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ABSTRACT 

 

This work evaluates the rate of consolidation by Laurent series using transformations. A 

clear comparison is made between Fourier and Laurent outputs for variation of degree of 

consolidation with time factor experimentally and verified theoretically. Laurent series 

has been observed to be consistent for explaining consolidation of clay layer with low 

thickness. As the Laurent series is a type of convergent series therefore all the variation in 

sample thickness & pore water pressure converges to a single value. Curve obtained by 

Laurent series continuous in nature. With the help of Laurent series process of 

consolidation can be studied even at microscopic level and for all kind of soils. 

This analysis can be well supported & explained by conversion of nature of plots from 

Fourier transformation to Laurent transformation. 
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CHAPTER – 1 

                                                                                      INTRODUCTION 

1.1 MOTIVATION 

In 1925, Karl Terzaghi proposed the one-dimensional consolidation theory, where 

the excess pore water pressure (u), depth within the clay layer (z) and time (t) are 

related by the following governing differential equation. 

  

  
   

   

   
                                                                                                          (1) 

Where Cv is the coefficient of consolidation. When the initial excess pore water 

pressure is uniform, for double- or single- drained clay layers, the average degree of 

consolidation (U) is related to the dimensionless time factor (Tv) by 

 ( )  ∑ (
 

  )   
      

                                                                             (2) 

Where   
(    ) 

 
                                                                                                    (3) 

And     
    

                                                                                                               (4) 

With H being the maximum length of drainage path. When applying 

Terzaghi’s consolidation theory and the above expressions, it is implied that the 

pressure at the ground level causing consolidation is applied instantaneously. In 

reality, building or embankment loads are never placed on the ground instantaneously; 

they are applied gradually over a certain time period, herein referred to as 

construction time t0, as shown in Figure 1. Here, the entire pressure    is applied over 

the construction time t0 which can be several months, depending on the nature of the 

project. Therefore, Terzaghi’s solutions, developed for instantaneous loading, will not 

produce reliable estimates of the consolidation settlements.  

The objective of this technical note is to propose a simple analytical solution 

to one-dimensional consolidation due to constant rate of loading, which can be used 

for estimating the degree of consolidation and consolidation settlement more 

realistically. In addition, Terezaghi’s empirical method to account for construction 

time in the case of constant rate of loading is revisited.  
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1.2 OBJECTIVE OF STUDY 

The theme of the study is towards understanding of consolidation behaviour of 

thin clay laminae. These stiff thin clay laminae are consolidated to achieve final 

settlement either by Biot theory or by Terzaghi theory. When a soil layer is subjected 

to a compressive stress, such as during the construction of a structure, it will exhibit a 

certain amount of compression. The compression of soil with time depends upon 

number of reasons. The expulsion of pore fluids and rearrangement of soil structure 

are the main reasons behind.  

According to Terzaghi (1943), “a decrease in water content of a saturated soil 

without replacement of the water by air is called consolidation.” When clayey soils, 

which have a low coefficient of permeability, are subjected to a compressive stress 

due to construction, the pore water pressure will immediately increase; however, 

because of the low permeability of the soil, there will be a time lag between the 

application of load and the expulsion of the pore water and thus, the settlement. This 

phenomenon is called consolidation which is the main theme of present study.As 

additional long-term settlement problems are to be anticipated due to the potential 

secondary compression associated with this relatively less permeability of clay 

lamenae of matter.  

However, despite increased interest on the behaviour of soil, little is yet 

known about the magnitude and characteristics of secondary compression of these 

deposits. Evaluation of clay layer secondary compression of marshy land is required 

for estimation of expected total settlement of permanent structure. Moreover, 

preloading technique through surcharge has been employed with some success as a 

mean of insitu improvement of engineering properties of clay layer. However, for this 

technique to be effective the compressibility of the clay layer complex needs    to be 

thoroughly investigated.  

In saturated clay, during undrained conditions the applied load at time t = 0 is 

resisted completely by the pore water. If a drainage conditions exists, then initial pore 

water pressure dissipates with time leaving the soil, again in a fully saturated state, the 

consequent reduction in the volume of the soil is approximately equal to the volume 

of water entering to the free drainage boundaries. The continuous increase in the 

effective stress at any given time equals to the decrease in the excess pore pressure. 
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The assumption, along with the continuity conditions of water movement, enables the 

creation of the necessary equation based on Fourier series that express the 

development of the consolidation process.  

The settlement due to consolidation is the major controlling factor in the 

design of footings and foundations, some errors had been encountered by assuming 

consolidation only occurs in vertical direction. Any immediate settlement that occurs 

on application of the load is estimated using elastic theory.      

 

Fig 1.1: Time rate settlement curve for elastic loading 

(Courtesy: Soil Mechanics basic concepts, Aysen A 2002 pp 214) 

 

Where, 

          Si = immediate settlement 

Sc = consolidation settlement 

Sg = secondary settlement 

Above figure represents typical time settlement relationship for an element of 

saturated clay during a vertical load increment. The settlement or the vertical 

compressive deformation of the element is divided in to three segments Si, Sc, Sg. 
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Fig 1.2: Effective stress applied on thin clay laminae 

(Courtesy: Principles of Soil Mechanics, Murthy V N S 2000 pp 222) 

 

 

 

Fig 1.3: Mechanism of Consolidation 

(Courtesy: http://soilworks.com/consol_1/introduction) 

 

 

 

http://soilworks.com/consol_1/introduction
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1.3 MAJOR SCIENTISTS AND THEIR CONTRIBUTION 

Table 1.1: Major Scientists & their Contribution 

Scientists Contribution 

Terzaghi’s Analysis, 1925 1-D Consolidation 

Biot Theory, 1940 3-D Consolidation with restructuring of soil solids 

Ji et al., 1948 
Obtain quasi-dynamic solution for symmetric consolidation of 

isotropic soil. 

Schiffman, 1958 

1-D consolidation theory under time dependant loading where 

the permeability and coefficient of consolidation vary with 

time. 

Geng et al., 1962 
Use of Laplace transforms to obtain solution for non linear 1-D 

consolidation.  

Davis & Raymond, 1965 
Relation of permeability of soil with coefficient of 

consolidation. 

Gibson & Hussey, 1967 
Analysis of ‘rate of consolidation’ depending upon thickness of 

soil strata. 

Mikasa et al., 1968 
1-D Consolidation theory in terms of compressive strains 

instead of excess pore pressure..     
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Booker and Small, 1976 
Finite layer analysis technique for 2-D and 3-D consolidation of 

multilayered soils.  

Oslon.et al., 1977 
Incorporate Ramp loading as mode of load application in 1-D 

consolidation. 

Cai et al., 1981  
Semi analytical 1-D consolidation solution with variation of 

cyclically loaded soil compressibility. 

Senjuntichai and 

Rajapakse, 1989  

Solution for consolidation of multilayered soils by an exact 

stiffness method in the cylindrical coordinate system.  

Sridharan et al., 1995 
Analysis of Time factor for secondary consolidation of 

extremely clayey soil. 

Wang and Fang, 2001 
Analysis of Biot consolidation problem for multilayerd porous 

media by a state space method in cylindrical coordinate system. 

Conte et al., 2006 
Analysis of coupled consolidation of unsaturated soil under 

plain strain loading.  

Rani et al., 2011 

Consolidation of mechanically isotropic but hydraulically 

anisotropic clay layer incorporating compression of pore fluid 

and solid constituents. 

Vinod et al., 2010 Cross section range of fast loading for radial consolidation. 

Tewatia et al., 2012 
Quick and fast loading methodology to guage/measure rate of 

consolidation of primary as well as secondary processes. 
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Proposed study (2013) – general solution of consolidation using Laurent series of thin 

clay laminae, determination of degree of consolidation with new sets of computations 

of varying domain also incorporated for multi layered soils. 

 

Fig 1.4: Consolidation with Terzaghi principle 

(Courtesy: http://soilworks.com/consol_2/introduction) 

 

http://soilworks.com/consol_2/introduction
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1.4 PHYSICAL BACKGROUND: CORRELATION OF FOURIER 

(TERZAGHI) SERIES WITH LAURENT SERIES 

(Courtesy: www.math.lsa.umich.edu/rauch/555/laurentfourier.pdf ) 

As it is clear from lots of mathematical researches that Fourier series can easily be 

converted in to Laurent series by multiplication of the constant   . A tough factor to 

know or encourage is that the inconvertible fact discretional periodic functions have 

Fourier series representations. Within the following study it is shown that for periodic 

functions that are analytic, the illustrations follows from basic facts regarding Laurent 

series. 

(a) Fourier series of periodic functions that are to be analytic. 

A operate f (z) is amountic with period 2  if whenever z belongs to its domain 

therefore do the points z + 2 n with n ∈ Z and one has for all n, f(z + 2 n) = f (z).                                                           

We have an interest in functions that are analytic and outlined on an open set of C 

containing the real axis. The complement of the domain of f is then closed and disjoint 

from the compact interval [0, 2 ] within the real axis. Opt for a > zero so these 2 

closed sets are at distance ≥ a from one another. It follows that the domain of f 

contains a full strip {z:  |Im z| < a}, a > 0 

Examples of periodic analytic functions: The elementary functions and e±inz are 

the building blocks. Any linear combination of the higher than non linear functions 

too, as an example f (z) = 
 

(    ) 
 will be analytic in any strip on which          i. 

Whole of the function h = ∑     
  

  yields the complete example h (   )=∑     
    

 . 

These examples are often changed to yield the overall case as follows. Take into 

account the mapping w =     .It maps out the above strip in the complex plane z to the 

annulus {       | |    } in the w plane. 

 It maps the important axis within the z plane infinitely usually around the unit 

circle within the w plane, the preimages of a degree w =     are the points z = θ + 2 n 

with n ∈ Z. Since the by-product 
  

  
 is obscurity zero it follows that the mapping is 

domestically invertible with analytic inverse. The local inverses are branches of the 

perform z = 
(   )

 
. 

http://www.math.lsa.umich.edu/rauch/555/laurentfourier.pdf
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Theorem: The correspondence f (z) = g (   ) establishes a 1 to 1 linking between 

the 2  periodic analytic functions f (z) in the strip itself and also the analytic functions 

g(w) on the annulus. 

