account of this advantage they are 

also applied to systems wherein the response is already Markov.  

The methods of stochastic averaging enhance the scope of the FPK equation approach in 

random vibrations. The merit of these methods is that they lead to non-Gaussian 

estimates for the response. 

 

3.4.4 Linearization Methods 

 

This method is the most popular approach in nonlinear random vibration problems. It is 

extension of the well-known harmonic linearization technique to stochastic problems and 

is applicable to both SDOF and MDOF systems under stationary or non-stationary 

inputs. [11] The method consists of optimally approximating the nonlinearities in the 

given system by linear models so that the resulting equivalent system is amenable for 

solution. For evaluating the parameters in the equivalent system, an additional 

assumption that the response is Gaussian is generally made.  

 

3.4.4.1 Stochastic Equivalent Linearization 

 

The method of the stochastic equivalent linearization is based on the idea that a 

Nonlinear system may be replaced by a linear system by minimizing the mean square 

error of the two systems. This method has seen the broadest application because of their 

ability to accurately capture the response statistics over a wide range of response levels 

while maintaining relatively light computational burden. The method will be briefly 

discussed in the following sections. 
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 3.4.4.2 Stochastic Equivalent Linearization Method 

 

The equivalent linearization method has been studied widely. The development of an 

equivalent linearization method, reported in the literature, is by Booton [1953]. Caughey 

[1960] utilized a linearization technique for the response analysis of systems with a 

bilinear hysteresis restoring force. 

 

3.4.4.3 System model 

 

To illustrate the procedure of equivalent linearization theory [11], let us consider  

Following oscillator with a nonlinear restoring force component. 

 

 

Figure 8 SDOF mass-spring-damper system 

  

 

The ordinary differential equation of the motion can be written as: 

 

m ̈(t)+c ̇(t)+g(x)=F(t)                                            (3.44) 

 

Where m is the mass, c is the viscous damping coefficient, F(t) is the external excitation 

signal with zero mean and x(t) is the displacement response of the system. 

Dividing the equation by m , the equation of motion can be rewritten as: 
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 ̈(t)+2    ̇(t)+h(x)=f(t)                                          (3.45) 

 

where    is the undamped natural frequency, for the linear system. 

We can always find a way to decompose the nonlinear restoring to one linear component 

plus a nonlinear component [12]. 

 ( )      
 (    ( ) )                                       (3.46) 

 

Where λ is the nonlinear factor to control the type and degree of nonlinearity in the 

system. 

 

 

3.4.4.3 Implementation of the Stochastic Equivalent Linearization 

 

The idea of linearization is replacing the equation (3.45) by a linear system: 

 

 ̈(t) + 2       ̇(t) +    
  (t) =f (t)                                    (3.47) 

 

    is the damping ratio of equivalent linearized system and      is the natural frequency 

of the equivalent linearized system.  

To find an expression for    , it is necessary to minimize the expected value of the 

difference between equations (3.45) and (3.47) in a least square sense. Now the 

difference is simply the difference between the nonlinear stiffness and linear stiffness 

terms, which is 

e=h(x)-    
 x                                                        (3.48) 

 

The value of     can be obtained by minimizing the expectation of the square error 

E{e
2
}. 

 

    
  = E{e

2
}=0                                                          (3.49) 

 

Substituting the equation (3.48) into (3.49) performing the necessary     can be 

obtained as 
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 .   
 *  ( )+

  
 /                                       (3.50) 

 

Where x σ is the standard deviation of x(t). This equation shows how the nonlinear 

component of the stiffness element affects the value of  ωeq . 

In equation (3.50), the exact evaluation of  
 *  ( )+

  
  requires knowledge of the 

first-order density function of the response process x(t). Let the process x(t) assume to be 

Gaussian, then the standard deviation can be found from equation (3.47). For 

convenience, the Duffing oscillator has been used to illustrate this procedure here, with 

which the nonlinear restoring force is written as: 

 

h( x)=   
 (      )                                              (3.51) 

 

Where the nonlinear factor   controls the type and degree of nonlinearity in the system. 

A higher value of     indicates a stronger nonlinearity. A positive value of   represents a 

hardening system while a negative value represents a softening system behavior. In this 

case, the coefficient      can be expressed: 

 

   
     

 .   
 *  +

  
 /                                              (3.52) 

 

Taking the density function of x(t) to be of Gaussian form 

 

  ( )  
 

√    
 
   2 

  

   
 3                                            (3.53) 

 

Using the definition of the expectation operator, it is found from equation (3.50) that: 

 

   
     

 (     )                                                    (3.54) 

 

Where in this case 

 

A=E[x
4
]=∫     ( )  

 

  
                                            (3.55) 
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By performing integration, the equation (3.54) can be expressed using Gamma function 

A = 
 

√ 
  

  .
 

 
/                                                          (3.56) 

 

Utilizing a well-known frequency domain input-output formula, the spectrum of x(t) be  

determined by 

  ( )  | ( )|   ( )                                                  (3.57) 

 

Where   ( )and   ( )are the spectral density matrix for x(t) and f(t) respectively. 

Here the appropriate frequency response function  ( ) is given as: 

 ( )  
 

(   
              )

                                        (3.58) 

Then  

  
  ∫   ( )  

 

  
                                                   (5.59) 

 

Combining the equation (3.57) and 3.59), two algebraic relationships are obtained for the 

two unknown     and   . By iterative process, finally, the desired equivalent coefficient 

can be obtained. The cyclic procedure can be devised as follow: 

1. Assign an initial value to the equivalent coefficient      

2. Use equation (3.57), (3.58) and (3.59) to get    

3. Solve equation (3.54) and 3.55) for the new     

4. Repeat steps 2 and 3 until results from cycle to cycle are similar. 

 

3.4.5. Equivalent non linearization 

 

This method is conceptually similar to the method of equivalent linearization and can be 

viewed as a generalization leading to non-Gaussian estimates for the response. It consists 

of replacing the given nonlinear system by an equivalent nonlinear system, which 

belongs to the class of problems, which can be solved exactly. This method is related to 

the class of exactly solvable FPK equations and thus is applicable only to systems under 

white noise inputs. The criterion of replacement is again the minimization of the mean 

square error. The method leads to non-Gaussian stationary response PDF and estimates 
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correctly the random response of limit cycle systems in which case, equivalent 

linearization fails.  

 

Summary 

 

Various methods for stochastic response analysis have been outlined in the previous 

sections. Exact solutions are obtainable from the FPK equation approach but are scarce. 

It is generally necessary to take recourse to one of the several approximate procedures 

available. Many of the approximations are based on the assumption that the response 

process is nearly Gaussian distributed and nearly Markovian in nature. The above 

methods have been applied in the past to study a variety of nonlinear problems such as 

structures undergoing large amplitude vibrations, yielding systems, self-excited systems, 

hysteretic systems and rocking of blocks. The developments of these methods are 

characterized by two conflicting objectives. Firstly, the methods are expected to be 

viable when applied to large-scale engineering structures, while; on the other hand, they 

need to capture correctly, the qualitative behavior of nonlinear systems. The linearization 

and closure methods are, perhaps, the only feasible analytical methods, which can be, 

used in conjunction with computational structural models for studying large-scale 

MDOF systems. One of the major drawbacks of these methods, however, lies in their 

inability to capture correctly the interactions between equilibrium states of the unforced 

system and external random excitations. It has been noted that, for systems under white 

noise excitations, the most probable response states correspond to the stable equilibrium 

states of the unforced system. Evidently, the linearization and closure techniques are ill 

equipped to model these nonlinear features satisfactorily. On the other hand, the 

averaging and FPK equation based approaches are mathematically well founded and 

perform well when applied to simple systems displaying the above mentioned 

complicated response patterns, but are, however, of limited use in analyzing large scale 

structures. Thus, methods to overcome these limitations still need to be developed. In 

preceding section we shows the method, which is overcome, the shortcoming of 

equivalent linearization method, Tail Equivalent linearization method. 
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Chapter 4 Brief Review of Reliability method 

 

The aim of this section is to introduce the most common techniques of structural 

reliability analysis, namely, First Order Reliability Methods (FORM) and Second Order 

Reliability Method (SORM). First the concept of limit state equations and basic random 

variables is introduced. Thereafter the problem of error propagation is considered and it 

is shown that FORM provides a generalization of the classical solution to this problem. 

Different cases of limit state functions and probabilistic characteristics of basic random 

variables are then introduced with increasing generality [13]. 

 

4.1 Introduction 

 

For structural components and systems first of all no relevant failure data are available, 

secondly failures occur significantly more rare and thirdly the mechanism behind failures 

is different. Structural failure occur not predominantly due to elderly processes but 

additionally due to the effect of severe events, such as extreme winds, snow fall, earth-

quakes, or combinations. For the reliability assessment it is consequently necessary to 

consider the influences acting from the outside i.e. loads and influences acting from the 

inside i.e. resistances individually. It is thus necessary to establish probabilistic models 

for loads and resistances including all available information about the statistical 

characteristics of the parameters influencing these. Such information is such as data 

regarding the earth-quakes, experiment results of concrete compression strength, etc.  

Determine the probability of failure establish probabilistic models for loads and 

resistances of a structural component. Probabilistic modeling is a two fold problem : 

-Develop model for random variables, 

-Study function of these random variables. 

We will focus on the validity of the procedures rather than the validity of the results. If 

we have valid procedure and reasonable inputs, then our estimated probability will be  
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useful. We start by assuming an idealized structural component. The component has only 

two performance states, 

-Safe 

-Failure 

All uncertainties can be quantified by random variable. We begin by considering a 

component with resistance R and load S, Probabilistic modeling of structural component 

is given in Fig.9, If S>R, component is failed and if S R component is safe. 

 

 

 

Figure 9 Probabilistic modeling of structure 

 

 

For a structural component for which the uncertain resistance R may be modeled by a 

random variable with probability density function fR (r) subjected to the load s the 

probability of failure may be determined by 

 

     (   )     ( )    ( |                                          (4.1) 

 

In case also the load is uncertain and modeled by the random variable S with probability 

density function fS (s) then probability of failure is 

 

     (   )    (      )    ∫   ( )  ( )  
 

  
            (4.2) 

 

where   ( )             and    ( ) = PDF of S 

 

S R S 
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Assuming that the load and the resistance variables are statistically independent. This 

case is called the fundamental case. The integration in Equation (4.2) is illustrated by 

convolution integral in Figure 10. 

 

 

Figure 10 Illustration of the integration of Eq 4.2 

 

 

                   Figure 11 The distribution of the failure probability over the realization of R 

and S 

 

 

This collared area shown the probability of failure,  

Pf = FR(s)fs(s) 

 

In Fig. 10 the contributions to the probability integral in Equation (4.2) are illustrated. 

Note that the probability of failure is not determined through the overlap of the two 

curves. In Fig.11, the density function for the failure probability is illustrated as a 
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function of the realizations of the random variables R and S. The integral under this 

density is not equal to 1 but equal to the failure probability Pf . Finally from Fig. 11, the 

most likely combination of values of r and s leading to failures may be identified by the 

mode of the density function for the probability of failure. This point is also often 

referred to as the design point r * , s *
 

 

There exists no general closed form solution to the integral in Equation (I) but for a 

number of special cases solutions may be derived. One case is when both the resistance 

variable R and the load variable S are normally distributed. In this case the failure 

probability may be assessed directly by considering the random variable M often referred 

to as the safety margin, 

       

Then whereby the probability of failure may be assessed through 

 

                         P
F 
P(RS 0)P(M 0)                              (4.3) 

 

where M is also being normal distributed with parameters 

 

 M  R  S 

   √  
    

                                                  (4.4) 

  

The failure probability may now be determined by use of the standard normal 

distribution function as 

 

    .
    

  
/   (  )                                 (4.5) 

 

 

Where 
  

  
=   is called safety index.  

The geometrical interpretation of the safety index is illustrated in Figure 12. 
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             Figure 12 Illustration of the probability density function for normally distributed 

safety and margin 

 

From Figure 12  it is seen that the safety index may be interpreted as the number of 

standard deviation by which the mean value of the safety margin. 

In the general case the resistance and the load cannot be described by only two random 

variables but rather by functions of random variables. 

 

    ( ) 

 

                                                      ( )                                                         (4.6) 

 

where X is a vector with n so-called basic random variables. As indicated in Equation 

(4.6) both the resistance and the loading may be a function of the same random variables 

and R and S may thus be statistically dependent. Furthermore the safety margin 

 

M R S   ( )    ( )g (X)                                    (4.7) 

 

The function g(x) is usually denoted the limit state function, i.e. an indicator of the state 

of the considered component. For realizations of the basic random variables X for which 

g(x)  0 the component is in a state of failure and otherwise for g(x) 0 the component 

is in a safe state. 
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Setting g(x) 0 defines a (n-1) dimensional hyper surface in the space spanned by the n 

basic random variables. This hyper surface is denoted the failure surface and thus 

separates all possible realizations of the basic random variables X resulting in failure, i.e. 

the failure domain, from the realizations resulting in a safe state, the safe domain. 

 

Reliability in general 

 

Structure reliability problem is also define in terms of a set of basis random variable. 