Proof: Each such term ‘g’ yields associate in nursing analytic periodic function ‘f ’ on 

the strip and that distinct functions g yield distinct f is obvious. What has to be shown 

is that each periodic analytic perform on the strip has such a illustration. Suppose that 

f is analytic and periodic within the strip. For every purpose w within the annulus, the 

preimages z underneath the map consist the strip and take issue by number multiple of 

2 . It follows that as per formula g on the annulus is well outlined by the formula g 

(w) = f (z), since it does not matters that z one takes. For any w opt for a preimage z. 

The mathematical function theorem implies that w contains a native inverse z = f (w) 

analytic on the vicinity of w and satisfying f (w) = z. This shows that g is analytic at 

each w in order that g provides the required illustration of f.   

Theorem: If f (z) could be a 2  periodic analytic perform within the strip then 

f contains a Fourier series illustration   ( )  ∑     
       

     , with coefficients given 

by the formulae 

   
 

  
∫  
  

 
( )       d . 

Proof: Choose g in order that on top of equation holds. Then use the Laurent 

enlargement of gg (w) =  ∑     
  

   , where    
 

   
 ∮

 ( )

        at | |    . 

Since f (z) = g (   ) , so we have f (z) = ∑   ( 
  )   

     Parameterizing the curve |w| = 

1 by 

 w =     with 0 ≤ θ ≤ 2 , one has dw = i w dθ and therefore the formula for cn 

becomes 

   
 

   
 ∮

 (   )

            
 

  
∫

  ( )

      
 

  
∫   ( )       
  

 

  

 
. 

(b) Fourier series of smooth periodic functions 

To derive the Fourier illustration of smooth periodic and L
2
 periodic functions 

future result suffices. The key step uses the Fourier enlargement of Associate in 

Nursing approximating analytic periodic perform. 
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Theorem: If f (θ) will be a smooth 2  periodic perform whose all Fourier 

coefficients vanishes, then we will take f = 0. 

Proof: Choose normalizing coefficient  ∈ so that  ∈   
         as  ∈   .Define 

     ∈( )   ∈ ∫   (   )
      

  
 ( )        

From above it is clear that f is entire analytic in z and periodic in the domain of 

2 .The Fourier coefficients of  ∈ vanish since, 

∫        ∈( )    ∈∫         (   )
      ( )      

  

 

  

 

 

Convert variable from   to  =     to indicate that the d  integral is equal 

to, ∫        
 
  

∈   (   )     
  

 
  On converting variable       shows that the 

d  integral is equal to,∫        (   )   ∫     (   )  ( )   
    

 

  

 

      ( )    ,since the Fourier coefficients of f gets ended. The Laurent growth of 

analytic periodic functions then implies that      .On the opposite hand, as ∈  0, 

the restriction of  ∈ to the important axis converges uniformly to f proving that f = 0. 

 Conversion of Fourier series in to Laurent series  

Suppose  ( )  ∑    
   

     is a Laurent series convergent on an annulus {z: 

0 < | | < R}. If R > 1, the series converges on S
1
, so a substitution z =    gives 

Fourier series 

 u (ɵ) = f (   ) = ∑    
     

     

Using Euler’s formula, we may rewrite     
        

   as a linear 

combination of    (  ) and    ( ɵ).For conversion purpose we may write                 

 

u (ɵ) = 
  

 
 ∑      (  )       (  )

 
    . For real valued u, complexophobes use 

this form to avoid number together.Thus figures shown below represent conversion of 

basic Fourier series into Laurant series only due to incorporation of factor    . 
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Fig 1.5: Variation of function ‘z’ with space and time on conversion from Fourier 

series to Laurent series. 

(Courtesy: http://wikimedia.org/weikipedia/Fourier & Laurent series) 

 

 

 

Fig 1.6: Variation of function ‘z’ with space and time on conversion from Fourier     

series to Laurent series in different domains. 

(Courtesy: http://borborygmus.org/weikipedia/Fourier & Laurent series) 

 

Z 

Z.e
iθ 

Z 

Z 

e
iθ 

http://wikimedia.org/weikipedia/Fourier
http://borborygmus.org/weikipedia/Fourier
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1.5 ORGANISATION OF REPORT 

 

Chapter 1 It provides the introduction to the consolidation process, how it occurs 

and factors on which it depends. Chapter basically deals with the mechanism of the 

consolidation process and settlement that took place as a result of the same. It also 

gives the information about the idea that is to be incorporated to convert the 

Fourier series in to Laurent series and use it in terms of soil and its behaviour 

during load application. 

Chapter 2 Describes about the literature reviews of various methods and techniques 

that are carried out by renowned researchers in past few decades for determination 

of rate of consolidation. Various researches had been carried out in determination 

of 3-dimensional consolidation. Numerical techniques like FEM, BEM and other 

matrix solutions used for determination of rate of settlement till now is well 

explained in the chapter. 

Chapter 3 It deals about the numerical analyses that are to be used for 

determination of rate of consolidation. Precise and clear vision had been given 

about Laurent series and transformations and its applicability along with 

correlations. 

Chapter 4 Discussed about the experiments that has been conducted on different 

sets of sample, along with different engineering properties of soil that are 

determined in the laboratory. All the experiments carried out here is according to 

I.S. Codes. 

Chapter 5 In this chapter, result and validation were explained that correlates 

numerical Laurent transformations with experimental data obtained in laboratory, 

various numerical relations had been derived for consolidation process and is 

proved to be true when compared analytically as well as graphically. 

Chapter 6 This chapter includes the conclusion part of the project work which is 

just the summary of different theories evolved in the process of consolidation 

along with limitations that arouses in numerical as well as experimental technique. 

Future scope of the work is also provided at last. 
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Chapter 7 Here an account of several research publications has been made, which 

we had referred during the study. 
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CHAPTER – 2 

                                                                         LITERATURE REVIEW 

 

2.1 CONSOLIDATION: NATURAL PHENOMENON 

Consolidation is likely to be linked to the changes in effective stress, which 

result from the changes in pore-water pressure as seepage flow progresses toward the 

drainage boundaries. Upon application of an external load, there is an initial increase in 

the pore-water pressure throughout the sample known as the initial excess pore water 

distribution. According to Darcy’s law, the excess pore water pressures i.e., pressures 

in excess of hydrostatic are the driving force of seepage flow.  

Flow takes place due to the hydraulic gradient generated by the initial excess 

pore pressure distribution. At any stage of the consolidation process, the pore-water 

pressures will vary within the soil layer. The distribution of the excess pore-water 

pressure at any given time after loading can be represented by an isochrones [Powrie 

(1997)]. Thus, the process of consolidation can be expressed as a series of the 

isochrones that graphically represent the relationship between time and the degree of 

consolidation over the depth of the soil stratum. Consolidation can be further 

characterized by the average degree of consolidation, which represents the 

consolidation of the stratum as a whole and eliminates the variable of depth. [Taylor 

(1962)]. Terzaghi’s one-dimensional consolidation theory is commonly adopted to 

describe the dissipation of the excess pore-water pressure within a consolidating soil 

over time [Terzaghi (1925)]. 

   In fact, Terzaghi’s theory is often used in two and three-dimensional 

problems. Here, one-dimensional consolidation settlements are simply modified by a 

correction factor proposed by [Skempton and Bjerrum (1957)] to account for two- 

and three-dimensional effects. The behaviour of a consolidating soil subjected to the  

uniform initial excess pore-water pressure is commonly described in geotechnical 

textbooks in terms of both degree of consolidation isochrones and average degree of 

consolidation curves were given by [Terzaghi (1943); Taylor (1962); Holtz and 

Kovacs (1981); Berry and Reid (1988); Powrie (1997); Atkinson (2007); 
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Lancellotta (2009)]. The average degree of consolidation behaviour of other initial 

excess pore-water pressure distributions has also been analyzed in terms of one-

dimensional consolidation. 

2.2 GENERAL THEORIES 

Since the inception of Terzaghi’s 1-D consolidation theory, several solutions 

have been developed for dealing with issues relating to the consolidation resulting 

from time-dependent construction loads. This has led time-dependent construction 

loads to be approximated as constant rate loading scenarios [Terzaghi (1943); 

Schiffman (1958); Olson (1998); Zhu &Yin (1998); Conte & Troncone (2006); 

Hsu & Lu (2006)]. They range from semi-empirical approximations to more 

sophisticated theoretical analyses. The simplest of these approaches is that proposed 

by [Terzaghi (1943)] where there is the consolidation settlement at time t (t < t0) is 

computed assuming that the pressure at that time is applied instantaneously at t/2. Due 

to its simplicity, this method is still discussed in different textbooks, with suggestions 

to implement this as a graphical procedure that accounts for the construction time 

[Craig (2004)].  

Later, more rational and analytical approaches were proposed by several 

others which are summarised here briefly [Olson (1977)] extended Terzaghi’s one-

dimensional consolidation theory to incorporate ramp loading, covering consolidation 

due to vertical flow, radial flow and combined vertical and radial flow. He discredited 

the ramp loading into very small incremental loads, and applied Terzaghi’s one-

dimensional consolidation theory and principle of superposition, to develop a 

mathematical expression for the excess pore water pressure. This was used in 

developing an expression for the degree of consolidation in terms of time factor. The 

solutions were also presented graphically in the form of U-T charts. In Terzaghi’s 

one-dimensional consolidation theory, as well as [Olson’s (1977)] extension, it is 

assumed that cv remains the same during consolidation. 

[Schiffman (1958)] studied one-dimensional consolidation under time 

dependent loading where the permeability and coefficient of consolidation vary with 

time.[Zhu and Yin (1998)] developed solutions for one-dimensional consolidation 

under depth dependent ramp loading, where the applied pressure varies with time and 

depth.[Conte and Troncone (2006)] developed a solution for consolidation due to 
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more general time dependent loading. [Mikasa (1968)] developed the one-

dimensional consolidation theory in terms of compressive strains instead of excess 

pore pressures, which was later extended to multi-layered clays by [Kim and Mission 

(2011); Conte (2006)] proposed a method to analyse coupled consolidation of 

unsaturated soils under plane strain and axi-symmetric loading. 

[Rani (2011)] studied the consolidation of a mechanically isotropic but 

hydraulically anisotropic clay layer subjected to axi-symmetric surface loads, 

allowing for compressibility of the pore fluid and solid constituents. Soil 

consolidation is often caused by external loadings, such as in building or embankment 

construction on clayey soil. Consolidation theory was originally developed by 

Terzaghi for the one dimensional case, and therein, exclusively considered vertical 

stress and strain, and neglected horizontal effects. Biot later extended Terzaghi’s 

theory to two- and three-dimensional saturated soils.  

Biot’s reformalization of Terzaghi’s theory is also contemporarily referred to 

as the true two- or three-dimensional consolidation theory, as it permits the total stress 

to be varied as a function of time during the consolidation process. Both theories 

assume that loading is instantaneously applied and maintained constant as a function 

of time; however, realistic loadings in construction are usually applied gradually as a 

function of time. In many cases, the loading process may proceed over a long period 

of time, such that a significant part of the consolidation may occur during the loading 

process. Moreover, during the construction of some special structures, such as silos or 

fluid tanks, the soils beneath will be subjected to cycles of loading and unloading that 

periodically repeat over time. 

  The response of soils subjected to complicated loading conditions can be 

examined as a diffusion Soil consolidation is often caused by external loadings, such 

as in building or embankment construction on clayey soil. Consolidation theory was 

originally developed by Terzaghi for the one dimensional case, and there in, 

exclusively considered vertical stress and strain, and neglected horizontal effects. Biot 

later extended Terzaghi theory to two and three-dimensional saturated soils. Biot’s 

renormalization of Terzaghi’s theory is also contemporarily referred to as the true 2 or 

3-dimensional consolidation theory, as it permits the total stress to be varied as a 

function of time during the consolidation process.  
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Both theories assume that loading is instantaneously applied and maintained 

constant as a function of time; however, realistic loadings in construction are usually 

applied gradually as a function of time. In many cases, the loading process may 

proceed over a long period of time, such that a significant part of the consolidation 

may occur during the loading process. Moreover, during the construction of some 

special structures, such as silos or fluid tanks, the soils beneath will be subjected to 

cycles of loading and unloading that periodically repeat over time. The response of 

soils subjected to complicated loading conditions can be examined as a diffusion 

process over time, wherein these loadings can significantly change the total stress as 

the soil consolidation develops. As a result, the impact of the external loading type 

should be considered in the analysis. Several solutions have been developed for 

classical one-dimensional consolidation problems consisting of time-dependent 

loading conditions in the past few decades. [Schiffman (1958)] was one of the first 

researchers to obtain a general solution of consolidation with loadings that linearly 

increased with time, which has subsequently been modified by later work.  

For example, cyclical loading was evaluated and the corresponding solutions 

therein were developed. In particular, [Geng (1962)] used the Laplace transform to 

obtain a general solution to the non-linear one-dimensional consolidation problem for 

soils that have undergone complicated cyclical loading.[Conte (1966)]  used the 

Fourier transform to develop an analytical solution to the one-dimensional 

consolidation of saturated soil layers subjected to a general time-dependent loading. 

[Cai (1981)] derived a semi-analytical one-dimensional consolidation solution by 

considering the variation of cyclically loaded soil compressibility. 

  Process over time, wherein these loadings can significantly change the total 

stress as the soil consolidation develops. As a result, the impact of the external 

loading type should be considered in the analysis. Several solutions have been 

developed for classical one-dimensional consolidation problems consisting of time-

dependent loading conditions in the past few decades. [Schiffman (1958)] was one of 

the first researchers to obtain a general solution of consolidation with loadings that 

linearly increased with time, which has subsequently been modified by later work. For 

example, cyclical loading was evaluated and the corresponding solutions therein were 

developed. 
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In Several investigators have successfully obtained analytical solutions to 

Biot’s equations; however, due to the complexity of the coupled governing 

differential equations, the solutions to consolidation problems are generally limited to 

those with simple geometries and specific loading conditions. Several investigators 

have successfully obtained analytical solutions to Biot’s equations; however, due to 

the complexity of the coupled governing differential equations, the solutions to 

consolidation problems are generally limited to those with simple geometries and 

specific loading conditions. Earlier work on three-dimensional consolidation 

problems has typically adopted a purely isotropic elastic model for the soil skeleton; 

however, the soil is often transversely isotropic due to its original deposition in 

horizontal bedding.  

Furthermore, imposed strains after deposition can induce additional 

anisotropy, which in turn leads to a preferred orientation of the plate-shaped clay 

particles, and has been verified by laboratory tests that show that the stiffness and 

permeability of soils are directionally dependent. Thus, a more realistic solution to the 

consolidation problem should accommodate soil anisotropy. Existing solutions to 

consolidation problems all assume that particles and pore water are incompressible, 

which may not always be appropriate. In general, it is necessary to relax this 

assumption, and extend consolidation problem analysis to compressible materials. In 

this vein, [Ji (1948)] obtained a quasi-dynamic solution for the axi symmetric 

consolidation of a columnar cross-isotropic soil. More recently, [Chen (1954)] 

derived solutions for the axi-symmetric consolidation of transversely isotropic 

saturated soils using Laplace and Hankel transform techniques, but under 

instantaneously applied loading that was held constant with time.  

Until now, investigations into the consolidation behaviour of semi-infinite 

transversely isotropic soils are sparse in literature, especially in regard to soils 

subjected to complex time-dependent loadings. Therein, soil particles and water pore 

compressibility and loading histories that more satisfactorily represent consolidation 

problems were analyzed. [Chen (1954)] originally derived these formulations for 

constantly loaded scenarios. Several numerical examples were investigated to verify 

the proposed approach, and therein, identified the influence of material anisotropy on 

pore pressure dissipation and soil settlement. Since the development of the three-

dimensional consolidation theory by Biot in 1941, it has been used by researchers to 
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solve many consolidation problems of soils. For example, [McNamee and Gibson 

(1960)] obtained the analytical solutions for the plane strain and axi-symmetrical 

consolidation problems with a semi-infinite body. 

  [Schiffman and Funguroli (1968)] studied the consolidation of a half-space 

medium on which a uniform tangential load was applied in the cylindrical coordinate 

system.[Gibson and Booker (1974)] proposed the analytical solutions for the 

consolidation of a finite layer subjected to surface loading.[Yue and Selvadurai 

(1980)] analyzed the interaction between a circular, flat rigid indenter and a poro-

elastic half-space saturated with a compressible fluid. For multi-layered soils, 

[Vardoulakis and Harnpattanapanich (1986)] adopted a numerical method using 

displacement functions and integral transforms to analyze two-dimensional and three-

dimensional consolidation problems in the Cartesian coordinate system.[Booker and 

Small (1976)] developed a finite layer analysis technique to deal with two-

dimensional and three-dimensional consolidation problems of multilayered soils. 

[Senjuntichai and Rajapakse (1989)] solved the consolidation problems of 

multi-layered soils by an exact stiffness method in the cylindrical coordinate 

system.[Pan(1990)] employed vector functions and a propagator matrix method in the 

cylindrical and Cartesian coordinate systems to obtain Green’s functions in a multi-

layered, isotropic, and poro-elastic half space.[Wang and Fang (2001)] analyzed the 

Biot consolidation problem for multi-layered porous media by a state space method in 

the cylindrical coordinate system. More recently [Ai and Han (2003)] used a state 

space method to obtain the solution for the plane strain consolidation of multi-layered 

soils. Numerical methods, such as the finite element method and the boundary 

element method have also been used to solve these complicated consolidation 

problems. Since Terzaghi printed his consolidation theory and therefore the principle 

of effective stress, analysis work on consolidation issues has greatly inflated. 

 The conventional consolidation theories typically neglected the non-linearity 

of soil for sensible functions. Studies of non linear consolidation behaviour of 

sentimental soil started from concerning forty years past. Many efforts are created to 

get analytical solutions for various forms of one-dimensional consolidation theories. 

  [Davis and Raymond (1965)] derived associate analytical resolution for the 

opposite constant loading case supported the assumptions that the decrease 
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in porousness is proportional to the decrease in squeezability throughout the 

consolidation of a soil and therefore the distribution of initial effective pressures is 

constant with depth. With a similar assumption concerning the squeezability and 

porousness of a soil, [Xie (1965)] developed associate analytical resolution to the one 

dimensional consolidation drawback for time-dependent loading. the answer given by 

Davis and Raymond was considered a special case of it. [Poskitt (1971)] studied a lot 

of general one dimensional non linear consolidation drawback by employing a 

perturbation methodology, however no express resolution was given. For the linear 

consolidation of superimposed soils, some analytical solutions are reported. However, 

there appears to be no analytical resolution for nonlinear consolidation taking 

the superimposed characteristics of soil into thought. This could be primarily owing 

to mathematical problem. During this study, associate analytical resolution comes for 

1-Dimensional non linear consolidation of double-layered soil considering time-

dependant loading, supported a similar assumption projected by Davis and Raymond 

apart from loading condition, and everyone the analytical solutions up to now 

developed square measure summarized within the tables. The nonlinear consolidation 

behaviour of double-layered soil is additionally mentioned.  

The modelling and prediction of the mechanical behaviour of structures like 

building foundations, embankments, oil- cans, silos and ground anchors resting on a 

saturated layered soil system area unit common and essential issues in geotechnical 

engineering. Saturated soil consists of 2 phases, namely, a solid part (the soil 

skeleton) and a liquid part. These 2 phases act once the saturated soil is subjected to 

associate in nursing external load.  