The methods of structural reliability aim at computing the probability of failure of a 

structural system. The structural reliability problem is defined in terms of a set of basic 

random variables x=(x1,x2….xn) that describe the uncertain quantities. Affecting the state 

of the structure, and a set of m limit-state functions gk(x, ), k=1,2,…m, that describe the 

failure event of interest, where   (       ) denotes a set of p deterministic 

parameters. the structural system is seen as composed of components, and the k-th limit-

state functions is defined such that {gk(x,  )   + denotes the events of failure of the k-

th component in the outcome space of the random variable x. the probability of failure of 

the system,denoted pf , is given by 

 

Pf=∫  ( )  
 

                                                           (4.8) 

 

Where f(x) denotes the joint probability density function of x, and   is the failure 

domain defined in terms of the limit-state functions gk(x, ), k=1,2,….m. depending on 

how the failure domain is defined, the structural reliability problem falls into one of the 

following four categories: 

A structural “component” reliability problem is one in which the failure domain is 

defined by a single limit-state function, i.e. 

  * (   )   + 

A structural “series system” reliability problem is one in which the failure domain is 

defined as the union of component failure events, i.e. 

  {⋃  

 

   

(   )   } 
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Where m is the number of components in the series system. Thus, a series system fails if 

any of its components fail. 

A structural “parallel system” reliability problem is one in which the failure domain is 

defined as the intersection of component failure events, i.e. 

 

  {⋂  (   )   

 

   

} 

Where m is the number of components in the parallel system. Thus a parallel system fails 

if every one of its components fails. 

A structural “general system” reliability problem is one in which the failure domain is 

defined in terms of both unions and intersections of components failure events. In 

general, such system can be formulated either in terms of a series system of parallel 

subsystem, or in terms of a parallel system of series subsystems. The former formulation 

leads to the definition 

  {⋃ ⋂   (   )   

 

     

} 

 

Where    is the k-th set which is the set of any subset of component which joint failure 

constituents failure of the system. 

                For most structural reliability problems, an analytical evaluation of the integral 

is impossible and, therefore, numerical methods have been developed for approximate 

analysis. The first and second- order reliability methods, commonly known as FORM 

and SORM, are widely used as approximate solution tools for such analysis. In the 

following section, these methods and their related topics are briefly described. More 

detailed development of these methods can be found in Ditlevsen and Madsen [14]. 
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4.2 First Order Reliability Methods and second order reliability method 

 

4.2.1 Introduction 

 

 It is one of the most important methods for reliability evaluations in structural reliability 

theory. Several commercial computer codes have been developed for FORM analysis 

and the methods are widely used in practical engineering problems and for code 

calibration purposes. In this section first the basic idea behind the FORM methods will 

be highlighted and thereafter the individual steps of the methods will be explained in 

detail [6]. 

 

 

4.2.2 Failure Events and Basic Random Variables 

 

In reliability analysis of technical systems and components the main problem is to 

evaluate the probability of failure corresponding to a specified reference period. 

However, also other non-failure states of the considered component or system may be of 

interest, such as excessive damage, unavailability, etc. In general any state, which may 

be associated with consequences in terms of costs, loss of lives and impact to the 

environment are of interest. In the following we will not different between these different 

types of states but for simplicity refer to all these as being failure events, however, 

bearing in mind that also non-failure states may be considered in the same manner. 

It is convenient to describe failure events in terms of functional relations, which if they 

are fulfilled define that the considered event will occur. A failure event may be described 

by a functional relation, the limit state function g(x).  

In Equation (4.8) the failure event F is simply defined as the set of realization of the 

function g(x) , which are zero or negative. 
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As already mentioned other events as failure may be of interest in reliability analysis and 

e.g. in reliability updating problems also events of the following form are highly 

relevant. 

 

I h(x) 0

   ∫ ∫  ( )     
 ( )  

                                     (4.7) 

 

where (x) X f is the joint probability density function of the random variables X . This 

integral is, however, non-trivial to solve and numerical approximations are expedient. 

Various methods for the solution of the integral in Equation (4.7) have been proposed 

including numerical integration techniques, Monte Carlo simulation and asymptotic 

Laplace expansions. Numerical integration techniques very rapidly become in efficient 

for increasing dimension of the vector X and are in general irrelevant. Monte Carlo 

simulation techniques may be efficient but in the following we will direct the focus on 

the widely applied and quite efficient FORM methods, which furthermore can be shown 

to be consistent with the solutions obtained by asymptotic Laplace integral expansions. 

FORM and SORM are approximate methods for computing the probability integral (). In 

these methods, the limit-state surface gk(x, )    for each component is replaced by a  

first or second order approximating surface, respectively. The approximation is carried 

out at a point, known as the design point, which is the point on the surface gk(x, )    

that is nearest to the origin in a transformed standard normal space. 

FORM approximates the limit-state surface of each component as a tangential 

hyperplane at the design point. For a component reliability problem, the accuracy of 

FORM is primarily dictated by the nonlinearity of the limit-state surface around the 

design point. This is because the dominant contribution to the probability intergral comes 

from the neighborhood of this point, where the probability density achieves its maximum 

value. On the other hand, SORM approximation the Limit-state surface as a hyperboloid, 

which can reflect the nonlinearity around the design point up to the second order. For 

nonlinear problems, SORM usually gives a better approximation than FORM. 

For FORM or SORM analysis, we transform the random variables x into standard 

normal random variables u through a suitable one-to-one mapping T:x  . The limit-

state functions   (   )  k=1,2,….m, are accordingly transformed such that Gk(u, )  
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  , 
  ( )  -. The design point   

 , k=1,2,…m, are obtained by solving the constrained 

optimization problems. 

 

  
        *‖ ‖    (   )   +                           (4.8) 

 

 

After finding the design points, we replace the limit-state surfaces   (   )     

k=1,2,….m, by the first order (in FORM) or second (in SORM) approximating surfaces 

at the design points. 

 

In FORM, the k-th approximating surface is a hyperplane defined by 

 

  (   )      
 (    

 )  ‖    ‖(     
  )             (4.9) 

 

Where      denotes the gradient vector of   (   )    with respect to u evaluated at 

the design point   
 ,         ‖    ‖ is the normalized negative gradient vector, 

and    is the distance of the hyper-plane from the origin. For the component reliability 

problem in (), the first order approximation of pf is given by 

 

    (  )                                                      (4.10) 

 

Where   is the reliability index obtained above and  ( )  is the standard normal 

distribution function. For the series and parallel system problems, the first order 

solutions are given by 

  

        (   ) 

      (   )                                                 (4.11) 

 

Where subscripts s and p respectively refer to the “series” and “ parallel” system, and 

  (   ) denotes the m- variable standard normal distribution with zero means, unit 

variances and correlation matrix R at the point  T
=[  1….  2] . the element i,j of the 

correlation matrix is given by        
   . For m=2, i.e. systems with two components, 

one can show that 



51 

 

 

  (         )   (  ) (  )  ∫   (  
   

 
     )              (4.12) 

 

Where   (       ) is the bi-variate standard normal probability density function with 

zero means, unit variances and correlation  . 

In SORM, the surfaces are replaced by approximating parabolic surfaces fitted at the 

design points   
 ,k=1,2…m. Due to the difficulty in incorporating the multiple 

 

A parabolic surface, however, SORM is usually used for component problems only. For 

a component reliability problem, Der kiureghian [8]has suggested the following formula   

 

     (  )∏
 

√     

   
                                             (4.13) 

 

Where ki denote the principal curvatures of the limit-state surface at the design point, 

taken positive when the surface curves away from the origin near the design point. More 

accurate formula for the SORM approximation have been suggested subsequently. 

 

4.2.3 Linear Limit State Functions and Normal Distributed Variables 

 

For illustrative purposes we will first consider the case where the limit state function g(x) 

is a linear function of the basic random variables X . Then we may write the limit state 

function as 

 ( )     ∑     
 
                                                             (4.14) 

 

If this basic random variables are normally distributed we furthermore have that the 

linear safety margin M defined through 

 

M =    ∑     
 
                                                      (4.10) 

  

It is also normally distributed with mean value and variance 

 

   =    ∑      
 
                                                         (4.11) 
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  ∑   

    

  
    ∑           

 
                                   (4.12) 

 

where    are the correlation coefficients between the variables  Xi and Xj . 

Defining the failure event by Equation (4.8) we can write the probability of failure as 

 

    ( ( )   )   (   )                            (4.13) 

 

which in this simple case reduces to the evaluation of the standard normal distribution 

function 

    (  )                                                         (4.14) 

  

Where  =
  

  
 is called reliability index. 

Then the reliability index has the simple geometrical interpretation as the smallest 

distance from the line (or generally the hyper-plane) forming the boundary between the 

safe domain and the failure domain, i.e. the domain defined by the failure event. It 

should be noted that this definition of the reliability index does not depend on the limit 

state function but rather the boundary between the safe domain and the failure domain. 

The point on the failure surface with the smallest distance to origin is commonly denoted 

the design point. 

 

It is seen that the evaluation of the probability of failure in this simple case reduces to 

some simple evaluations in terms of mean values and standard deviations of the basic 

random variables, i.e. the first and second order information.  
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CHAPTER 5 Tail Equivalent Linearization Method 

 

5.1 Introduction 

  

Tail equivalent linearization method is based on first order reliability method, which 

obtains an equivalent linear system for the given nonlinear problem with equal tail 

probability related to a specified time and threshold. In TELM, the input process is 

discretized and represented by a set of standard normal random variables. Each response 

threshold defines a limit state surface with the “design point” being the point on the 

surface that is nearest to the origin. Linearization of the limit-state surface at this point 

uniquely and non-parametrically defines a linear system, denoted as Tail-Equivalent 

Linear System (TELS). There is no need to characterize the linear system in terms of its 

order, degrees of freedom, or parameters. The tail probability of the TELS response for 

the specified threshold is equal to the first-order approximation of the tail probability of 

the nonlinear system response for the same threshold. For this reason, the name Tail-

Equivalent Linearization Method (TELM) is used. Once the TELS is defined for a 

specific response threshold, methods of linear random vibration analysis are used to 

compute various response statistics, such as the CDF and PDF at a given time, the mean 

crossing rate, and the distribution of the maximum response over an interval and tail 

probabilities of local and extreme peaks. The method has been developed for application 

in both time, Fujimura and Der Kiureghian (2007), and frequency domain, Garrè and Der 

Kiureghian (2010), and it has been applied for inelastic structures as well as structures 

experiencing geometric nonlinearities. 

 

5.2 Representation of Input Excitations 

 

The essential step in the application of FORM or TELM is time-based discretizing of the 

excitation in terms of standard normal random variables. There are various method 
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available for discrete representation of random processes, including a method  that is 

particularly appropriate for modeling earthquake ground motions. 

For a Gaussian process with a mean function   ( ), virtually all-existing discrete 

representation methods lead to the form: 

  

 ( )   ( )  ∑   
 
   ( )    ( )   ( )                         (5.1) 

  

 

where U = [u1,u2……un]
T 

is  a vector of standard normal variables, 

S(t)=[s1(t),s2(t)……sn(t)]
T
 is a vector of deterministic basis functions dependent on the 

covariance structure of the process, and n is a measure of the resolution of the 

representation. [6]  

 

 

Figure 13 Geometric representation of a Gaussian process in standard normal space 

 

 

The main difference between various representation methods lies in the selection of the 

basis functions. Some of them are given below  

 

1. .Karhunen-Loeve expansion method 

  ( )  √    ( )                                                                   (   ) 

 

where  I ith eigenvalue and  I ith eigenfunction associated with the covariance function 

of  the process. 
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2. .Representation using trigonometric polynomials  
                                                            ( )    n(t)

T
L                                           (5.3) 

  

Where  n(t) a vector of simple trigonmentric functions and L is a lower triangular matrix 

related to the covariance function of the process. 

3.Expansion Optimal Linear Estimation (EOLE) method 

 

  ( )    
 ∑   √                                                  (   )

 ( )
 

 

Where  I ith eigenvalue and  I ith eigenfunction associated with the covariance matrix 

of an n-vector F containing the values of f(t) at selecting points ti, i = 1,2,…n, and 

∑   ( )  denotes the vector of f(t) with F. 

 

4) The orthogonal series expansion method 

           It  is similar to  the karhunen – Loeve expansion but employs a set of orthogonal 

function  that are not necessarily eigenfunctions. The basis function is represented by 

Si(t)=√    ( ) , where    and   ( ) are computed from orthogonal functions and the 

covariance function of the process. 

                   Another method that is of particular interest in earthquake engineering 

represents the process in terms of the response of a filter to a train of random pulses. 

(The pulses may represent intermittent ruptures at the fault, whereas the filter may 

represent the medium through which the waves travel.). If the pulses are Gaussian and 

the filter is linear, the process f(t) is Gaussian. This representation can also be written in 

form of (5.1). The random variables ui then represent the pulse magnitudes at discrete 

times ti, i = 1,…,n, whereas Si(t) = s(t-ti) where s(t) denotes the unit-impulseresponse 

function of the filter. This Processes with different characteristics can be modeled by 

properly selecting the filter. [8] 

 

It is evident from equation (5.1) that all discrete representation method expressed as the 

Gaussian process as the scalar product of two vectors. 

A time variant deterministic vector s(t), that is the basis functions Which describe the 

time evaluation of the process. 
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A time invariant vector u, that is standard random variable which describe the 

randomness of the excitation. 

 

 

 

For a zero mean ( ( )   ), second order i.e. finite variance (    )  for that Gaussian 

process representation has; 

 

 ( )  ∑      ( )
 

   
  ( )                                         (5.5) 

 

Where u = [u1,u2,……………..un]
T
 is a  vector of standard normal variables, s(t) = [s1(t), 

s2(t),……,Sn(t)]
T
  is a vector of deterministic basis functions dependent on the 

covariance structure of the process, and n is a measure of the resolution of the 

representation the main difference between various representation methods lies in the 

selection of the basis functions when the random process is represented in (5.5 [1]). 