[Biot (1941)] developed a theory that may justify the complicated interaction 

between the solid and also the fluid, i.e., the supposed Biot’s consolidation theory. 

This theory will accurately describe the method of soil consolidation during a three-

dimensional condition. Within the past few decades, several researchers have 

advanced the data and theory of soil consolidation. For most mechanisms planned to 

make a case for secondary effects, one would expect a lot of noticeable secondary 

result within the laboratory than within the field. Laboratory values of cv (and k) area 

unit seemingly to be too low as a result of retarding secondary effects area unit 

seemingly to be rather more vital within the laboratory than within the field because 

of the upper strain rate within the laboratory [Taylor (1942); Barden (1965); Lo et 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

21 
 

al. (1976); Poskit (1967)]. The time needed to finish the check victimisation the 

speedy consolidation methodology [Sridhar an (1999)] can be as low as 4-5 h 

compared with 1 or 2 weeks within the case of the traditional consolidation check on 

extremely clayey soils. 

Rectangular conic section methodology needs knowledge of concerning 70% 

U for decisive cv, δ100 etc. Where, cv and δ100 area unit constant of vertical 

consolidation and supreme primary settlement, severally. However, the cv values area 

unit not up to true cv due the consequences of secondary consolidation as secondary 

consolidation primarily starts at 60% U [Sridhar an et al. (1995)]. Also, it is not 

legendary to what extent cv values area unit stricken by secondary consolidation. The 

trend or rate of settlement of pressure acting on clay will be determined at any time 

while not knowing the past history of pressure increment. It will be a supply of some 

helpful data like fast analysis of consolidation characteristics within the laboratory 

and field, time-compression knowledge of the current, past and future, kind and stage 

of consolidation, emptying conditions, time of load increment etc. [Tewatia (2012)]. 

Using the speed of settlement idea [Tewatia (1998); Tewatia and Satyendra 

N. Bose (2006)], a quickest fast loading methodology is projected to guage cv 

minimizing the results of secondary consolidation that offers some estimate 

additionally that to what extent cv is plagued by secondary consolidation. There square 

measure range of fast loading ways for vertical consolidation however few exist for 

radial consolidation [Vinod et al. (2010); Tewatia et al. (2012a)]. A fast loading 

methodology is projected for radial consolidation that's abundant quicker than the 

ways offered in literature with the higher than mentioned deserves additionally. The 

projected ways will be used even once the settlement or time of load increment is not 

glorious. 

2.3 APPLICATION OF FOURIER SERIES 

Rate of Consolidation shows the erratic behaviour of the Fourier series of a 

piecewise continuously differentiable periodic function at a discontinuity [Carslaw 

(1930)]. When initial excess pore pressure distributions contain discontinuities (i.e., 

are not zero at the stratum boundaries), the n
th

 partial sum of the Fourier series 

exhibits oscillations near the discontinuity. A discontinuity of the initial excess pore 

pressure distribution exists at the base of the soil stratum. Consequently, a 
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discontinuity will exist wherever the initial excess pore pressure at a boundary is 

greater than zero, as is the case for singly drained soil strata where only one drainage 

boundary exists. Fourier Series is present in the form of oscillations at the 

discontinuity, where the series tends to overshoot/undershoot the positive corner by as 

much as 18% [Arfken (1970)]. The inclusion of more terms does not remove this 

oscillatory effect, but merely moves it closer to the point of discontinuity.  

Numerical methods, such as the finite element method were also used to solve 

complex consolidation problems. In all these studies mentioned above, however, it 

was assumed that the pore fluid is incompressible, which is only an extreme case of 

the generalized model of compressible pore fluid. Actually, absolutely saturated soil 

does not exist. There is always pore-gas phase in the liquid phase, so the pore fluid of 

liquid phase should be considered as compressible. Some researchers demonstrated 

the influence of pore fluid compressibility on the consolidation. For example, [Cheng 

and Liggett (1984)] concluded that the compressibility of pore fluid has a great 

influence on both the consolidation process and the pore pressure distribution. [Yue 

(1994)] demonstrated that the presence of a compressible pore fluid reduces the 

generation of excess pore pressure in a poroelastic sea bed layer. 

  [Senjuntichai and Rajapakse (1995) and Chen (2004)] also demonstrated 

the influence of fluid compressibility on the axisymmetric and non-axisymmetric 

consolidation of a multi-layered poro elastic medium. Biot’s three-dimensional 

consolidation problem of a multi-layered soil with compressible constituents in the 

Cartesian coordinate system is investigated by using the displacement function 

method and the transfer matrix method. [Conte (2006)] given a technique for the 

analysis of coupled consolidation in unsaturated soils because of loading below 

conditions of plane strain in addition as axial symmetry. The strategy relies on the re-

work of the governing differential equations by the Fourier transform, once the soil 

system is distorted below plane strain conditions, or Hankel rework for issues 

exhibiting axial symmetry. The impact of such transformations is to modify 

significantly the answer from a machine purpose of read.  
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CHAPTER – 3 

                                                                        NUMERICAL ANALYSIS 

 

3.1. FOURIER SERIES AND TRANSFORMATIONS 

These are the basic tool for solving ordinary differential equations (ODE) & 

partial differential equations (PDE) with periodic boundary end condition. 

Chronologically the history of Fourier series is described as follows: 

 1700 Sauveur — experiments with harmonics 

 1740 Daniel Bernoulli (St. Petersburg) — superposition of harmonics 

 1747 contention between Euler and d’Alembert 

 1807 Fourier — formula for coefficients 

 1829 Dirichlet — initial convergence proof 

 1965 Carleson — nearly everyplace pointwise convergence for square 

summable functions 

 Fourier series is very well defined as an expansion or dilation of a function or                

representation of a given oscillatory function in a form of discontinuous series. 

F (z) =  
  

 
 ∑          ∑         

 
   

 
                                          (4) 

Where coefficients a0 , an , bn are related to the periodic function f(x) by definite  

integrals 

   
 

 
∫  ( )         
  

 
                                                                          (5) 

   
 

 
∫  ( )         
  

 
                                                                                         (6) 

Where n = 0, 1, 2 

Equation 1 can be valid only when conditions imposed on f(x) such that f(x) had finite      

number of finite discontinuities & finite number of extreme values maxima & minima  
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in the interval (0,2 ) i.e. 

∑
 

 
       ∈ (    ) 

                                                                                         (7) 

Since this series is only convergent at defined conditions (and diverges at x=0) we 

take 

∑
     

 
       ∑

        

 
 
   

 
    ,                                                                          (8) 

Absolutely convergent for | |   .The birth of Fourier series can be traced back to 

the solutions of wave equation in the work of Bernoulli and the heat equation in the 

work of Fourier. Consider an elastic string of finite length ‘l’ fixed at the end points x 

= 0 and x = l. At time, say t = 0, it is distorted from the equilibrium position and 

allowed to vibrate. The problem is to find the vibrations of the string at any point x 

and any time t > 0. The vibration of the elastic string is governed by the linear sets of 

partial differential equation as shown here. 

    

   
   

   

   
                                                                                   (9) 

u(x,0)=f(x)                                                                            (10) 

 

   
 (   )   ( )                                                                     (11) 

Where c
2
 = constant, f(x) = initial position, g(x) = initial velocity. 

 

Fig 3.1:   Progression of Vibration string in Fourier series 

(Courtesy http://jowett.home.cern.ch/jowett/ComputingNotes/wave.gif) 

  

http://jowett.home.cern.ch/jowett/ComputingNotes/wave.gif
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3.2. THEORY OF CONSOLIDATION USING FOURIER SERIES 

By means of Fourier series solution of the differential equation of 

consolidation is obtained: The solution must satisfy the following hydraulic boundary 

equations: 

At t=0, at any distance z (constant) 

At t= , at any distance z and 

At t=t, at z=0, and at z=H                                                                                          (12) 

    If ū is assumed to be a product of some function of z and t, it may be represented by 

the following expression: 

      ū     ( )   ( )                                                                                                       (13) 

  Equation of consolidation is given by: 

 S
 ū

  
                                                                                                                       (14) 

     And above equation can be written as 

     ( ) 
  

  
[  ( )]      ( ) 

  

   
[  ( )]                                                                        (15) 

or    

  

      
[  ( )]

  ( )
 

 

  
[  ( )]

    ( )
                                                                                                 (16) 

In above equation, L.H.S does not contain t and hence it is taken as constant if t is 

considered variable. Similarly, the R.H.S is constant when z is considered variable. 

Hence each term must be equal to a constant (-A
2
) and hence represented by the 

following relations:  

  

    
[  ( )]       ( )                                                                                   (17) 

            
  

    
[  ( )]           ( )                                                                                         (18) 

Equation (17) and (18) can be satisfied respectively by the following: 
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  ( )                                                                                                     (19) 

  ( )     
                                                                                   (20) 

Where,        = arbitrary constants, e = base of hyperbolic = 2.718 

Substituting the above values, Eqn. (13) becomes:   

  (               )  
                                                          (21) 

The solution of Eqn. (21) must satisfy the boundary conditions stated in Eqn. (12). 

Thus at time t when z = 0, ū = 0,     .Hence Eqn. (21) reduces to: 

ū =   (     )  
                                                                                             (22) 

Also, at time t when z = H, ū = 0 =   (     )  
                                                   (23) 

Equation (13) is satisfied when AH = n  where n is any integer. 

Hence ū =   (   
   

 
)  

 
     

                                                                                (24) 

The above expression may be written in the following form: 

ū=  (   
  

 
)  

 
  

       +  (   
   

 
)  

 
   

        +………..+  (   
   

 
)   

     

       +……

Or ū = ∑   (   
   

 
)  

     

          
                                           (25) 

When t=0,   
     

        = 1 and ū =  ̅   

Thus,   ̅  ∑       (
   

 
)   

                                                                   (26) 

We can determine    for the above Fourier series by the following mathematical 

relations: 

∫ (          )   
 

 
                                                            (27) 

∫ (     )     
 

 

 

 
                                                                (28) 
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Where, m n, x  
  

 
, dx 

 

 
   , multiplying both sides of equation (26) by    

   

 
 

and integrating between the limits 0 to H: 

∫ (   
   

 
   

   

 
)      

 

 
                                                     (29) 

∫ (   
   

 
)
 
    

 

 

 

 
                                                     (30) 

∫ ( ̅     
   

 
)     ∑    ∫ (   

   

 
   

   

 
)       ∫ (   

   

 
) 

 

 

 

 
   
      

 

 
  (31) 

On multiplication by     
   

 
 the R.H.S of Eqn. (26) splits in to two parts:  

 (i) – n-term which is of the form of equation (30). 

(ii) – Series of all terms except n-term of the form (29), and vanishes. 

Hence ∫ ( ̅     
   

 
)        

 

 

 

 
                                                    (32) 

or    
 

 
∫ ( ̅     

   

 
)  

 

 
                                        (33) 

Substituting this in equation (25), we get 

ū  ∑ [
 

 
∫ ( ̅     

   

 
)    

 

 
]  (   

   

 
)     

    
 
     

                                  (34) 

or ū = ∑
   

  
(       ) (   

   

 
)   

 
   

 

          
                                         (35) 

When n = even, (1-     ) = 0, n = odd 

Substituting n = 2N+1, N = integer, above equation becomes: 

ū = 
 

 
    ∑

 

    
[   

(    )  

 
]   

 
     

          
                                           (36) 

Above equation represents variation of excess hydrostatic pressure ū with depth z at 

any time in terms of applied consolidating pressure   . 

Now the consolidating pressure,         
                                    (37) 

 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

28 
 

Where    = effective pressure increment at time t,          

Thus       (   ū)     

Integrating between the limits 0 to H, the settlement   of the fully thickness of the 

clay at times t is given by:     [     ∫ ū   
 

 
] 

Substituting ū from equation (36) and integrating, 

          [  
 

   ∑
 

(    ) 
  

 
(    )    

          
   ]                          (38)   

At t =  , when process of consolidation is complete, the ultimate or final settlement 

   is given by:                                  (39)            

The ratio of   to     expressed as a percentage, is termed the “Degree of 

Consolidation” U;   U (%) = 
 

  
                                                             (40) 

U (%) = [  
 

   ∑
 

(    ) 
  

 
(    )    

          
   ]                               (41) 

A dimensionless parameter is being introduced known as time factor    defined by    

following equation:      
    

  
                                                                                   (42)    

Where, d=drainage path for present case of double drainage, d = H/2 Eqn. (40) may 

be written as: 

U(%)=[  
 

  
∑

 

(    ) 
   

(    )    

 
      

   ]                                                       (43) 

Or U (%) = f (  )                               (44) 

 3.3. LAURENT SERIES AND TRANSFORMATIONS 

The theorem says that if we have a function f that is holomorphic on an 

annulus then it can be expressed as a Laurent series. A holomorphic function f may be 

expressed as a Taylor series i.e. if it is differentiable on a domain D and 0z D  &  
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we can write it as 

f(z)=∑    (    )
  

                                     (45) 

for appropriate constants an, and the above equation is valid for |z − z0| < R, for some 

R > 0. 

The idea of Laurant series is to generalise to allow negative powers of (z −z0). 

And hence turns out to be a very crude tool. 

A Laurent series is a series that expand as   ∑   
  
     (    )

                            (46) 

As (13) is a two times infinite sum, so we need to take care as to what it means. We 

define equation (13) to   mean 

∑    (    )
   

    ∑   
 
    (    )

  ∑ +∑
+
                                              (47) 

In the above equation both ∑
+
 &  ∑

- 
 are going to be converged. Now ∑

+ 
converges

0 2( )z z R    for some 2 0R  ,where R2 = Radius of convergence of ∑
+
 & ∑

-
 has 

radius of convergence 
1

1 0R   i.e. ∑
-
 converges when 1 1

0 1( )z z R    or in other 

words ∑
-
 converges when 0 1z z R  . 

Combining these, we see that if 1 20 R R    then, equation (46) converges in the 

annulus. Suppose that f is holomorphic in the annulus {z ∈ C | R1 < |z − z0| < R2}, 

where 0 ≤ R1 < R2 ≤  . Then we can write f as a Laurent series: for R1 < |z − z0| < 

R2. 

We have f(z) = ∑    
 
   (    )

    +∑   
 
   (    )

                          (48) 

Equation (48) is known as Laurent series of f (z) about z0 or the Laurent Expansion of 

f(z). 

Where   ∑   
 
   (    )

  is the principle part of Laurent series. 
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Fig 3.2: Domain of Laurent series 

(Courtesy: Math 20101 complex analysis, Zhu University of Technology (pp- 57, 

58)) 

 

3.4 THEORY OF CONSOLIDATION USING LAURENT SERIES 

With the help of Laurent series, theory of consolidation & its solution can be 

given as 

The solution must satisfy the following hydraulic boundary equations: 

At t=0, at any distance z (constant) 

At t= , at any distance z and 

At t=t, at z=0, and at z=2H, 

If ū is assumed to be a product of some function of z and t, it may be represented by 

the following expression:        ( )   ( )                 (49) 

Where,   ( )  
 

   
 ∑

(    )
   (  )    

(     )   
 
                                                                  (50) 

   Equation of consolidation is given by: 

   
  

  
   

   

   
                                                                                                      (51) 

 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

31 
 

And above equation can be written as 

  ( ) 
  

  
[  ( )]      ( ) 

  

   
[  ( )]                                                             (52) 

or  

  

      
[  ( )]

  ( )
 

 

  
[  ( )]

    ( )
                                                               (53) 

In above equation, L.H.S does not contain t and hence it is taken as constant if t is 

considered variable. Similarly, the R.H.S is constant when z is considered variable. 

Hence each term must be equal to a constant (-A
2
) and hence represented by the 

following r: 

  

    
[  ( )]       ( )                                                                        (54) 

              
  

    
[  ( )]           ( )                                                                           (55) 

Equation (17) and (18) can be satisfied respectively by the following:  

  ( )                                                                               (56) 

  ( )     
                                                                                (57) 

Where    ,    ,    = arbitrary constants; e = base of hyperbolic = 2.718 1( )f z  represents 

function of ‘z’ i.e. depth with respect to pore pressure (‘u’) lies within domain (0,2 ), 

such that with time it varies linearly. Equation (49) is solved by expansion through 

‘Laurent series’ & it can be split in to two components. 

f(z) =  
 

   
 C1

 (  )   

    
 - 

 

   
 C2

 (  )    

    
                                                                (58) 

Where C1 & C2 = Contour constants are determined by applying boundary conditions, 

in such a way that C2 is transverse in the positive clockwise direction. Noting that for 

C1, 0 0'z z z z   while  for  C2 , 0 0'z z z z   .Thus, 

  ( )  
 

   
∑ (    )

  
    C1

 (  )   

(     )   
 

 

   
∑ (    )

   
  
(    

   

  )  ( 
 )                                                                                                                                (59) 
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Let R1, R1 = 
 

   
∑ (    )

  
    

  

 (  )   

(     )   
                                        (60) 

And is determined by Taylor expansion and convergent for 0 0 1'z z z z r     for all 

‘z’interiortolargercircle& 

R2=
 

   
 ∑ (    )

   
  
(     )  ( 

 )                                                                 (  ) 
    

is convergent for  0 0 2'z z z z r      exterior to smaller parabolic domain 

C2 → counter clockwise. Now replace ‘n’ by ‘n
l
’ in S2 in Eqn. (55) & on adding Eqn. 

(22) & Eqn.(23). We get    ∑      (
   

 
)       (

   

 
)
 

 
                                       (62) 

or     ∑      (
   

 
) 

                                                                 (63) 

Sine function of fourier series can be converted easily in to Laurent series function by 

expressing it in the form of     ∑   (
 
  
  
   

   
  
 

 
)  

                       (64)                

or     
 

 
[∑     

  
  

  ∑     
  

  

 
   

  
 
 ]                                                                (65) 

Now let us assume ‘z’ =      and replace the value of z above with the same we get, 

      ( 
 

 )
 

                                                                                                           (66) 

Where    is complex consolidation constant.Now from Laurent series, At time‘t’, 

when z = 0; ū = 0.Limit changes from -       and from       

    f (z) = ∑     (    )
   

                                                                               (67) 

Where    
 

   
 
 

 (  )   

(    )   
                                                                                      (68) 

Therefore, ū = ∑     (    )
     

        
                                                               (69) 

U (%) = ∑ (      )
     

        
                                                              (70) 
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U (%) = 
  

   
  

  

( 
 

 )
                                                                                                   (71) 

U (%) = ∑ (
 

   
)     

        
                                                                                      (72) 

 ū=     
        -  ( .    

      ) +   ( 
     

      ) +….+ ∑ {(  )   
       

      }  (73) 

Where    
 

   
 

     

( 
 

 )
                                                (74) 

Hence, U (%) = 1- 
 

  
∑ {

 

(    ) 
   (    )

         
    }                 (75)                       

And U (%) = f (Tv

Figure below shows the general consolidation pattern using Laurent series. 

Dissipation of pore water pressure from thin clay laminae on application of loads 

show similar behaviour as shown following elliptical path 

 

 

 

 

 

 

Fig 3.3:  General consolidation pattern using Laurent series. 