Here we use time basis function in time domain formulation that  is smooth version of 

filtered pulse train described in Der-kiureghin is used. Suppose that the process f(t) is the 

response of the linear filter to a white noise excitation W(t).  

Let the process f(t) we described as the output of a linear filter excite a white noise W(t)  

 

 ( )  ∫  ( ) (   )
 

 
                                                 (5.6) 

 

For a stable and finite variance in response to white noise, the process f(t) becomes 

stationary after a duration at which the IRF hf(t) diminishes to zero. In place of 

discretizing f(t) directly we can discretize w(t), that is white noise.  

Consider the sequence of equally spaced time points ti = ti−1 +  t, i = 1, 2, . . . , tn, with 

t0 = 0 and    a small time step.  For discretizing white noise W(t) we use approximately 

rectangular wave process defined by; 

  

 ́(t) =   
 

  
∫  ( )  

  
    

                    ti-1 < t                      (5.7) 
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It is easy to show that  the wave amplitude  

wi    =  ́(t),                                      ti−1 <  t   ti 

                                    wi  =  
 

  
∫  ( )  

  
    

                                                                (5.8) 

 

 

One can show that wi  are statistically independent Gaussian random variables with zero 

mean and constant variance,          where S is the intensity of the white noise. The 

sequence wi, i=1,2…n represents W(t) in the discrete form of a random pulse train. The 

response of the linear filter to this pulse train is also of the from eq- (5.5) with the basis 

function si(t) which is defined  is below. We introduce the standard normal variable : 

ui=wi/  

 

From (5.5)                          ( )  ∑     ( )
 

   
 ∑

  

 
  ( )

 

   
                           (5.10) 

From (5.6)                     ( )  ∫  ( ) (   )
 

 
   =   ∫    (   )

 

 
             (5.11)        

 

From equation (5.10) and (5.11)   

     

Si(t)  =          ∫   (   )
 

    
                                       

 = 0     otherwise                                                     (5.12) 

 

 

where  hf(t) denotes the impulse-response function (IRF) of the filter.  

 

For understanding the importance of hf(t) see example.1 
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Example 1.Consider a second order filter subjected to a pulse train defined by  

  ( )       
̈   ( )    

 ̇   ( )   ( )                                     (    )         

 

The impulse response function of the given above system for f(t)  is given as below 

 

   ( )   (      ) [(
(   

 
  )  

√    
 

      4  √    
  5)           4  √    

  5]  

(5.14) 

 

The above characterization defined as a stationary process earthquake motions, however 

are typically non- stationary in both time and frequency domains [8]. 

 To account for temporal, we multiply the pulse train by a deterministic modulating 

function q(t). The discrete representation in become eq. (5.5) 

 

F(t)=q(t) * ( )  ∑     ( )
 
   +                                     (5.15) 

 

For typical earthquakes, q(t)) tends to gradually  increase to a constant plateau and then 

decrease to zero at termination of the motion. To account for spectral non-stationarity, 

one can change the filter properties with time. However a simpler approach is to use 

multiple filters each with its own modulating function. Hence we write the most general 

discrete form of the input process as 

 

F(t) = ∑   ( ) * ( )  ∑     ( )
 
   +                             (5.16) 

 

Where qk (t) denotes the modulating function for the k-th filter and sik denotes the basis 

function obtained from for the k-th filter. By proper selection of filter properties and 

modulating functions, almost any kind of temporal and spectral non- stationary can be 

modeled. Figure (5.2) shows an example of the non-stationary excitation generated using 

Eq(5.12) & Figure (5.2)(a) shows the time modulation functions for two filters, whose 
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system properties are                and          for the first filter and      

           and          for the second filter. Fig –(13)  shows a sample of a train of 

pulse with         sec approximating the white noise with the intensity S=1(m/sec
2
)
2
. 

We have used for the impulse response function of the two filters to generate the non-

stationary excitation in Figure (15). This resembles the actual pattern of earthquake 

accelerograms. 

 

 

 

Figure 14 modulation functions q(t) 

 

 

 

Figure 15 Random sample of white noise  
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Figure 16 Random sample excitation f(t ) 

 

 

For non- Gaussian processes, representation by a linear relation shown in  equation (5.5)  

is not possible. The non- Gaussian process is defined as a nonlinear function of the 

vector u. Several methods of representation in terms of standard normal variables are 

available, depending on the manner in which the process is defined. If the process is 

defined in terms of a set of non- Gaussian random variables, then the Rosenblatt 

transformation can be used to transform these variable into standard normal variables. If 

the process is defined by a nonlinear translation of a Gaussian process then the 

underlying Gaussian process can be represented in the form of equation (5.5) example of 

discretized non- Gaussian processes can be found in given below example; 

 

 

Example- 2 Consider the response of a linear oscillator described by the differential 

equation 

 ̈        ̇    
    ( )                                            (5.17) 

 

Where where    is the natural frequency and     the damping ratioof the oscillator. The 

unit-impulse-response function of the system is given below 
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  ( )  

    (      ) [(
(   

 
  )  

√    
 

      4  √    
  5)           4  √    

  5]   

 

 

In the following analysis       rad/sec &          are used 

Let y(t) be a Gaussian process with zero mean and unit variance. We consider three 

excitation process f(t) defined by  

Process 1  f(t)=y(t) 

 

Process 2 f(t)= y(t)| ( )|  √ ,| ( )|    - 

 

Process 3  f(t)= exp,    ( )-     ;  

 

where 0< m,   √   (  
 

  ) and             

 

 

All the three processes have zero mean and unit variance. Process 1 represents a 

Gaussian excitation, whereas processes 2 and 3 represent non-Gaussian excitations 

obtained by translations of y(t). One can easily verify that the latter two processes 

approach the Gaussian process as       and m = 0. Hence, the parameters    and 1/m 

describe the degree of non-Gaussianity of f(t). It is noted that process 3 is a shifted 

lognormal process. The first-order probability density functions of the three processes for 

  =1 and m=1 are shown in Fig. 3. Note that process 2 has a symmetric distribution with 

infinite density at the zero point, whereas process 3 has an asymmetric distribution and is 

bounded from below. 

 

The Gaussian process y(t) is represented in the discretized form of Eq. (1) by filtering a 

train of random pulses of magnitude ui, i=1,2,…, with normalized basis functions   

Si(t) =  ∫   (   )
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where ti are equally spaced time points with t1=0. 

Sample realizations of the three processes for   =1 and m= 1 are shown in Fig. 4. All 

three processes are asymptotically stationary for large t.  

 

Although the focus of our study is on stationary process. The discretization in (5.7) 

and (7.8) effectively cuts off the frequency content of the white-noise process beyond a 

frequency roughly equal to      rad/s. Therefore, care should be exercised in the 

selection of the discretization time step    . If, for the system of interest, the upper limit 

of significant input frequencies is  max, then    <   /  max, must be selected. 

 

5.3 Characterization of linear system 

 

 In this section we examine the response of a general linear, time-invariant system to a 

stochastic excitation defined in the form of (5.5) using the time-domain discretization 

scheme just described. Consideration of the system response in the space of the standard 

normal random variables u leads to a geometric characterization of the system and an 

inverse relation for its IRF. In other word we say that the system having stochastic 

excitation given in form of (5.5), For such system the response can be obtain by 

Duhamel‟s integral at time tx. For simplicity we write (5.5) in following form [6]: 

 

  ( )    ∑  
     

 ( )

 

   

     (  

  (5.18)                      

It‟s the component of the excitation in the j
th

 direction at discrete time point t = t0,t1…tn  

where ti = i *           .  

Uj    = {Uj
1
,Uj

2
,….Uj

n
}

T
 = vector of standard normal random variable and 

Sj(t) = {Sj
1
(t),…..Sj

n
(t)} = basis function in the j=1,2,….m direction. 

The desired response X(t)  which is affected by base excitation can be written as follows: 

 

 ( )    ∑∫   ( )   (    )
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(5.19) 

 

where hj(t) is the IRF in the jth direction. By substituting Eq. (5.18) in (5.19): 

 

 (    )   ∑∫ ∑  
     

 ( )

 

   

   (    )

  

 

 

   

   

(5.20) 

  ∑∑  
    

 ( )

 

   

 

   

   ∑  ( )   

 

   

 

 

where   

  
 ( )   ∫   

 ( )
 

 
   (    )           

&                                             *  
    

       
 +                                    (5.21) 

 

 

With the definitio a(t) = [a1(t),a2(t),….am(t)]
T 

is a row vector collecting the n Duhamel 

integrals of the deterministic basis function, the above equation can be written as 

 (   )     ( )   

 

and this means that for linear systems the response can be stated as the product of two 

vectors which one of them is deterministic time variant [S(t)] and the other is random 

time invariant (U), if the excitation is stated as the product of two vectors like Eq. (5.5). 

The geometric interpretations made earlier for the Gaussian process F(t) apply to the 

response process X(t) as well. In addition, we note that the cross-correlation coefficient 

between the response X(t1) and excitation F(t2) is identical to the cosine of the angle 

between the respective basis function vectors a(t1) and s(t2) from fig 5.1. 

Note: Dot product or scalar product [15] of two vector is 

 ̅.  ̅ = | ̅|| ̅|      
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Consider the set of realizations of F(t) that give rise to the event {X(t0)   x0} at time tx = 

t0, where x0 is a selected threshold. These correspond to realizations of U that satisfy the 

condition  

     (  )
                                              (5.22) 

 

In the space of U, these lie in a half space bounded by the hyper-plane  

     (  )
       

having the unit normal  

 (  )̂    (  ) ‖ (  )‖  

 

and distance   (      )       ‖ (  )‖  from the origin. This is illustrated in Fig. 17 in 

the plane formed by the coordinate u1 and the vector  (   )̂ . 

 

 

Figure 17 Geometric representation of time t0 

 

According to the well-established terminology of the theory of structural reliability 

briefly describe in pervious chapter, the limit state function is 

 

g0 (u) =      (  )
                                           (5.23) 
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and the limit-state surface is  g0 (u) =      (  )
    = 0,  (  )̂  is the unit outbound 

normal vector (towards the failure set), and  (      )  is the reliability index for the 

event * (  )      +  

Among all realizations of U that give rise to the event * (  )      +, the one that has 

the highest likelihood is the one nearest to the origin (see Fig. 5.5). This point, known as 

the “design point” in the theory of structural reliability, is given by 

 

  (     )    (      )  (  )̂  

 

  (     )      
 (  )

‖ (  )‖
 
                                               (5.24) 

 

The corresponding “design point” excitation F
*
(t) and response X

*
(t) are 

 

  ( )     ( )   (     ) 

  ( )    
  ( )  (  )

‖ (  )‖
 

                                              (5.25) 

 and  

  ( )      ( )   (     ) 

 

  ( )    
  ( )  (  )

‖ (  )‖                                                  (5.26) 

 

 

Note that   ( )     For the linear system under Gaussian excitation, the design point 

realization is proportional to the threshold x0. Of most interest, is the design point 

excitation F*(t), which is that specific realization of F(t) hat has the highest likelihood to 

give rise to the event * (  )      +. This realization is of particular interest from the 

viewpoint of design, as one can assure safety by providing adequate capacity against this 

particular deterministic excitation. Typically, F*(t) is a nearly harmonic, gradually 

intensifying time function with a frequency close to the fundamental frequency of the 

system. After solving the optimization problem, the non- Gaussian response is replaced 

by a Gaussian one which is defined by the based function vector a(tx) = 

   (  )|    (     ) and the probability of failure could be 
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expressed by  (   (      )) , where   is called reliability index and is equal to 

Euclidean norm of U*, where  (-) is the standard normal CDF, and for  obtaining  (  ), 

simple manipulation of (5.24) yields: 

 

 (  )      
  (     )

‖  (     )‖ 
                                  (5.27) 

 

It is evident that knowing the projection point   (     ), one can determine the gradient 

vector a(t0). Note that a(t0) does not depend on the threshold x, as is evident in (5.21), 

even though the latter appears on the right-hand side of (5.27). This is because 

  (     ) is proportional to x for a linear system. The obtained vector from the above 

equation separated to m vectors a1 to am each with n elements. 

Then the IRFs of TELS can be obtained from the following equations [1] 

∑   (     )  
 (  )      

 (  )

 

   

 

     (5.28) 

j = 1,2,….m  

i = 1,2,…n  

 

Each of the above relations represents a set of n equations that can be solved for the 

values of the IRFs at time points. The obtained IRFs indicate TELS for the specified 

threshold X and time point tn and define a linear system in the space of u variables that 

has an identical design point with the nonlinear system. By obtaining the IRFs or 

frequency response functions (FRFs) (by the Fourier transform of IRFs) of equivalent 

linear system, linear random vibration methods can be used to determine the considered 

statistical responses for the nonlinear system. 

Note: Having determined the IRF of the linear system for the particular input–output 

pair, we can determine the corresponding frequency response function (FRF) by the 

Fourier transform [2] 

 

 ( )    ∫       

 
                                            (5.29) 
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5.4 Define the Tail Equivalent linear System (TELS) 

 

Consider a multi-degree-of-freedom (MDOF) nonlinear system defined by the 2nd order 

differential equation 

 

  ̈    ̇   ( ̇  )    ( )                                      (5.30) 

 

where Y denotes the vector of displacements, M denotes the mass matrix, C denotes the 

viscous damping matrix, R denotes the restoring force vector, and P denotes a load 

distribution vector. The system is subjected to the stochastic excitation F(t), which is 

discretized in the form of (5.5), [1] with initial conditions Y(0) = 0 and   ̇(0) = 0. 