Fig 3.4 shows a thin strip of clay lamina, and  progressive loads were applied 

as a result of which dissipation of pore water pressure started, and it took place at first 

from positive terrain only, as a result up to thickness ‘t’ at the upper half (positive) 

domain of lamina, consolidation took place completely and soil get compacted. In the 

figure, it is clear that consolidation of the part of the  sample that lies just beneath the 

load that is up to positive domain of Laurent series, is completed and nature of 

consolidation curve after 99% degree of  consolidation converges into elliptical path 

from parabolic path at starting. Now in the figure shown below, Consolidation is 

    Pore Pressure Distribution  

     

  Consolidated soil layer  

 

 

 

 

 

Drainage Path 
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going to be achieved completely in positive (real) and negative (imaginary) terrain / 

roots of Laurent series. And rate of consolidation follows same pattern in both domain 

that is completely elliptical and pattern of pore water dissipation in both the regions 

are mirror image of each other that is zero at corners and maximum at centre. Finally 

the pore water dissipation of thin clay lamina is completed and total consolidation can 

be achieved including primary and secondary consolidation from initial depth z0 to z 

of thickness ‘t’ with two circle of convergence of radius from R1 to R2 with two sets 

of contour constants C1 and C2. 

 

 

 

 

 

 

 

 

 

 

Fig 3.4: Total primary & secondary consolidation achieved 

(z’ = depth of first layer , z = depth of second layer) 
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CHAPTER – 4 

                                                                     EXPERIMENTAL WORKS 

 

4.1 INTRODUCTION 

The current practice in some places is to consolidate the multilayered soil 

found in different areas. In the present study an experimental work was conducted to 

evaluate the consolidation characteristics and other parameters. The index as well as 

engineering properties have been evaluated. Details of material used, processing test 

procedure adopted are described in this chapter. 

The experiments which were performed for 2 different layers of soil i.e. for clay & 

sand. 

Characterization of clay:- 

1. Moisture Content determination. 

2. Density bottle test to determine specific gravity. 

3. Sieve analysis to find grain size distribution. 

4. Liquid limit & Plastic limit determination. 

5. Ash Content & loss of ignition test. 

6. Swelling Index 

Characterization of sand:- 

1. Density bottle test to determine specific gravity. 

2. Sieve analysis to find grain size distribution. 

3. To determine different properties of Compaction. 

4. Determination of coefficient of permeability. 
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4.2 EXPERIMENTAL ANALYSIS 

4.2.1 For Clay Layer: - 

4.2.1.1   Moisture content determination: 

Sample is being taken in three different crucibles of about 10 gms. And kept in 

the oven for about 24 hours at 55◦C.After 24 Hours weight is again taken through 

weighing machine and moisture content is determined. 

Table 4.1: Moisture Content Determination 

SAMPLE NAME 

INITIAL 

WEIGHT 

(gm) 

DRIED 

WEIGHT 

(gm) 

WATER 

CONTENT 

(%) 

A 10 9.3 7 

B 10 9.5 5 

C 10 9.6 4 

Average moisture content is 5.33% 

4.2.1.2 Specific gravity by density bottle IS: 2720 (Part III) 

Specific gravity is the ratio of the mass of unit volume of soil at a stated 

temperature to the mass of the same volume of gas-free distilled water at a stated 

temperature, generally taken at 4 degree centigrade. 

Test procedure:  

Determine and record the weight of the empty clean and dry Density bottle, 

W1. Place about 150-200 gm of a dry sample (passed through the sieve No. 10) in the    

Density bottle .Determine and record the weight of the Density bottle containing the 

dry sample, W2. Add distilled water to fill about half to three-fourth of the Density 

bottle. Soak the sample for 10 minutes. Stir the mixture rigorously with a glass rod to 

ensure removal of all the entrapped air. Fill the Density bottle with distilled (water to 

the mark),clean the exterior surface of the Density bottle with a clean dry cloth. 

Determine the weight of the Density bottle and contents, W3. Empty the Density 

bottle and clean it. Then fill it with distilled water only (to the mark). Clean the 
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exterior surface of the Density bottle with a clean, dry cloth. Determine the weight of 

the Density bottle   and distilled water, W4. Empty the Density bottle and clean it. 

The Specific Gravity of Clay Matter was found to be 2.77. 

4.2.1.3 Particle size distribution IS: 2720 (Part IV) 

There are two types of grain size analysis, first is sieve analysis and second is 

hydrometer analysis. The grain size analysis is widely used in classification of 

soils.The particle size distribution (PSD) of a powder, or granular material, or 

particles dispersed in fluid, is a list of values or a mathematical function that defines 

the relative amounts of particles present, sorted according to size. PSD is also known 

as grain size distribution. Particle Size: A better indication of the fineness is to 

determine the particle size distribution. For example, one can determine the mass 

percentage below 10 um or determine the mean particle diameter. The particle size of 

organic matter varies from below 75 um to 300 um or more. Thus a clay content 

might have the following distribution (on a mass basis): 0.7-0.8 % below 75 um, 0.5 

% finer than 150 um, 35-40 %  above 300 um and 60-65 %  above 600 um. 

 The percentage of sample retained on each sieve shall be calculated on the 

basis of total weight of sample retained in sieve. 

 Cumulative percentage of soil retained on successive sieve is found. 

4.2.1.4 Liquid limit and plastic limit determination 

4.2.1.4 (a) Liquid limit determination 

Theoretical background: 

Liquid limit is the minimum water content at which the soil is still in liquid 

state but has a small shearing strength against flowing. In other words it is the water 

content at which soil suspension gains an infinitesimal strength from zero strength. In 

the standard liquid limit apparatus from practical purposes, it is the minimum water 

content at which part of soil cut by groove  of standard dimensions, will flow together 

for as a distance of 12 mm (1/2 inch) under an impact of 12  blows. 
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Calculations:  

Plot the flow curve on a semi log graph water content as the ordinate and no. 

of blows as abscissa. The water content corresponding to 25 blows is taken as the 

liquid limit of the soil. 

Results:  

Liquid limit 
W

L (from graph)   
     

     
  
  

 

Flow index or slope of the curve, If (from graph) 

W1 = water content corresponding to blow n1 

W2 = water content corresponding to blows n2 

 

Fig 4.1.: Liquid limit determination 

Liquid Limit of clay layer = 247.36%. 

4.2.1.4 (b) Plastic  limit determination 

Plastic limit is the minimum water content at which a soil just deigns to 

crumble when rolled into a thread of 3 mm in diameter. This water content in is 

between the plastic and semi-soil states of soil. 
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Thus Plastic Limit of given Clay layer is 78.6%     

4.2.1.5 Swelling index of samples 

IS: 2720 {Part XL (40)} 1977. 

Free Swell Index is the increase in volume of a granular material, without any 

external constraints, on submergence in water. 

Calculations 

Free Swell Index, (%) = (Vd – Vk)/ Vk x 100% 

 

Vd =  Volume of the specimen read from the graduated cylinder containing 

Distilled water. 

Vk =  Volume of the specimen read from the graduated cylinder containing 

Kerosene 

Free Swell Index is calculated as 67.4%. 

4.2.2 Characterization of Sand Layer: 

4.2.2.1 Specific gravity by density bottle IS: 2720 (Part III) 

Specific gravity is the ratio of the mass of unit volume of soil at a stated 

temperature to the mass of the same volume of gas-free distilled water at a stated 

temperature, generally taken at 4 degree centigrade. 

.And the specific gravity of used sand sample is 2.65. 

4.2.2.2 Sieve Analysis to find grain size distribution 
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Fig 4.2: Grain size analysis of sand layer 

Following terms were determined with the help of the curve in Fig 4.3 of sieving like 

(a) . Effective Diameter or Effective Size D10 = 0.14 

(b) . D30 & D60 , D30 = 0.19 , D60 = 0.26 

(c) . Cu & Cc , Cu = (D60/D10) = 1.857 , Cc = [(D30)
2
/(D60) X (D10)] = 0.992 

(d) . Nomenclature of Sand sample is silty sand.  

4.2.2.3 Determination of compaction properties of sand layer by Standard  

proctor test IS 2720(VII):1980 

The standard proctor test was invented by R.R.Proctor (1933) for the 

construction of earth fill dams in the state of California.The bulk density and the 

corresponding dry density for the compacted soil are calculated from this.The test 

is repeated with increasing water contents, and the corresponding dry density 

obtained is therefore determined. A compaction curve is plotted between the water 

content as abscissa and the corresponding dry densities as ordinates. The dry 

density goes on increasing till the maximum density is reached. This density is 

called maximum dry density (MDD) and the corresponding moisture content is 

called optimum moisture content (OMC). 

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

%
 F

in
er

 

Particle Size (mm) 

Grain Size



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

41 
 

 

 Following terms were determined with the help of the curve in Fig 4.4 of compaction 

(a) .Maximum Dry Density of given sand layer is 1.89 g/cc. 

(b) .Optimum Moisture Content (OMC) of sand layer is 13.5% 

(c) .Void Ratio of Compacted sand layer = e = (G.ᵞw/ᵞd) -1 =0.508 = 51%  

 

 

Fig 4.3 Idealised Grain distribution of clay. 

4.2.2.4 Determination of coefficient of permeability 

Theoretical Background: 

The property of material which permits fluids to percolate through its voids is called 

permeability. According to Darcy's law in the laminar range the velocity of 

percolation is proportional to the hydraulic gradient. V  i 

V= Ki 

AV =Kai 

AV= flow rate = Q= Kai 
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K =  
QL

hA  

By Constant Head permeability method, Coefficient of permeability ‘k’ for this silty 

sand is determined and is about 4.26X10
-5

 cm/sec.  

4.3 CONSOLIDATION BY ODEOMETER  

Consolidation is determined by using Odeometer after preparing the sample.      

Specification of apparatus: 

i. Consolidometer consisting essentially; 

a. A ring of diameter = 60mm and height = 20mm 

b. Two porous plates or stones of silicon carbide, aluminium oxide or 

porous metal. 

c. Guide ring. 

d. Outer ring. 

e. Water jacket with base. 

f. Pressure pad. 

g. Rubber basket. 

i. Loading device consisting of frame, lever system, loading yoke dial gauge 

fixing device and weights. 

ii. Dial gauge to read to an accuracy of 0.002mm. . 

iii. Stopwatch to read seconds. 

iv. Sample extractor. 

v. Miscellaneous items like balance, soil trimming tools, spatula, filter papers, 

sample containers. 
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Procedure 

 Sample is prepared by using thin clay laminae in mould and then it is used 

in consolidation. 