Although TELM can be developed for a system subjected to multiple excitations, bt in 

our study we are doing for single excitation process. The restoring force vector is a 

function of the displacement vectors and velocity vectors, allowing the system to have a 

hysteretic behavior. Suppose we are interested in a generic response X(t) of the system, 

which most generally is defined as a nonlinear function of the nodal displacement and 

velocity vectors, i.e., X = X(Y, ̇). As a special case, X(t) could be a nodal displacement, 

in which case it is equal to the  corresponding element of Y. Restoring force is function 

of  ̇ & Y for allowing the system to have a hysteretic behavior. With the discretize form 

of the excitation as described earlier. The vector Y & ̇  are implicit function of the 

random variable u. 

Now we want to determine the tail probability   (   (    ) for a special threashold x 

and time tn. Using the well defined method of structural reliability theory, described in 

the previous section, tail probability section are determined, and using that determine the 

design point of given non linear system at x1 threshold and t1 time is    
 (     ) after 

determine the design point of non linear system we use the main principal of tail 

equivalent linearization method that is tail probability of the linear response to a first 

order approximation of tail probability of the non  linear response. It implies that design 

point of nonlinear system is similar to design point of the linear system, design response 

of the non-linear system is similar to design point of linear system and also design 

excitation of nonlinear system is similar to design point of linear system. We are 
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interested in equivalent linear system, for getting this according to main principal of 

TELM we are getting equivalent linear system by replacing the nonlinear system 

excitation by design point excitation and also make nonlinear parameter is linear so that 

equation (5.30) is replace by equation (5.31) 

 

  ̈    ̇   ( )     ( )                                         (5.31) 

 

 Equation (5.31) is an equation of equivalent linear system corresponding to given 

nonlinear system equation (5.30). Equation (5.31) is nothing but an equation of Tail 

Equivalent Linear System [1]. 

Suppose take a non-linear system and compute the design point of this system 

   
 (     ). Then make a list of linear system possible in u-space and compute a design 

point of all linear system in list. In this list a system which have a design point similar to 

the design point have given nonlinear system. System in the listed, which have design 

point is similar to design point of nonlinear system is called tail equivalent linear system, 

but it‟s not a practically easy job to make a list of the possible linear system in given u- 

space. Instead of making list we make given nonlinear system as a linear system by 

replacing the excitation with design excitation according to the design point of non-linear 

system, we now proceed with the formal definition of the tail equivalent linear system 

(TELS). For the response X(t, u) of a nonlinear system to stochastic excitation F(t) 

represented in the discretized form [1], the TELS for specified threshold x and time tn  is 

a linear system that, in the space of the standard normal random variables u, has the 

same design point as the nonlinear system. This equivalence implies that the tangent 

plane of the nonlinear system response at the design point coincides with the hyper plane 

of the linear system response for the same threshold and time. It follows that the FORM 

approximation of the tail probability of the nonlinear system response is identical to the 

tail probability of the response of the TELS. This property encourages the term Tail-

Equivalent Linearization Method (TELM). 

The above definition leaves out specifics as to what the form of the linear system is, how 

many degrees of freedom it has, what its parameters are, and which of its responses is to 

be considered. However, as we will shortly see, these specifics need not be considered.  

Now we explore various other options for selecting the equivalent linear system.    
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As is commonly done in the conventional ELM, consider the equivalent linear system as 

a 2nd order system governed by the differential equation  

 

  ̈    ̇    ( )    ( )                                      (5.32) 

 

where Ke( ) is an equivalent stiffness matrix defined in terms of a set of parameter    

According to the above definition of the TELS, the parameters  need to be selected such 

that    
 (     )= u*(x, tn), where    

 (     )is the design point of the linear system. 

However, there is no guarantee that, for any values of  , the design point of the linear 

system will coincide with the design point of the nonlinear system that is    
 (     )  

   
 (     ) unless the size of   matches the size of u and a valid solution for the set of 

nonlinear equation is found. One way to overcome the difficulty is to use an approximate 

tail equivalent linear system by minimizing norm of the error in matching two design 

points. 

To refine the approximation one may increase the number parameter   by for example 

replacing the mass and damping matrices with parameterized ones, or by considering a 

higher-order (3rd order, 4th order, etc.) linear system. On the other hand, to simplify the 

solution, one may consider a simpler equivalent linear system, e.g., a single-degree-of 

freedom (SDOF) oscillator with equivalent mass, damping and stiffness characteristics, 

even when the nonlinear system has multiple degrees of freedom. Naturally, the error in 

matching the design points will depend on the number of parameters defining the 

equivalent linear system. The approach described in the preceding paragraph can be 

considered a parametric linearization method. The real strength of the TELM lies in the 

fact that we need not consider any of the parameterized systems described, nor do we 

need to solve the optimization problem. Observe that the design point of the nonlinear 

system is the point of projection from the origin onto the tangent plane. As was 

demonstrated in the preceding section, knowledge of this point on a hyper plane 

completely defines the IRF of the corresponding linear system. Specifically, knowing the 

design point     
 (     )= u*(x, tn)  we can use (5.27) and (5.28) to determine the IRF of 

the TELS for the particular response threshold x and time tn. We cannot tell what the 

order of the linear system is, or what its parameters are. But these information are not 

necessary since the IRF completely characterizes the linear system for the particular 

excitation and response pair. In contrast to the conventional ELM and the method 
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described in the preceding paragraph, the approach described in this paragraph may be 

regarded as a nonparametric linearization method. 

 

A question that may arise is whether any hyper plane in the space of u defines a linear 

system that is causal and stable. As mentioned earlier, for a causal system one must have 

h(t) = 0 for t < 0. The set of equations in (5.28) do not involve h(t) for t < 0 and, 

therefore, we can impose this requirement on h(t) obtained for any hyper plane in the u 

space. However, an arbitrary hyper plane in the u space may not satisfy the stability 

requirement, ∫  ( )    
 

 
. 

 

 For example, when the excitation is a discretized white-noise, a hyper plane with its unit 

normal having equal components yields a function h(t) that remains constant in time 

regardless of the number of time steps n. Such a system obviously is not stable. To 

investigate the stability condition for the TELS obtained from the design point of a 

nonlinear system, let   
    (  )   denote the discretized design-point excitation at 

time step ti . It is shown in preceding section that for the IRF determined from the 

tangent plane of the nonlinear system at     (     )    (  )    
  

 

That is, the IRF of the TELS at time tn − ti is proportional to the sensitivity of the design-

point response of the nonlinear system at time tn with respect to the discretized excitation 

value at time ti . Provided 

   
   

∑  (  )    
   

 

   

 

 

The resulting TELS will be stable. Of course, it would be difficult to verify this 

condition for a general nonlinear system. However, for many structural systems of 

interest, one would expect the response sensitivity with respect to the earlier load value 

to be finite and diminish to zero with increasing tn – ti. For a given nonlinear system, this 

condition can be checked numerically by deterministic dynamic analysis at the 

designpoint excitation. This was done for the example non-degrading hysteretic systems 

considered in preceding section. 
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Chapter 6 Random vibration analysis on TELS 

 

6.1 Introduction 

 

By repetitive TELM analysis, a series of design points for an ordered set of threshold 

x1<x2<x3..... <xp at a specific time tx is obtained. Once TELS obtained linear random 

vibration analysis of the TELS, any one or both in time or frequency domain, is 

implemented to determine the statistics of interest for the specified threshold of the 

nonlinear response in first-order approximation. These statistics include the tail 

probability at a given time, the mean rate of up-crossing the threshold, and the tail 

probability of the extreme response over the duration of the excitation (the fragility). 

From the time when the TELS is a linear system and the excitation is zero-mean 

Gaussian, the response of the TELS is also zero-mean Gaussian and the existing results 

for such a process can be used. Though, as the threshold changes, the TELS also changes 

so that the approximate distribution obtained for the nonlinear response is non-Gaussian. 

In essence, the statistics for different thresholds are approximated by different Gaussian 

distributions. 

 

6.2 Analysis Methods  

 

In this section we describe analysis methods for both stationary and non-stationary 

responses. Although earthquake ground motions are inherently non-stationary, results 

based on stationary analysis are also presented because the stationary response over a 

short time period can provide a useful and simple approximation. 
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6.2.1 Stationary response 

 

Stationary random vibration analysis for a given threshold x is carried out most 

conveniently in the frequency domain by use of the FRF of the TELS,  (   ). 

As is well known, most statistics of interest for a zero-mean, stationary Gaussian 

response process are given in terms of the low-order spectral moments [7] 

 

  ( )  ∫   | (   )|    ( )                        
 

 
         (6.1) 

 

where SAA( ) denotes the one-sided power-spectral density of the ground acceleration. 

The FRF H( ,x) used in (6.1) can be that of the TELS for the nonlinear response to the 

exact stationary excitation, or that obtained for a white-noise, if the true excitation is 

broad-band. Note that the computed spectral moments are functions of the specified 

response threshold due to the dependence of the FRF on x. 

Since the response of the TELS is zero-mean Gaussian, the first-order approximation of 

the tail probability of the nonlinear response at threshold x is given by 

 

Pr[x<X(t)]    [
 

√  ( )
]                                                (6.2) 

 

Note that due to the dependence of   0(x) on x, the distribution of the nonlinear response 

is not Gaussian. 

The mean rate of up-crossing level x is determined by use of the well-known formula for 

a zero-mean Gaussian process 

 

  ( )  
 

  
√

  

  ( )
   . 

  

   ( )
/                              (6.3) 

 

Again, because of the dependence of the spectral moments on x, the above result is 

different from the up-crossing rate of a Gaussian process. 
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The tail probability of the maximum absolute response over a time interval  , denoted by 

   [     (     )‖ (   )‖]  may be found by any of the approximate solutions 

available for a zero-mean stationary Gaussian process [16]. A simple and accurate 

approximation due to Vanmarcke  is 

 

   [     (     )‖ (   )‖]  

  2     0 
  ( )

 
13      [ 

 

 
√

  ( )

  ( )
 
     [ √    ( )    ( )]

    ,  ( )  -  
]                         (6.4) 

 

where  ( )    √ ( )⁄  and  ( )    ,    
 ( )   ( )   ( )-⁄⁄

  ⁄
   

Note again that the resulting distribution is different from Vanmarcke‟s distribution for 

the extreme of a zero-mean stationary Gaussian process because the spectral moments 

here are functions of the threshold x. 

Now suppose that the ground acceleration is scaled by a factor c so that its power-

spectral density is c2SAA( ). It is clear from (6.1) that all the spectral moments will be 

scaled by the factor c2. Hence, the response statistics for the scaled problem are obtained 

from (11)–(13) by simply replacing   m(x) in these expressions by c2    m(x). In 

particular, the fragility curve for a given response threshold x is obtained by replacing 

r(x) in (6.4) by r(x)/c and plotting the resulting expression as a function of c. 

 

 

6.2.2 Non-stationary response 

 

For non-stationary response, time-domain analysis with the IRF of the TELS can be 

performed to compute the statistics of interest. Such analysis in general requires two-

dimensional integrations involving the IRF and the autocorrelation function of the 

excitation. An alternative, more convenient approach, using reliability methods is 

described below. 

Let u (x, tn) represent the design point for the response threshold x at time tn. If the 

TELS is obtained using the actual input non-stationary excitation, then this design point 

is already available. 
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If, on the other hand, the TELS is that of a substitute excitation, such as white-noise, then 

the design point for the actual excitation must be obtained. This is done by first 

computing the elements of the n-vector  an(x) = [a1(tn,x)...an(tn,x)], 

 

  (    )  ∫  (      )  ( )  
  

 
                           (6.7) 

 

where h(t,x) is the IRF of the TELS obtained for the surrogate excitation (white noise), 

and then computing an approximation of the design point for the true input excitation 

from 

  (    )  
 

‖  ( )‖

  ( )

‖  ( )‖
                                             (6.8) 

 

With the design point available, the statistics of the non-stationary response are  

computed as follows: 

A first-order approximation of the tail probability at time tn is given by 

 

  (    )     
    

  ,  (      )     (         )   -

  
 

 

with a finite but small  t. The numerator in the above expression represents a parallel 

system reliability problem with two components. This probability is easily computed by 

FORM by translating the known design point excitation at time tn to obtain the design 

point excitation at time tn + t. 

Finally, the tail probability of the maximum absolute response over duration   is 

obtained by reformulating the problem as a series-system reliability problem: 

 

             (   )    {⋃ ,   (    )-   (     ) }                  (6.9) 

 

The first line in the above expression describes the tail probability of the extreme 

response as the probability that the response will exceed the specified threshold in any of 

the time steps within the interval (t, t+  ). This obviously provides a lower bound; 

however, for a small step size, the series system probability provides a fairly accurate 

representation. The second line represents the FORM solution of the series system 



75 

 

problem in terms of the multinomial cumulative distribution function (CDF), where k 

denotes the number of time steps within the interval (t, t+  ) 

 ( )   , (    )      (    )- is the set of reliability indices, and R(x) is a k×k 

correlation matrix having the elements    ( )   (    )   (    )  i, j=1,...,k, where 

 (    ) is the unit normal vector at the ith time step. This solution clearly requires 

finding the design points for all the time steps within the interval.  
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Chapter 7 Example Application of TELM on nonlinear 

system 

 

Numerical example is considered in this section. Example deals with the response of the 

linear oscillator to Gaussian and non- Gaussian excitation comparisons are made with 

Gaussian process as non- Gaussian process. This section is also shows numerical 

investigation of TELS. 

 

Example-7.1 Consider the response of a linear oscillator described by the differential 

equation 

 ̈        ̇    
    ( )                                                       (7.1) 

 

Where    is the natural frequency and    the natural damping ratio of the oscillator. The 

unit-impulse-response function of the system is given below 

 

 

  ( )  

   (      ) [(
(   

 
  )  

√    
 

      4  √    
  5)           4  √    

  5]    

                                                              (7.2) 

 

In the following analysis       rad/sec &          are used 

Let y(t) be a Gaussian process with zero mean and unit variance. We consider three 

excitation process f(t) defined by  

Process 1 : f(t)=y(t) 

 

Process 2 : f(t)= y(t)| ( )|  √ ,| ( )|    - 

 

Process 3 : f(t)= exp,    ( )-     ;  
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where m>0,   √   (  
 

  
) and             

 

 

In figure 18 shows the excitation is a Gaussian white noise sample realization and in 

figure 19  give the sample realization of unit impulse response function of the system. 

 

 

 

Figure 18 Realization of white noise 

 

 

Figure 19 impulse response function of the filter 
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All processes have zero mean and unit variance. Process 1 represents a Gaussian 

excitation, while processes 2 and 3 represent non-Gaussian excitations obtained by 

transformations of y(t). One can easily verify that the latter two processes approach the 

Gaussian process as    and m=∞. Hence, the parameters   and 1/m describe the 

degree of non-Gaussianity of f(t). It is noted that process 3 is a shifted lognormal 

process.  

The first-order probability density functions of the three processes for   =1 and m=1 are 

shown in Fig. 7.3(a,b&c). 

 

 

   

      

 Figure 7.3(a,b,c)  probability density function for process 1,2  and 3 respectively. 

 

It shows that process 2 has a symmetric distribution with infinite density at the zero 

point, whereas process 3 has an asymmetric distribution and is bounded from below,and  

the cumulative density functions of the three processes for   =1 and m=1 are shown in 

Fig. 20. 

 

 

 

Figure 20 cumulative density function of all three  process 
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The Gaussian process y(t) is represented in the discretized form of Eq. (1) by filtering a 

train of random pulses of magnitude ui, i=1,2,…, with normalized basis functions   

Si(t) =  ∫   (   )
 

    
               

where ti are equally spaced time points with t1=0 and Sample realizations of the three 

processes for   =1 and m= 1 are shown in Fig. 20(a,b,&c).  

 

 

 

FIG 7.4(A) 

 

 

 

Fig-7.5(b) 
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Fig-7.5(c) 

Figure 21(a,b&c) sample realization of three process with function  of    =1 and m= 1 

                 

 

Fig 22 shows the generalized reliability index      * , (  )    + for t0=5 sec and 

x0= 0.1 as the function of   and 1/m as computed by FORM. its shows at     and 1/m 

=0 the excitation process 2 and 3 are Gaussian. And the result of the all three case 

coincides. With increasing   and 1/m the excitation process 2 & 3 become increasing 

non-Gaussian. This is marked by increasing departure of FORM result from the 

Gaussian case ( process 1) it is evident that the limit state surface for the response to 

excitation process 2 is  more strongly non-linear as the FORM results for this case. 

 

 

 

                  Figure 22 Generalized reliability index f or {{x(5) >0.1} as a variable of the 

degree of non-Gaussianity of the excitation 
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Figure 23 shows that the general reliability index for t0=5 sec as a function of x0   for 

    and m=1 as computed by FORM. As expected for the response of Gaussian 

excitation reliability index is proportional to threshold value. For excitation 2 the 

response distribution is symmetric and from the past study we know the response 

distribution from 2
nd

 order reliability method and Monte Carlo simulation are shown 

only for positive values of threshold. It is evident that FORM is resulted more accurate 

for higher threshold. This is due to the asymptotic nature of these approximations. The 

poor performance of FORM for excitation process 2 is due to the infinity density at the 

origin which strongly wraps the limit state surface particularly for small thresholds. 

 

 

 

                 Figure 23 generalized reliability index for event {x(5)>x0} for     and m=1 

as a variable x0 

 

Fig 24 and fig 25 shows that the design point excitation and the design point response  

for the event {x(5)>x0}, respectively. 

It is interesting the most likely realization of excitation corresponding to process 2 as a 

zero value for the first few seconds and the most likely realization of excitation 

corresponding to process 3 as a constant negative value for first few seconds. All three-

design point excitations are oscillatory in nature and gradually build up to a large 

peak just before the time t0. 
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Figure 24 design design point for the event {x(5)>x0} 

 

 

Figure 25 the design point response  for the event {x(5)>x0} 

 

Fig25  response corresponding to design point excitation 

fig -26(a, b &c) shows  the probability density functions of the response x(t0) at t0=5 s 

obtained by FORM p with respect to x0. Note that in the semi-logarithmic scale shown, 

the normal density appears as a parabola. The distinct non-Gaussian nature of the 

response to excitation processes 2 and 3 is clearly evident. 

 

 

  Figure 26 probability density function of response x0(t0) at t0 = 5 sec. for for θ=1 and 

m=1 as a variable 
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Example 7.2 We consider the corner of a six-storey building subjected to earthquake-

induced ground acceleration. Time response vector of interest is x(t)=[m1(t) m2(t) p(t)]
T
  

where m1(t) and  m2(t) denotes the bending moment around axial force in the column and 

p(t) denotes the axial force in the column. The failure domain for the column is  

 

G(x) =1.33-√.
  

  
/
 

 .
  

  
/
 

      4   .
 

  
/5

 

        (7.1) 

 

Where m0 p0 are capacity parameters. The input ground acceleration is applied along axis 

2. The structure is assumed to be linear and each member of the response is obtained by 

modal superposition in the form  xi(t)=   ∑     ( )
 
   . 

Where    is the static response due to dead load, k is the number of modes, bj are 

effective modal participation factor and qi(t) are normalized modal responses for the 

corresponding modal frequencies and damping ratio of the structure. The factor bj for 

three responses, as normalized by the parameter mo or p0 and the frequencies and 

damping ratio for the first 4 modes of the structure are listed in table -1  

 

TABLE 7.1  MODAL PROPERTIES OF EXAMPLE STRUCTURE 

 

Mode  bj/mo  for m1 (t) bj/mo  for m2 

(t) 

bj/mo  for 

p(t) 

 j (rad/sec) Damping 

1 -2.90 4.30 3.02 8.74 0.05 

2 -2.83 -3.26 -2.41 8.95 0.05 

3 -0.0754 -1.04 0.124 11.1 0.05 

4 -3.21 4.65 -1.29 26.8 0.05 

5 3.14 -3.55 1.30 27.5 0.05 

 

The limit surface defined by eq (5.1) is parabolic in the space of p and m1 and  m2 and it 

is circular in the space of m1 and  m2 or p. the fact that it is a closed surface calls for 

caution in the use of FORM approximations. 
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 We first examine the probability of the event {G(x(t0)<0} at t0 =5 sec. the design point 

for this event are 

 

  
       m0, 

  
  =0.88 m0 

   0.46 p0. 

 

These value represent the most likely set of realization of m1(t), m2(t) and p(t) to cause 

failure of the column at t = t0 = 5 sec.  

Estimate of the generalized reliability index based on FORM is 2.54. The small 

difference between these estimates is an indication that in the space of the standard 

normal variable u. the limit state surface is nearly flat in the neighborhood of the design 

point. Further, while the surface remains closed in the u space, only the region close to 

the design point makes a dominant contribution.  

 

 

 

Figure 26 design point excitation for different modes 

 

Shown in  fig (26) design point excitation of different modes of six storey column. We 

observed in this when modal  participation factor is increased design point excitation is 

also increased its corresponding to calculation in given APPENDIX –I. 
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Figure 27 Design point response corresponding to different modes 

 

Fig-27 shows the response corresponds to design point with different modes. It shows by 

increasing the fundamental frequency of system. Its value is also increased. 

 

 

Figure 28 simple realization of the process f(t) 
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Figure 29 impulse response function of filter and system. 

 

In fig-29 represents the impulse response function of ground and system. Calculation are 

given in APPENDIX -I 
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Chapter 8 Summary and Conclusion 

A new linearization method for random vibration analysis is described. It is based on the 

first order reliability method. the equivalent linear system is defined by matching its 

designs point and the standard of normal variable with that of non linear system for a 

specified threshold and time.  

The following steps summaries the key point of the TELM. 

 Discretize the input excitation with the help of the concept of time modulating 

function. 

 Use concept of FORM equivalent linear system is defined by matching its design 

point is the space of standard normal random variable with that of nonlinear 

system for specified threshold and time. 

 Shows that the knowledge of the design point uniquely determine the  equivalent 

linear system in terms of its impulse response function, this determination is in a 

numerical non-parametrical form. There is no need to characterize the linear 

system in terms of its order degree of freedom or parameters. 

 Numerical investigation shows that TELS depends on threshold, excitation and 

time. 

 TELM can be applied to non stationary excitations by defining a time varying 

TELS. 

 Once the TELS for a sequence of threshold are determine, method of linear 

random vibration analysis are used to compute various statistics of response such 

as CDF,PDF at a given time, mean crossing rate and the distribution of the 

maximum response over an interval. 

 TELM required considerable more analysis than ELM, if one is only interested in 

second moment of the response. 

 If one is only interested in second moment analysis, ELM is the appropriate 

method to use, where as TELM is the appropriate method for computing the 

distribution and statistics of the extreme response. 

 TELM is not affected by the complexity of the nonlinear system. 
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APPENDIX 1 

 

Calculation done on MS excel  for example given in chapter 7. 

Example 1 

 

 

 

0.140692315

a(t)= si(t)*h(t-τ)

si(t)= σ*hf(t-τ) 0.003281958

σ= (2*π*S*∆t)^0.5 0.023327201

3.23E-05

hf(t-τ)

τ part 1 part 2 part 3 part 2+3 (part 2+3)*part1s(t) normalized s(t) a(t)

0 0.043218 0.031726664 -1.255363 -1.22364 -0.05288

0.02 0.043764 0.278227231 -1.20602 -0.92779 -0.0406 0.012279 0.004351577 -0.000176693

0.04 0.044318 0.507263385 -1.080975 -0.57371 -0.02543 0.015179 0.005379328 -0.000136773

0.06 0.044878 0.704458453 -0.888077 -0.18362 -0.00824 0.017185 0.006090444 -5.01883E-05

0.08 0.045446 0.857434438 -0.639434 0.218 0.009907 0.018148 0.006431551 6.37185E-05

0.1 0.04602 0.956588988 -0.350654 0.605935 0.027885 0.017978 0.006371495 0.000177672

0.12 0.046602 0.99569814 -0.039863 0.955835 0.044544 0.016659 0.005903893 0.000262984

0.14 0.047192 0.972306999 0.27343 1.245737 0.058788 0.014244 0.005048172 0.000296774

0.16 0.047788 0.887883837 0.56956 1.457444 0.069649 0.010861 0.003848982 0.000268078

0.18 0.048393 0.74772792 0.829939 1.577667 0.076348 0.006699 0.002374 0.000181249

0.2 0.049005 0.560636882 1.038222 1.598859 0.078352 0.002004 0.000710198 5.56451E-05

0.22 0.049624 0.338354487 1.181335 1.51969 0.075414 -0.00294 -0.001041205 -7.8521E-05

0.24 0.050252 0.094833472 1.250296 1.34513 0.067595 -0.00782 -0.002770832 -0.000187295

0.26 0.050887 -0.154640271 1.240775 1.086135 0.05527 -0.01232 -0.004367911 -0.000241416

0.28 0.051531 -0.394407194 1.15337 0.758963 0.03911 -0.01616 -0.005727295 -0.000223994

0.3 0.052182 -0.609417051 0.993568 0.384151 0.020046 -0.01906 -0.00675631 -0.000135437

0.32 0.052842 -0.786173603 0.7714 -0.01477 -0.00078 -0.02083 -0.007380976 5.76226E-06

0.34 0.05351 -0.913581787 0.50081 -0.41277 -0.02209 -0.02131 -0.007551194 0.000166788

0.36 0.054187 -0.983644148 0.198784 -0.78486 -0.04253 -0.02044 -0.007244552 0.000308106
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4.46 0.712282 -0.476917021 -1.102716 -1.57963 -1.12514 -0.00113 -0.000401671 0.000451937

4.48 0.721289 -0.244547061 -1.217569 -1.46212 -1.05461 0.070536 0.024998163 -0.026363244

4.5 0.730409 0.003173198 -1.255994 -1.25282 -0.91507 0.139535 0.049451453 -0.045251634

4.52 0.739646 0.250694273 -1.21558 -0.96489 -0.71367 0.201399 0.071375847 -0.050939035

4.54 0.748999 0.482479189 -1.098863 -0.61638 -0.46167 0.252002 0.089309875 -0.04123177

4.56 0.75847 0.683978731 -0.913171 -0.22919 -0.17384 0.287835 0.102009152 -0.017732804

4.58 0.768061 0.842544708 -0.670159 0.172386 0.132403 0.306239 0.108531203 0.014369865