 Saturate two porous stones either by boiling in distilled water about 15 

minute or by keeping them submerged in the distilled water for 4 to 8 hrs. 

Wipe away excess water. Fittings of the consolidometer which is to be 

enclosed shall be moistened. 

 Assemble the consolidometer, with the soil specimen and porous stones at 

top and bottom of specimen, providing a filter paper between the soil 

specimen and porous stone. Position the pressure pad centrally on the top 

porous stone. 

 Mount the mould assembly on the loading frame, and center it such that 

the load applied is axial. 

 Position the dial gauge to measure the vertical compression of the 

specimen. The dial gauge holder should be set so that the dial gauge is in 

the begging of its releases run, allowing sufficient margin for the swelling 

of the soil, if any. 

 Connect the mould assembly to the water reservoir and the sample is 

allowed to saturate. The level of the water in the reservoir should be at 

about the same level as the soil specimen. 

 Apply an initial load to the assembly. The magnitude of this load should be 

chosen by trial, such that there is no swelling. It should be not less than 50 

g/cm2 (5 kN/m2) for ordinary soils & 25 g/cm2 (2.5 kN/m2) for very soft 

soils. The load should be allowed to stand until there is no change in dial 

gauge readings for two consecutive hours or for a maximum of 24 hours. 

 Note the final dial reading under the initial load. Apply first load of 

intensity 0.1 kg/cm2 (10kN/m2) start the stop watch simultaneously. 

Record the dial gauge readings at various time intervals (and fill in the 
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table). The dial gauge readings are taken until 90% consolidation is 

reached. Primary consolidation is gradually reached within 24 hrs. 

 At the end of the period, specified above take the dial reading and time 

reading. Double the load intensity and take the dial readings at various 

time intervals. Repeat this procedure fir successive load increments. 

 The usual loading intensity are as follows: 0.1, 0.2, 0.5, 1, 2, 4 and 8 

kg/cm2. 

 After the last loading is completed, reduce the load to half (1/2) of the 

value of the last load and allow it to stand for 24 hrs. Reduce the load 

further in steps of 1/4th the previous intensity till an intensity of 0.1 

kg/cm2 is reached. Take the final reading of the dial gauge. 

 Quickly dismantle the specimen assembly and remove the excess water on 

the soil specimen in oven, note the dry weight of it. 

After getting the required data e-log ρ curve for each set of three samples is 

plotted as follows: 

 

Fig 4.4:  e-log ρ curve 
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  Compression index Cc can now be calculated from the above graph  

             for all the three sets of samples. Thus, Cc   

(a).  For pure clay of thickness 2cm, 
  

(     )
 = 1.0 is 0.448. 

(b). For 1.5 cm clay & 0.5 cm sand layer ,   (
  

(     )
)  =  0.75 is 0.365.  

            (c). 1cm thick clay layer & 1 cm thick sand layer. (
  

     
) = 0.5 is 0.205. 

Result of Consolidation Test: 

(a) . For pure clay of thickness 2cm, 
  

(     )
 = 1.0 

 

Fig 4.5: Rate of consolidation for S1.00 

 

Squareroot of time fitting method (√Tv & U) is calculated from the equation. 

 Coefficient of Consolidation Cv =2.261 X 10
-5

 cm
2
/sec. 

 Compression Index:  Cc =0.448. 
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 Coefficient of compressibility: av=5.97 x 10
-4

m
2
/KN 

 Coefficient of Volume Compressibility = 4.1209x10
-4

m
2
/KN 

After taking the layer of sand and clay in consecutive layers of varrying thickness 

such that thickness of clay layer decreases & we study the behaviour of degree of 

consoliation and speed of consolidation of the given soil strata. 

(b)  - For 1.5 cm clay & 0.5 cm sand layer ,   (
  

(     )
)  =  0.75 

 

Fig 4.6: Rate of consolidation for S0.75 

 

Squareroot of time fitting method (√Tv & U) is calculated from the equation. 

 Coefficient of Consolidation Cv =2.61 X 10
-5

 cm
2
/sec. 

 Compression Index:  Cc =0.365. 

 Coefficient of compressibility: av=4.677 x 10
-4

m
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/KN 

 Coefficient of Volume Compressibility = 3.1204x10
-4

m
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After taking the layer of sand and clay in consecutive layers of varrying 

thickness such that thickness of clay layer decreases & in order to study the 

behaviour of degree of consoliation and speed of consolidation of the given soil 

strata.  Now increasing the thickness of  clay layer i.e 

(b) . 1cm thick clay layer & 1 cm thick sand layer. (
  

     
) = 0.5 

 

                                                

Fig 4.7: Rate of consolidation for S0.5 

 

Squareroot of time fitting method (√Tv & U) is calculated from the equation.  

 Coefficient of Consolidation Cv =4.205 X 10
-5

 cm
2
/sec. 

 Compression Index:  Cc =0.205.  

 Coefficient of compressibility: av=3.329 x 10
-4

m
2
/KN 

 Coefficient of Volume Compressibility = 2.0419x10
-4

m
2
/KN 
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Table 4.2: Test programme and composition of clay-sand layers used in 

oedometer test 

Nomenclature No. of 

samples 

Thickness of clay 

layer, tc (mm) 

Thickness of sand 

layer, ts (mm) 
   

  

(     )
   

S1.00 3 20 0 1 

S0.75 3 15 5 0.75 

S0.50 3 10 10 0.5 

 

 

Table 4.3: Results of consolidation test on varied composition 

Nomenclature    Cv (mm
2
s

-1
) Cc av (m

2
kN

-1
) mv (m

2
kN

-1
) 

S1.00 1 2.261 X 10
-3 0.448 5.97 x 10

-4 4.1209x10
-4 

S0.75 0.75 3.305X10
-3 

0.365 4.67x10
-4 

3.1204x10
-4 

S0.50 0.5 4.205 X 10
-3 0.205 3.329 x 10

-4 2.0419x10
-4 

 

 

 

Fig 4.8: Parts of Consolidometer, loose 
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Fig 4.9: Parts of Consolidometer assembled 

 

Fig 4.10: Consolidation test apparatus. 
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CHAPTER-5 

                                                               RESULTS AND VALIDATION  

 

5.1 RESULTS OF  NUMERICAL TECHIQUE  

With the help of Laurent series one can get faster rate of dissipation of pore 

water pressure from thin clay laminae,and about 99% of total consolidation is 

achieved unlike to 90% of consolidation from terzaghi analysis using fourier 

series.Different sets of formulation were obtained with constant boundary conditions 

as taken by Tezaghi using Fourier series,but in results of both a clear variation is 

visible, and it is clear that rate of dissipation of pore pressure in thin clay laminae 

achieved by laurent series occurs in faster rate as compared to fourier series.Nature of 

curve obtained from Fourier series is logarithmic in nature while that obtained from 

Laurant series is exponential series ofhigher order.   

5.1.1 Theoritical Comparison of 2 Series 

Table 5.1:  Comparisons of two models (Theoretically) 

S.No Fourier Series Laurent Series 

(a) Series not approaches to completeness. Series approaches to completeness. 

(b) Series varies with in the domain 

(0,2 ). 

Series varies with in the domain        

(- ,+ ). 

(c) Basic equation of Fourier series 

f(z) = 
  

 
 ∑          

 
   

∑         
 
    

Where       
 

 
∫  ( )         
  

 
 

   
 

 
∫  ( )         

  

 

 

Basic equation of Laurent series 

were in the form of     

 f(z) = f(z) =∑    (    )
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S.No Fourier Series Laurent Series 

(d) Fourier Series can handle 

discontinuities between the limits of 

the function. 

Laurent Series cannot 

handle discontinuities 

between the limits of the 

function 

(e)  Application Of Series : 

 Representation of High 

frequency square & sawtooth 

wave. 

 Full – wave rectifier 

 Degree of consolidation 

 Thermo elastic problems 

Application Of Series : 

 Representation of hydel 

waves with Bernaulli 

equation 

 Representation of Infinite 

series 

 Degree of consolidation 

 

5.1.2  Computation of Degree of Consolidation Using Laurent Series 

Degree of consolidation is determined with the help of both fourier and laurent 

series,as from different theories it is clear that Terzaghi had used only real roots that is 

positive roots of the initial pore water pressure and ignore all the negative roots as a 

result, results of the analysis is not perfectly true.While Laurent series incorporates 

both positive as well as negative root resembling contractive and dilative behaviour of 

thin clay laminae under application of loads. 

Different mathematical relations so obtained after determining rate of consolidation 

using laurent series were: as degree of consolidation obtained using Eqn. (75). 

U (%) = 1- 
 

  
∑ {

 

(    ) 
   (    )

         
    }      

 

From the above formula, rate of consolidation is computed at different degrees 

using curve fitting method and following results were tabulated. 
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Table 5.2: Relationship for time factor using real roots 

U Fourier transform Terzaghi analysis 

~ 0.53  

 
    

 

 
    

>0.53            {   (   )   }            {   (   )   } 

Terzaghi had used Fourier series with real roots and hence both of them are same. 

 

Table 5.3: Relationship for time factor using real and imaginary roots 

U Fourier transform Laurent Transform 

~ 0.10  

 
    

 

  
   

0.1 to 0.3  

 
   

 

 
   

0.3 to 0.9  

 
   Stirling's Formula

* 

 
*
Tv =   

 

(   ) 
 √   

  
 

     (  
 

  
 )  [Afrken & Weber (1970)] 

 

Stirling’s formula Stirling’s formula was at first invented by Abraham D. E.  Moivre 

and printed in “Miscellanea Analytica” in 1730. It had been later refined, however 

within the same year by James Stirling in “Method us Differentials” beside alternative 

properties, it gives fabulous results. For example, stirling computes the area under the 

bell shaped curve. For computation of ln (z) for very large z (statistical mechanics) 

and for numerical computations at non integral values of z, a series enlargement of 

ln(z) in negative powers of z develops increased interest amongst researchers. 