4.6 0.777773 0.948223883 -0.38508 0.563144 0.437998 0.305595 0.108303204 0.047436614

4.62 0.787609 0.994382741 -0.07583 0.918553 0.72346 0.285462 0.101167892 0.07319092

4.64 0.797568 0.978123875 0.23818 1.216304 0.970085 0.246625 0.087404163 0.084789475

4.66 0.807654 0.900467859 0.537239 1.437707 1.161169 0.191084 0.0677204 0.078634846

4.68 0.817867 0.766289186 0.802576 1.568865 1.283122 0.121953 0.043220263 0.055456882

4.7 0.828209 0.584010295 1.017534 1.601545 1.326413 0.043291 0.015342419 0.020350391

4.72 0.838682 0.36507289 1.168622 1.533695 1.286282 -0.04013 -0.014222609 -0.018294286

4.74 0.849287 0.123219742 1.246355 1.369575 1.163162 -0.12312 -0.043633759 -0.050753141

4.76 0.860027 -0.126367948 1.245854 1.119486 0.962788 -0.20037 -0.071012921 -0.068370366

4.78 0.870902 -0.368023481 1.16715 0.799127 0.695961 -0.26683 -0.09456367 -0.065812612

4.8 0.881915 -0.586578063 1.015184 0.428606 0.377994 -0.31797 -0.112687824 -0.042595294

4.82 0.893067 -0.768312951 0.799494 0.031181 0.027847 -0.35015 -0.12409233 -0.003455598

4.84 0.90436 -0.901820588 0.53362 -0.3682 -0.33299 -0.36083 -0.12787943 0.042582022

4.86 0.915796 -0.978720658 0.23425 -0.74447 -0.68178 -0.3488 -0.123613929 0.084277823

4.88 0.927376 -0.994186117 -0.079823 -1.07401 -0.99601 -0.31423 -0.111362697 0.110918427

4.9 0.939103 -0.947246195 -0.388886 -1.33613 -1.25477 -0.25876 -0.091703192 0.11506606

4.92 0.950978 -0.840847324 -0.673539 -1.51439 -1.44015 -0.18538 -0.065699652 0.094617251

4.94 0.963004 -0.681668197 -0.915913 -1.59758 -1.53848 -0.09833 -0.034847667 0.053612328

4.96 0.975181 -0.479700539 -1.100795 -1.5805 -1.54127 -0.00279 -0.000989852 0.00152563

4.98 0.987513 -0.247621923 -1.21658 -1.4642 -1.44592 0.095352 0.033792737 -0.04886153

5 1 -2.33376E-13 -1.256 -1.256 -1.256 0.189918 0.067307152 -0.084537783

-1.20312 -0.426385746 0.82048948

0.138188232

0.371736777

x(t)= a(t)*u 0.001096459 sdv= 0.001875308 sdv= 0.049584778

y(t)=s(t)*u

average -1.07849E-05 average -8.9678E-05

3.23098E-05 ß= -0.005751018 ß= -0.00180858

0.029467387 process 2 for θ=1 process 2 for  θ=0.1

random no. x(t) y(t) process 1 part1 part 2 par1/part2 part 3*y(t) part1 part 2 par1/part2 part 3*y(t)

6.227779198 theta

1.90995E-05 -3.37475E-09 8.3113E-08 0 8.3113E-08 1.4142136 5.87698E-08 4.88453E-15 0.195869533 0.447213595 0.43797759 3.64016E-08

4.392666602 -0.000600798 0.023629596 0.1 0.023629596 1.414411 0.016706315 0.000394763 0.687615454 0.447837423 1.535413117 0.036281191

0.224374824 -1.1261E-05 0.001366542 0.2 0.001366542 1.4142142 0.000966291 1.32048E-06 0.517085438 0.447215683 1.156232792 0.001580041

1.23907942 7.89523E-05 0.007969202 0.3 0.007969202 1.414236 0.005634987 4.49064E-05 0.616795907 0.447284594 1.378978653 0.010989359

2.132167077 0.000378826 0.013585091 0.4 0.013585091 1.4142788 0.009605667 0.000130494 0.650588309 0.447419886 1.454088942 0.019753931

1.276629498 0.000335733 0.007537084 0.5 0.007537084 1.4142336 0.005329448 4.01685E-05 0.613366901 0.447277104 1.371335344 0.01033587

-0.063375183 -1.88081E-05 -0.000319929 0.6 0.000319929 1.4142136 0.000226224 -7.23755E-08 0.447203644 0.44721371 0.999977492 -0.00031992

-0.132195809 -3.54387E-05 -0.000508819 0.7 0.000508819 1.4142137 0.00035979 -1.83068E-07 0.468442571 0.447213885 1.047468754 -0.00053297

-0.140059162 -2.53856E-05 -0.0003325 0.8 0.0003325 1.4142136 0.000235113 -7.81753E-08 0.448930613 0.447213719 1.00383909 -0.00033378

1.422305443 7.91443E-05 0.001010119 0.9 0.001010119 1.4142139 0.000714262 7.21489E-07 0.501692075 0.447214736 1.121814722 0.001133166

1.012542437 -7.95058E-05 -0.001054264 1 0.001054264 1.414214 0.000745477 -7.8593E-07 0.503842662 0.447214838 1.126623312 -0.00118776

-0.808765019 0.000151478 0.002240952 1.1 0.002240952 1.4142153 0.00158459 3.55099E-06 0.543304441 0.44721921 1.214850411 0.002722421

-0.23203831 5.60179E-05 0.001013523 1.2 0.001013523 1.4142139 0.000716669 7.2636E-07 0.50186088 0.447214744 1.122192161 0.001137367

-1.694681164 0.000379599 0.009705939 1.3 0.009705939 1.4142469 0.006862974 6.66116E-05 0.629076926 0.447318908 1.4063276 0.01364973

0.113694488 -1.53984E-05 -0.000768155 1.4 0.000768155 1.4142138 0.000543168 -4.17237E-07 0.488140566 0.447214255 1.091513879 -0.00083845

1.783391028 1.02764E-05 -0.013163166 1.5 0.013163166 1.4142748 0.009307361 -0.000122514 0.648538908 0.447407274 1.449549316 -0.01908066

0.991912846 0.000165439 -0.007490126 1.6 0.007490126 1.4142334 0.005296245 -3.96695E-05 0.612983684 0.447276315 1.370480984 -0.01026508

-0.721871387 -0.000222413 0.005229635 1.7 0.005229635 1.4142232 0.003697885 1.93386E-05 0.591353456 0.447244172 1.322216126 0.006914708

1.099051205 0.000432103 -0.007109163 1.8 0.007109163 1.4142314 0.005026874 -3.57369E-05 0.609792177 0.447270098 1.36336451 -0.00969238

-1.641214349 -0.000652899 0.00863346 1.9 0.00863346 1.4142399 0.006104664 5.27044E-05 0.621753858 0.447296922 1.390024896 0.012000724

0.84764815 0.000268812 -0.003124774 2 0.003124774 1.414217 0.002209544 -6.90433E-06 0.561670827 0.447224512 1.255903494 -0.00392442

0.489947657 8.21118E-05 -0.000900244 2.1 0.000900244 1.4142138 0.000636568 -5.73067E-07 0.495947861 0.447214502 1.108970883 -0.00099834

-0.662747154 1.05628E-05 -0.00011644 2.2 0.00011644 1.4142136 8.23355E-05 -9.58715E-09 0.404212959 0.447213611 0.903847622 -0.00010524

0.101253468 -1.90531E-05 0.000225679 2.3 0.000225679 1.4142136 0.000159579 3.60137E-08 0.431866136 0.447213652 0.965681913 0.000217934

-0.621877111 0.000189264 -0.002607056 2.4 0.002607056 1.414216 0.001843464 -4.80601E-06 0.551588296 0.447221194 1.233367969 -0.00321546

0.369561814 -0.000122549 0.002194622 2.5 0.002194622 1.4142153 0.00155183 3.40568E-06 0.542170612 0.44721898 1.212315746 0.002660575
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ß= -0.00542483 ß= -0.00720688 ß= -0.00746818

process 2 for  θ=0.3 process 2 for  θ=0.5 process 2 for  θ=0.7

part1 part 2 par1/part2 part 3*y(t) part1 part 2 par1/part2 part 3*y(t) part1 part 2 par1/part2 part 3*y(t)

0.00751451 0.774596669 0.009701191 8.06295E-10 0.000288293 1 0.000288293 2.39609E-11 1.10603E-05 1.183215957 9.34769E-06 7.76914E-13

0.32511491 0.774957004 0.419526384 0.009913239 0.15371921 1.00027914 0.153676313 0.003631309 0.07268075 1.183451882 0.0614142 0.001451193

0.138256934 0.774597875 0.178488657 0.000243912 0.036966773 1.000000934 0.036966738 5.05166E-05 0.009884078 1.183216746 0.008353565 1.14155E-05

0.234652102 0.774637663 0.302918531 0.002414019 0.089270387 1.000031754 0.089267552 0.000711391 0.033961775 1.183242793 0.028702288 0.000228734

0.275371357 0.77471579 0.355448231 0.004828797 0.116555098 1.000092273 0.116544344 0.001583266 0.049333711 1.183293943 0.041691848 0.000566388

0.230760255 0.774633338 0.297896106 0.002245268 0.086816382 1.000028403 0.086813916 0.000654324 0.032661969 1.183239962 0.027603842 0.000208052

0.089436748 0.774596735 0.115462336 -3.694E-05 0.017886554 1.000000051 0.017886553 -5.7224E-06 0.003577152 1.183216 0.003023245 -9.6722E-07

0.102794308 0.774596836 0.132706852 -6.7524E-05 0.022557023 1.000000129 0.02255702 -1.1477E-05 0.004949878 1.183216066 0.00418341 -2.1286E-06

0.09047689 0.774596741 0.116805152 -3.8838E-05 0.018234594 1.000000055 0.018234593 -6.063E-06 0.003674976 1.183216003 0.003105922 -1.0327E-06

0.126273356 0.774597328 0.163018063 0.000164668 0.031782364 1.00000051 0.031782348 3.21039E-05 0.00799946 1.183216388 0.006760775 6.82919E-06

0.127904202 0.774597387 0.165123462 -0.00017408 0.032469432 1.000000556 0.032469414 -3.4231E-05 0.008242606 1.183216426 0.006966271 -7.3443E-06

0.160372451 0.774599911 0.207039077 0.000463965 0.047338694 1.000002511 0.047338576 0.000106083 0.013973422 1.183218079 0.011809676 2.64649E-05

0.126400861 0.774597332 0.16318267 0.000165389 0.03183587 1.000000514 0.031835853 3.22664E-05 0.00801832 1.183216391 0.006776715 6.86835E-06

0.248949505 0.774657476 0.321367202 0.00311917 0.098518724 1.000047102 0.098514084 0.000956172 0.038987581 1.183255765 0.032949412 0.000319805

0.116314726 0.77459705 0.150161592 -0.00011535 0.027715614 1.000000295 0.027715606 -2.129E-05 0.00660411 1.183216206 0.005581491 -4.2875E-06

0.272777226 0.774708506 0.352103047 -0.00463479 0.114730842 1.000086631 0.114720904 -0.00151009 0.048256104 1.183289174 0.040781328 -0.00053681

0.230328005 0.774632882 0.297338275 -0.0022271 0.086545517 1.000028051 0.086543089 -0.00064822 0.032519391 1.183239664 0.027483351 -0.00020585

0.206795659 0.774614323 0.266965963 0.001396135 0.072316216 1.000013674 0.072315228 0.000378182 0.025288902 1.183227514 0.021372814 0.000111772

0.226749087 0.774629292 0.292719484 -0.00208099 0.084315854 1.00002527 0.084313724 -0.0005994 0.031352555 1.183237314 0.026497267 -0.00018837

0.240356275 0.774644781 0.310279345 0.002678784 0.092916414 1.000037268 0.092912952 0.00080216 0.035919429 1.183247454 0.03035665 0.000262083

0.177192609 0.774602972 0.228752813 -0.0007148 0.055899682 1.000004882 0.055899409 -0.00017467 0.017634903 1.183220083 0.014904161 -4.6572E-05

0.121985459 0.774597192 0.157482444 -0.00014177 0.030004066 1.000000405 0.030004054 -2.7011E-05 0.007379928 1.183216299 0.006237176 -5.615E-06

0.066043594 0.774596678 0.085261912 -9.9279E-06 0.010790738 1.000000007 0.010790738 -1.2565E-06 0.001763078 1.183215962 0.001490073 -1.735E-07

0.080546644 0.774596702 0.103985266 2.34673E-05 0.015022622 1.000000025 0.015022622 3.39029E-06 0.002801845 1.183215978 0.002367991 5.34406E-07

0.167820545 0.774601057 0.216654165 -0.00056483 0.051059342 1.000003398 0.051059168 -0.00013311 0.015534787 1.183218829 0.013129259 -3.4229E-05

0.159370494 0.774599778 0.205745597 0.000451534 0.046846793 1.000002408 0.04684668 0.000102811 0.013770567 1.183217992 0.011638233 2.55415E-05

0.294699144 0.774783896 0.380363022 0.006478302 0.130506294 1.000145032 0.130487369 0.002222447 0.057794171 1.183338534 0.04883993 0.000831836

0.295351237 0.774786675 0.3812033 -0.00654063 0.130987944 1.000147185 0.130968667 -0.00224714 0.058093007 1.183340353 0.04909239 -0.00084232

0.327506758 0.774975045 0.422602973 0.010232932 0.155608665 1.000293117 0.155563066 0.003766813 0.073934525 1.183463696 0.062472998 0.001512725

sdv= 0.017398821 sdv= 0.02924365 sdv= 0.027611338 sdv= 0.0248945 sdv= 0.02177563 sdv= 0.01874822

average -0.2926594 average -0.0497161 average -0.14050266 average -0.21101004 average -0.2580633 average -0.2850351

ß= -16.8206459 ß= -1.7000663 ß= -5.08858556 ß= -8.47616926 ß= -11.851015 ß= -15.20331

process 3 for 1/m =1 process 3 for 1/m =0.1 process 3 for 1/m =0.3 process 3 for 1/m =0.5 process 3 for 1/m =0.7 process 3 for 1/m =0.9

part 1 part-part2 part 1 part-part2 part 1 part-part2 part 1 part-part2 part 1 part-part2 part 1 part-part2

0.707109 -0.29289063 9.950273 -0.049727 3.192742 -0.14059176 1.788845 -0.21115536 1.17033 -0.2582412 0.825885 -0.2852264 -5659.537867

0.721159 -0.27884126 9.9268474 -0.0731526 3.170671 -0.16266215 1.768988 -0.23101161 1.152997 -0.2755747 0.810989 -0.3001224 -7311.381311

0.707914 -0.29208569 9.9489169 -0.0510831 3.191461 -0.14187223 1.78769 -0.21230966 1.169321 -0.2592506 0.825016 -0.2860952 -19924.97369

0.711817 -0.2881833 9.9423665 -0.0576335 3.185281 -0.14805217 1.782123 -0.21787672 1.164456 -0.2641159 0.820831 -0.2902804 15694.03002

0.715153 -0.2848472 9.9367985 -0.0632015 3.180034 -0.1532991 1.777402 -0.22259813 1.160333 -0.2682381 0.817288 -0.2938235 5628.361802

0.711561 -0.28843935 9.9427951 -0.0572049 3.185685 -0.14764809 1.782487 -0.21751291 1.164773 -0.2637981 0.821104 -0.2900072 3802.511088

0.706921 -0.29307901 9.9505907 -0.0494093 3.193042 -0.14029181 1.789115 -0.21088492 1.170567 -0.2580047 0.826088 -0.2850228 3369.566757

0.70681 -0.29319018 9.9507782 -0.0492218 3.193219 -0.14011475 1.789275 -0.21072528 1.170706 -0.257865 0.826209 -0.2849026 3730.263572

0.706914 -0.29308641 9.9506031 -0.0493969 3.193053 -0.14028003 1.789126 -0.2108743 1.170576 -0.2579954 0.826096 -0.2850148 5517.267093

0.707704 -0.29229573 9.9492706 -0.0507294 3.191795 -0.14153829 1.787991 -0.21200865 1.169584 -0.2589874 0.825242 -0.2858687 17971.03186

0.706489 -0.29351109 9.9513196 -0.0486804 3.19373 -0.13960341 1.789736 -0.2102642 1.17111 -0.2574617 0.826556 -0.2845554 -12735.44752

0.70843 -0.29157011 9.9480491 -0.0519509 3.190642 -0.14269135 1.786952 -0.21304792 1.168675 -0.2598961 0.82446 -0.2866507 -5339.169275

0.707706 -0.29229373 9.9492672 -0.0507328 3.191792 -0.14154147 1.787988 -0.21201152 1.169581 -0.2589899 0.82524 -0.2858708 -4142.219589

0.712847 -0.28715326 9.9406443 -0.0593557 3.183658 -0.14967573 1.780662 -0.21933817 1.163179 -0.2653923 0.819733 -0.2913778 -4464.39861

0.706657 -0.29334278 9.9510356 -0.0489644 3.193462 -0.13987164 1.789494 -0.21050607 1.170898 -0.2576733 0.826374 -0.2847375 -7383.530034

0.699402 -0.30059804 9.9633467 -0.0366533 3.205103 -0.12823049 1.800002 -0.19999757 1.180099 -0.2484725 0.834301 -0.2768099 173542.8974

0.702713 -0.29728669 9.9577101 -0.0422899 3.19977 -0.13356375 1.795185 -0.20481481 1.175879 -0.2526925 0.830663 -0.2804477 5995.638997

0.710195 -0.28980508 9.9450839 -0.0549161 3.187844 -0.14548945 1.784431 -0.21556895 1.166472 -0.2620997 0.822565 -0.2885465 3245.638475

0.702936 -0.29706376 9.9573317 -0.0426683 3.199412 -0.13392158 1.794862 -0.20513784 1.175596 -0.2529754 0.83042 -0.2806914 2543.494657

0.71221 -0.28778951 9.9417078 -0.0582922 3.18466 -0.14867324 1.781564 -0.21843583 1.163967 -0.2646043 0.820411 -0.2907003 2513.735365

0.705272 -0.29472797 9.9533751 -0.0466249 3.195672 -0.13766161 1.791487 -0.20851286 1.172642 -0.2559295 0.827875 -0.2832361 3153.31372
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average= 4.812E-05 -0.000252393 -0.7382023

sdv= 0.000313481 0.001644232 4.809070065

||a(t)|| a(t)/||a(t)||U* pr0cess 1 f*(t) process1 x*(t) process 1 U* process 2 f*(t) proceess2 x*(t) process 2 U* process 3 f*(t) proceess3x*(t) process 3

0.371736777 45.502823 0.049891994 0.000217109 -8.81556E-06 -0.261687562 -0.001138754 4.62383E-05 -765.386872 -3.330640021 0.135238405

0.371736777 45.514303 0.049904581 0.000268453 -6.8256E-06 -0.261753585 -0.001408058 3.58008E-05 -765.5799764 -4.118305996 0.104710717

0.371736777 45.538755 0.049931392 0.000304104 -2.50597E-06 -0.261894207 -0.001595052 1.3144E-05 -765.9912717 -4.665226898 0.038443778

0.371736777 45.569986 0.049965636 0.000321357 3.18374E-06 -0.26207382 -0.001685541 -1.66989E-05 -766.5166037 -4.9298903 -0.048841286

0.371736777 45.600164 0.049998724 0.000318567 8.88335E-06 -0.262247371 -0.001670908 -4.65939E-05 -767.0242097 -4.887090589 -0.136278412

0.371736777 45.622057 0.050022729 0.000295329 1.31552E-05 -0.26237328 -0.001549024 -6.9E-05 -767.3924689 -4.530603158 -0.201812027

0.371736777 45.630563 0.050032055 0.00025257 1.48482E-05 -0.262422195 -0.001324752 -7.78801E-05 -767.5355368 -3.874651075 -0.227784636

0.371736777 45.623345 0.050024142 0.000192542 1.34104E-05 -0.262380688 -0.001009899 -7.03384E-05 -767.4141361 -2.953763119 -0.205726518

0.371736777 45.601094 0.049999744 0.000118699 9.06241E-06 -0.262252721 -0.000622588 -4.75331E-05 -767.0398552 -1.820952516 -0.139025326

0.371736777 45.567808 0.049963247 3.54838E-05 2.78021E-06 -0.262061291 -0.000186115 -1.45824E-05 -766.4799595 -0.544352648 -0.04265086

0.371736777 45.530821 0.049922693 -5.19797E-05 -3.91998E-06 -0.261848581 0.000272638 2.05606E-05 -765.8578226 0.797414809 0.060135918

0.371736777 45.499752 0.049888627 -0.000138233 -9.34389E-06 -0.261669901 0.000725043 4.90095E-05 -765.3352175 2.120615303 0.143343501

0.371736777 45.483933 0.049871281 -0.000217833 -1.20397E-05 -0.261578924 0.001142553 6.31495E-05 -765.0691264 3.341753567 0.184700282

0.371736777 45.489051 0.049876894 -0.00028566 -1.11721E-05 -0.26160836 0.001498308 5.85988E-05 -765.1552227 4.382269718 0.171390436

0.371736777 45.514685 0.049905 -0.000337174 -6.75896E-06 -0.261755782 0.001768503 3.54513E-05 -765.5864035 5.172539417 0.103688398

0.371736777 45.554229 0.049948358 -0.000368668 2.87816E-07 -0.261983197 0.001933692 -1.50962E-06 -766.2515507 5.655684177 -0.004415344

0.371736777 45.597328 0.049995614 -0.000377527 8.33866E-06 -0.262231061 0.001980158 -4.3737E-05 -766.9765042 5.791588484 -0.127922396

0.371736777 45.633394 0.05003516 -0.000362482 1.54161E-05 -0.262438478 0.001901249 -8.08588E-05 -767.5831611 5.560796504 -0.236496815

0.371736777 45.654307 0.05005809 -0.000323799 1.96808E-05 -0.262558749 0.001698349 -0.000103228 -767.9349311 4.967352549 -0.301921189

0.371736777 45.655434 0.050059326 -0.000263333 1.99143E-05 -0.262565232 0.001381201 -0.000104452 -767.9538914 4.039752191 -0.305503078

0.371736777 45.63564 0.050037623 -0.000184459 1.58683E-05 -0.262451397 0.000967502 -8.32303E-05 -767.6209464 2.829761773 -0.243433104

0.371736777 45.597538 0.049995845 -9.18638E-05 8.37895E-06 -0.262232269 0.000481833 -4.39483E-05 -766.9800388 1.409271246 -0.128540492

0.371736777 45.548258 0.049941811 8.77443E-06 -7.95971E-07 -0.261948858 -4.60226E-05 4.17493E-06 -766.1511151 -0.134607386 0.012210891

0.371736777 45.499498 0.049888347 0.000111194 -9.38763E-06 -0.261668437 -0.000583221 4.92389E-05 -765.3309344 -1.705810824 0.144014427
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Example 2   Method-1 

 

 

 

 

 

 

F(t)=s(t)^T*u

X(t)=int(0-t)*Ft*h(t-τ)+dτ

calculate si(τ) sigma= 0.3544

wf= 12.566 5 t=

£f= 0.05

τ part 1 part2 part3 hf(t-τ) s(t) normalized s(t) random no. F(t) Hs(t-τ)

0 0.000373 0.121633 1.252537 -0.00042 0.001192 0.000422339 6.227779198 0.002630236 -0.00124

0.02 0.000377 3.230501 1.188207 0.00077 0.001173 0.000415654 1.90995E-05 7.93879E-09 -0.00183

0.04 0.000382 6.136447 1.049408 0.001943 0.001079 0.000382296 4.392666602 0.001679299 -0.0019

0.06 0.000387 8.656936 0.844838 0.003022 0.000913 0.000323714 0.224374824 7.26332E-05 -0.0014

0.08 0.000392 10.63364 0.58732 0.003935 0.000686 0.000243003 1.23907942 0.0003011 -0.00044

0.1 0.000397 11.94241 0.292992 0.004621 0.000408 0.000144748 2.132167077 0.000308626 0.00071

0.12 0.000402 12.50102 -0.0197 0.005029 9.81E-05 3.47676E-05 1.276629498 4.43853E-05 0.001705

0.14 0.000407 12.27438 -0.33116 0.005128 -0.00023 -8.02221E-05 -0.063375183 5.08409E-06 0.002239

0.16 0.000412 11.27674 -0.62186 0.004901 -0.00054 -0.000193017 -0.132195809 2.5516E-05 0.00214

0.18 0.000417 9.570759 -0.87358 0.004357 -0.00084 -0.000296368 -0.140059162 4.1509E-05 0.001365

0.2 0.000422 7.263595 -1.07056 0.00352 -0.00108 -0.000383446 1.422305443 -0.000545378 0.000131

0.22 0.000428 4.500174 -1.20044 0.002438 -0.00126 -0.000448286 1.012542437 -0.000453908 -0.00121

0.24 0.000433 1.454076 -1.25509 0.001173 -0.00137 -0.000486187 -0.808765019 0.000393211 -0.00226

0.26 0.000439 -1.68336 -1.23107 -0.0002 -0.00139 -0.00049405 -0.23203831 0.000114639 -0.00269

0.28 0.000444 -4.71505 -1.1299 -0.00159 -0.00133 -0.000470611 -1.694681164 0.000797535 -0.00232

0.3 0.00045 -7.45057 -0.95791 -0.00292 -0.00118 -0.000416568 0.113694488 -4.73614E-05 -0.00122

0.32 0.000455 -9.71809 -0.72589 -0.0041 -0.00094 -0.00033459 1.783391028 -0.000596705 0.000307

0.34 0.000461 -11.3752 -0.44837 -0.00504 -0.00065 -0.000229197 0.991912846 -0.000227343 0.001827

ß= ||u*||= 112.0299985 10.58442245

£f= 0.05

wo= 27.53443959

wd= 27.5 xo= 0.33

H(t)= 50 ß= 10.58442245 #DIV/0!

||a(t)||= 0.000972061 0.031178

a(t) ά u* f*(t) x*(t)

-5.24642E-07 -1.6827E-05 -0.00018 -7.5222E-08 9.3443E-11

-7.62424E-07 -2.4454E-05 -0.00026 -1.07584E-07 1.97339E-10

-7.27235E-07 -2.3325E-05 -0.00025 -9.43832E-08 1.79544E-10

-4.51877E-07 -1.4494E-05 -0.00015 -4.96594E-08 6.93204E-11

-1.06088E-07 -3.4027E-06 -3.6E-05 -8.75183E-09 3.8208E-12

1.0274E-07 3.29528E-06 3.49E-05 5.04859E-09 3.58342E-12

5.92889E-08 1.90163E-06 2.01E-05 6.99791E-10 1.19335E-12

-1.79602E-07 -5.7606E-06 -6.1E-05 4.89132E-09 1.09507E-11

-4.13012E-07 -1.3247E-05 -0.00014 2.70631E-08 5.79089E-11

-4.04503E-07 -1.2974E-05 -0.00014 4.06981E-08 5.55475E-11

-5.03452E-08 -1.6148E-06 -1.7E-05 6.55365E-09 8.60473E-13

5.43291E-07 1.74255E-05 0.000184 -8.26814E-08 1.00204E-10

1.10011E-06 3.5285E-05 0.000373 -1.81577E-07 4.10861E-10

1.32662E-06 4.255E-05 0.00045 -2.22504E-07 5.97466E-10

1.08963E-06 3.49489E-05 0.00037 -1.74086E-07 4.03071E-10

5.08573E-07 1.6312E-05 0.000173 -7.19216E-08 8.78065E-11

-1.02586E-07 -3.2903E-06 -3.5E-05 1.16525E-08 3.57267E-12

-4.18797E-07 -1.3432E-05 -0.00014 3.25861E-08 5.95425E-11
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Alternative Approach 

 

 

-0.035718238 -0.000195889 -0.44644 -0.002448399 -0.07852995 -0.83119 -0.004558514 0.002035095

-0.035718238 -0.000147911 -0.86767 -0.003593058 -0.11524378 -1.21979 -0.005051194 0.004382772

-0.035718238 -8.92822E-05 -1.04899 -0.002622079 -0.08410059 -0.89016 -0.002225056 0.00233406

-0.035718238 -2.34719E-05 -0.92172 -0.000605698 -0.01942716 -0.20563 -0.000135125 0.000124547

-0.035718238 4.55062E-05 -0.50709 0.000646051 0.020721453 0.219325 -0.000279427 0.000141695

-0.035718238 0.000113334 0.085109 -0.00027005 -0.00866158 -0.09168 0.000290894 2.47576E-05

-0.035718238 0.000175658 0.684924 -0.003368366 -0.108037 -1.14351 0.005623632 0.003851758

-0.035718238 0.000228363 1.110469 -0.007099737 -0.22771701 -2.41025 0.015409857 0.017112162

-0.035718238 0.000267845 1.222545 -0.009167672 -0.29404397 -3.11229 0.02333854 0.028532413

-0.035718238 0.000291251 0.969363 -0.007904316 -0.25352308 -2.6834 0.021880762 0.021210403

-0.035718238 0.00029668 0.407226 -0.00338247 -0.10848937 -1.1483 0.009537893 0.003884081

-0.035718238 0.000283329 -0.31047 0.00246276 0.078990567 0.83607 -0.006631976 0.002059038

-0.035718238 0.000251572 -0.97438 0.006862791 0.220117195 2.329813 -0.016409438 0.015989021

-0.035718238 0.000202968 -1.37966 0.007839883 0.251456458 2.661521 -0.015124017 0.020866016

-0.035718238 0.000140187 -1.38851 0.005449617 0.174791062 1.850062 -0.007261134 0.010082132

-0.035718238 6.68732E-05 -0.97581 0.001826959 0.058597902 0.620225 -0.001161212 0.001133126

-0.035718238 -1.25664E-05 -0.24318 -8.55575E-05 -0.00274417 -0.02905 -1.02188E-05 2.48506E-06

-0.035718238 -9.3222E-05 0.604783 0.00157844 0.050626895 0.535856 0.001398547 0.000845817

-0.035718238 -0.000169981 1.31687 0.006266924 0.201005372 2.127526 0.010124795 0.013333043

-0.035718238 -0.000237851 1.668954 0.011113725 0.356461691 3.772941 0.025124376 0.041931429

-0.035718238 -0.000292278 1.533663 0.012549769 0.402521384 4.260456 0.034862777 0.053467743

-0.035718238 -0.00032945 0.924562 0.008527761 0.273519464 2.895046 0.026702647 0.024688256

-0.035718238 -0.000137109 9.33E-13 3.57987E-15 1.14821E-13 1.22E-12 4.66514E-15 4.35065E-27

13.27077 0.193505523 0.33

112.03 0.005477912 0.008231123

10.58442 0.07401292 0.090725537

q1 q1 q1 q2 q2 q2 q3 q3 q3

0.311241 0.311241 0.311241 0.30468317 0.30468317 0.30468317 0.10764274 0.10764274 0.10764274

-0.07339 -0.07339 -0.07339 -0.0658898 -0.0658898 -0.0658898 -0.1066948 -0.1066948 -0.1066948

-0.14579 -0.14579 -0.14579 -0.1105133 -0.1105133 -0.1105133 0.00880283 0.00880283 0.00880283

0.003126 0.003126 0.003126 -0.0044363 -0.0044363 -0.0044363 0.00422281 0.00422281 0.00422281

-0.03018 -0.03018 -0.03018 -0.0164255 -0.0164255 -0.0164255 0.07010703 0.07010703 0.07010703

-0.14993 -0.14993 -0.14993 -0.1520238 -0.1520238 -0.1520238 -0.0171117 -0.0171117 -0.0171117

-0.04231 -0.04231 -0.04231 -0.0232244 -0.0232244 -0.0232244 0.04755298 0.04755298 0.04755298

-0.14944 -0.14944 -0.14944 -0.1354517 -0.1354517 -0.1354517 -0.0667716 -0.0667716 -0.0667716

0.188706 0.188706 0.188706 0.2118413 0.2118413 0.2118413 0.14008979 0.14008979 0.14008979

-0.07911 -0.07911 -0.07911 -0.0388018 -0.0388018 -0.0388018 0.08460288 0.08460288 0.08460288

0.190298 0.190298 0.190298 0.18246026 0.18246026 0.18246026 0.02343171 0.02343171 0.02343171

0.134716 0.134716 0.134716 0.16299902 0.16299902 0.16299902 0.15503317 0.15503317 0.15503317

0.212892 0.212892 0.212892 0.22234051 0.22234051 0.22234051 0.02086364 0.02086364 0.02086364

-0.03787 -0.03787 -0.03787 -0.0225838 -0.0225838 -0.0225838 0.08329657 0.08329657 0.08329657

0.004469 0.004469 0.004469 -0.0241297 -0.0241297 -0.0241297 -0.0586752 -0.0586752 -0.0586752

0.089338 0.089338 0.089338 0.07203855 0.07203855 0.07203855 -0.0582809 -0.0582809 -0.0582809

0.095325 0.095325 0.095325 0.08568323 0.08568323 0.08568323 -0.0744723 -0.0744723 -0.0744723

-0.30117 -0.30117 -0.30117 -0.2928532 -0.2928532 -0.2928532 -0.0894548 -0.0894548 -0.0894548
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m1

q4 q4 q4 q5 q5 q5 q1 q2 q3 q4 q5

0.00048702 0.00048702 0.00048702 0.01381748 0.01381748 0.01381748 0.311241 0.304683 0.107643 0.000487 0.013817

-0.0251099 -0.0251099 -0.0251099 -0.0257049 -0.0257049 -0.0257049 -0.07339 -0.06589 -0.10669 -0.02511 -0.0257

-0.0331878 -0.0331878 -0.0331878 -0.0336924 -0.0336924 -0.0336924 -0.14579 -0.11051 0.008803 -0.03319 -0.03369

-0.0040433 -0.0040433 -0.0040433 -0.0091385 -0.0091385 -0.0091385 0.003126 -0.00444 0.004223 -0.00404 -0.00914

0.02416468 0.02416468 0.02416468 0.02258475 0.02258475 0.02258475 -0.03018 -0.01643 0.070107 0.024165 0.022585

-0.00738 -0.00738 -0.00738 -0.0073853 -0.0073853 -0.0073853 -0.14993 -0.15202 -0.01711 -0.00738 -0.00739

0.00420061 0.00420061 0.00420061 0.00611776 0.00611776 0.00611776 -0.04231 -0.02322 0.047553 0.004201 0.006118

0.02912743 0.02912743 0.02912743 0.03010808 0.03010808 0.03010808 -0.14944 -0.13545 -0.06677 0.029127 0.030108

0.01186746 0.01186746 0.01186746 0.00234649 0.00234649 0.00234649 0.188706 0.211841 0.14009 0.011867 0.002346

-0.0523785 -0.0523785 -0.0523785 -0.0473572 -0.0473572 -0.0473572 -0.07911 -0.0388 0.084603 -0.05238 -0.04736

0.00055945 0.00055945 0.00055945 -0.0065731 -0.0065731 -0.0065731 0.190298 0.18246 0.023432 0.000559 -0.00657

0.02278051 0.02278051 0.02278051 0.02283523 0.02283523 0.02283523 0.134716 0.162999 0.155033 0.022781 0.022835

-0.0083537 -0.0083537 -0.0083537 -0.0171939 -0.0171939 -0.0171939 0.212892 0.222341 0.020864 -0.00835 -0.01719

0.07266209 0.07266209 0.07266209 0.06942735 0.06942735 0.06942735 -0.03787 -0.02258 0.083297 0.072662 0.069427

0.02272085 0.02272085 0.02272085 0.03147123 0.03147123 0.03147123 0.004469 -0.02413 -0.05868 0.022721 0.031471

-0.0145442 -0.0145442 -0.0145442 -0.0120841 -0.0120841 -0.0120841 0.089338 0.072039 -0.05828 -0.01454 -0.01208

0.00616026 0.00616026 0.00616026 0.00383695 0.00383695 0.00383695 0.095325 0.085683 -0.07447 0.00616 0.003837

-0.0763478 -0.0763478 -0.0763478 -0.0827749 -0.0827749 -0.0827749 -0.30117 -0.29285 -0.08945 -0.07635 -0.08277

m2 p

q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.311241 0.304683 0.107643 0.000487 0.013817 0.311241 0.304683 0.107643 0.000487 0.013817

-0.07339 -0.06589 -0.10669 -0.02511 -0.0257 -0.07339 -0.06589 -0.10669 -0.02511 -0.0257

-0.14579 -0.11051 0.008803 -0.03319 -0.03369 -0.14579 -0.11051 0.008803 -0.03319 -0.03369

0.003126 -0.00444 0.004223 -0.00404 -0.00914 0.003126 -0.00444 0.004223 -0.00404 -0.00914

-0.03018 -0.01643 0.070107 0.024165 0.022585 -0.03018 -0.01643 0.070107 0.024165 0.022585

-0.14993 -0.15202 -0.01711 -0.00738 -0.00739 -0.14993 -0.15202 -0.01711 -0.00738 -0.00739

-0.04231 -0.02322 0.047553 0.004201 0.006118 -0.04231 -0.02322 0.047553 0.004201 0.006118

-0.14944 -0.13545 -0.06677 0.029127 0.030108 -0.14944 -0.13545 -0.06677 0.029127 0.030108

0.188706 0.211841 0.14009 0.011867 0.002346 0.188706 0.211841 0.14009 0.011867 0.002346

-0.07911 -0.0388 0.084603 -0.05238 -0.04736 -0.07911 -0.0388 0.084603 -0.05238 -0.04736

0.190298 0.18246 0.023432 0.000559 -0.00657 0.190298 0.18246 0.023432 0.000559 -0.00657

0.134716 0.162999 0.155033 0.022781 0.022835 0.134716 0.162999 0.155033 0.022781 0.022835

0.212892 0.222341 0.020864 -0.00835 -0.01719 0.212892 0.222341 0.020864 -0.00835 -0.01719

-0.03787 -0.02258 0.083297 0.072662 0.069427 -0.03787 -0.02258 0.083297 0.072662 0.069427

0.004469 -0.02413 -0.05868 0.022721 0.031471 0.004469 -0.02413 -0.05868 0.022721 0.031471

0.089338 0.072039 -0.05828 -0.01454 -0.01208 0.089338 0.072039 -0.05828 -0.01454 -0.01208

0.095325 0.085683 -0.07447 0.00616 0.003837 0.095325 0.085683 -0.07447 0.00616 0.003837

-0.30117 -0.29285 -0.08945 -0.07635 -0.08277 -0.30117 -0.29285 -0.08945 -0.07635 -0.08277
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Fig-30 Realization of Limit State Function in U-space 

 

 

 

 

m1 m2 p G(x)

0.109594 2.370973 0.459649 -1.090892305 TRUE

0.118209 -0.52743 0.19936 0.736175718 FALSE

0.211434 -1.17025 0.073979 -0.058968913 TRUE

0.062982 0.043346 0.262945 1.238828889 FALSE

0.139676 0.036303 0.187932 1.122893396 FALSE

0.103786 -1.08304 0.165623 0.158457826 FALSE

0.166286 -0.16585 0.174831 1.020529038 FALSE

0.146052 -0.67239 0.134977 0.525071394 FALSE

0.132099 1.519859 0.279725 -0.204124479 TRUE

0.245412 -0.86632 0.100124 0.268065892 FALSE

0.043829 1.468 0.372799 -0.143280137 TRUE

0.180877 1.236417 0.24509 0.05729615 FALSE

0.086236 1.618684 0.34293 -0.291253282 TRUE

0.136947 0.361255 0.176254 0.870376633 FALSE

0.040214 0.318952 0.340528 1.008369622 FALSE

0.049139 0.66908 0.356466 0.657528522 FALSE

0.0527 0.908941 0.33766 0.419477046 FALSE

0.123032 -2.70556 0.048221 -1.619785928 TRUE
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