Perhaps the foremost elegant manner of explanation such associate in nursing 

enlargement is by technique of steepest descents. The top of formula has a beginning 

with a numerical integration formula, and doesn't need information of contour 

integration and is especially direct. And thus once application of Laurent 

transform, so as to work out degree of consolidation of extremely merging series 

Stirling formula owe to be most fitted computation for curve fitting and thus we tend 

to used it. 

As in present context, after the application of Laurent series for determining 

degree and rate of consolidation curve fitting is utmost important in order to 

determine different ranges and domains at which particular degree of consolidation 

variates with space and time. Stirling formula is the most significant and nearest 
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similar curve fitting computation that can be used here.The basic formula of Stirling 

formula. If ‘S’ varies from 1 to 10, then t = value of convergence. 

       Thus t = 
 

(   ) 
 √   

  
 

     (  
 

  
 ) is computed. 

 

5.1.3  Graphical Comparison of rate of consolidation using different series  

In terms of rate of consolidation, comparison is made between two series 

explaining variation of ‘degree of consolidation’ with ‘time factor of given soil strata. 

Variation thus shows that:      

   

Table 5.4: Variation of Degree of Consolidation (U) with Time Factor (Tv) using 

different transforms. 

Tv 
U by Laurent 

series 

U by Fourier series with 

real roots 

U by Fourier 

series with both 

roots 

0.003 0.09923 0.0992370000 0.099235 

0.004 0.099254 0.0992324500 0.099342 

0.005 0.099452 0.0994410000 0.099448 

0.006 0.101851 0.1016995000 0.1018 

0.007 0.13289 0.1054200000 0.10625 

0.008 0.157223 0.1068900000 0.11079 

0.009 0.180778 0.1099675000 0.12078 

0.01 0.204776 0.1118800000 0.13132 

0.02 0.318301 0.1586430000 0.19732 

0.03 0.390056 0.1945254490 0.25264 

0.04 0.450452 0.2247700000 0.2928 

0.05 0.503332 0.2514265430 0.33328 

0.06 0.550492 0.2755208240 0.371968 

0.07 0.592914 0.2976777920 0.416574 

0.08 0.631226 0.3183009330 0.44976 

0.09 0.665887 0.3376703630 0.476352 

0.1 0.697273 0.3559900000 0.509604 

0.2 0.887063 0.5033320000 0.714824 
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Tv 

 

U by Laurent series 

 

U by Fourier series 

with real roots 

 

U by Fourier series 

with both roots 

0.3 0.957865 0.6125520000 0.798567 

0.4 0.98428 0.6972720000 0.857112 

0.5 0.994135 0.7634150000 0.899612 

0.6 0.997812 0.8151010000 0.935986 

0.7 0.999184 0.8554940000 0.962278 

0.8 0.999695 0.8870630000 0.981345 

0.9 0.999886 0.9117350000 0.98932 

1 0.999958 0.9310180000 0.995346 

2 0.999999 0.9941350000 0.999659 

5 1 0.9999963960 0.999999 

10 1 1.0000000000 1 

 

 

Fig 5.1: Theoretical rate of consolidation 
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5.2 Experimental results 

Consider consolidation test using 60 mm diameter and 20mm thick sample. 

We used three sets of arrangements of internally varying thickness of a clay and sand 

in odeometer test. The clay and sand are tested for determination of their index 

properties. The rate of consolidation is determined with the root of  time fitting 

method. 

The clay sample is prepared in to a cylindrical saturation bracket of a diameter 

of 200mm and thickness of 100 mm in a water bath. A clay lamina is cut to the size of 

by pressing the odeometer ring in to it up a desired thickness consolidation. The 

saturated porous stones are processed by boiling in distilled water about 15 minute 

and by keeping them submerged in the distilled water for 4 to 8 hours. The fittings to 

be enclosed are moistened. The soil specimen in the ring is placed with a filter paper 

separating soil specimen and porous stone and porous stones at top and bottom of 

specimen. 

 The position of the pressure pad and the loading frame is kept central to the 

assembly so that the load applied is axial. After the last load increment is completed it 

is reduced to the half of the value and allowed to stand for 24 hours. Reduce the load 

further in steps of the previous intensity till an intensity of 10 kPa is reached. After 

taking the final reading of the dial gauge, reduce the load to the initial value keeping it 

for 24 hours and noted the final readings of the dial gauge. Quickly dismantle the 

specimen assembly and remove the excess water on the soil specimen in oven, note 

the dry weight of it.                              

                                                                           

Table 5.5: Test programme and composition of clay-sand layers used in 

oedometer test 

Nomenclature No. of 

samples 

Thickness of clay 

layer, tc (mm) 

Thickness of sand 

layer, ts (mm) 

  

 
  

(     )
 

S1.00 3 20 0 1 

S0.75 3 15 5 0.75 

S0.50 3 10 10 0.5 

 

Results of test performed for classification of clayey soil indicate that it has 

specific gravity 2.77, moisture content 5.5%, liquid limit 247.36%, plastic limit 78.6% 

and swelling index  67.4%. The sand has specific gravity of 2.65, grain size 
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distribution (D10 = 0.14, D30 = 0.19, D60= 0.26, Cu = 1.857, Cc = 0.992) and void ratio 

of 0.51. The coefficient of permeability of sand by falling head method is found to be 

4.26      mms
-1

. 

                                                                                                                                                                     

Table 5.6: Results of consolidation test on varied composition  

 

Also from the test performed in fixed type odeometre under numerous loads 

for determining the rate of consolidation with different layers of varrying thickness of 

clay & sand strata , it is clear that ‘rate of consolidation’ Cv , increases with the 

increasing thickness of sand layer which is to be sandwiched beneath clay layer and a 

clear comparison is made between all the three sets of sample for say 2 loads.It can be 

clearly seen from graph. 

1. For σ = 100 Kpa, 

 

Fig 5.2: Comparison of results 
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2. For σ = 2000 Kpa 

 

Fig 5.3: Comparison of results 

Thus from above curve it is clear that as the thickness of clay layer is reduced 

by increasing the thickness of  layer of sand rate of consolidation increases sharply. 

1. Rate of Consolidation U90(%) is going to be increased. 

2. Coefficient of cosolidation Cv obtained increases with increase in the 

applied pressure. 

3. t90  i.e. time required to achieve 90% consolidation we get 

1. For σ = 10Kpa 

                 Table 5.7: Determination  of  Consolidation  Properties 

tc/(tc+ts) √t 90 (min.) t 90(Hrs.) Cv (cm
2
/sec) 

1 22.5 
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27minutes 
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tc/(tc+ts) √t 90 (min.) t 90(Hrs.) Cv (cm
2
/sec) 

0.75 21 
7hrs 

21minutes 
2.6 X 10

-5 

0.5 16.5 
4hrs 

33minutes 
4.205 X 10

-5
 

 

2.For σ = 200Kpa 

                 Table 5.8: Determination of Consolidation Properties 

tc/(tc+ts) √t 90 (min.) t 90(Hrs.) Cv (cm
2
/sec) 

1 20.8 7hrs 13minutes 2.65 X 10
-5 

0.75 19.1 6hrs 5minutes 3.14 X 10
-5 

0.5 14.5 3hrs 31minutes 5.445 X 10
-5

 

 

5.3 Validation of numerical technique with expermental analysis 

The dissipation of the pore water pressure of a thin clay lamina with time and 

space can be analysed using Fourier and Laurent transform. This study shows that the  

results of Fourier and Laurent transform converges sharply ignoring the imaginary 

roots of the general solution. Terzaghi utilized the results of the positive roots of the 

Fourier transform.Results were   analysed with both real and imaginary roots using  

 

Fourier and Laurent transform. The real and the imaginary roots of the Laurent 

transform together satisfy the dissipation of pore water in contractile and dilatant 

regime. While the results of real roots present only the solution to the dissipation of 

pore water pressure in elastic regime. The experimental observations of the 

dissipation of pore water pressure of silty sand converge with the results of the 

solution obtained from the solutions of the Laurent transform and hence validate this 

proposal. Following graphs provide better visualization for above said proposal:    
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Fig 5.4: Variation of degree of consolidation with Fourier series. 

Fig 5.5: Variation of degree of consolidation with Laurent series. 
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validate this proposal. Above graphs provides clear vision of comparison for above 

said proposal. 

5.4 Discussion 

Thus from above analysis we can determine various parameters that decides 

the total degree of settelement in soil sample,containing both layers of sand as well as 

clay layer.Different tests were carried out and data comes to be as specific gravity of 

sample is 1.48 and from grain size distribution, soil sample resembles with that of fine 

sand having size more than 300 μm & for sand layer used Cu = 1.857 and Cc = 0.992 

along with its specific gravity 2.85. Free swell index comes to be as 67.4% that means 

degree of expansion for these type of soil is generally very high.Consolidation 

behaviour is also well studied with the help of comparison of various theories mainly 

by Biot & Terzaghi.It is clear that in given soil strata, deformation of such porous 

media depends not only upon the stiffness of the porous material, but also upon the 

behaviour of the fluid in the pores. 

If the permeability of the material is small, the deformations may be 

considerably   hindered, or at least retarded, by the pore fluid. Thus in this way it is 

clear that resultant consolidation will not only takes place due to expulsion of pore 

water & release of stress but also due to restructuring of soil solids. The assumptions 

that the decrease in permeability is proportional to the decrease in compressibility 

during the consolidation process or permeability is proportional to the coefficient of 

consolidation holds good for the experiment being carried out.It is clear that being 

decreasing the thickness of clay layer & in place of it sand layer of corresponding 

thickness is used as a result of which ‘rate of consolidation’ increases and 

consolidation is achieved in faster rate. ‘Rate of consolidation’ increases at the rate of 

increase of thickness of sand layer. 
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CHAPTER – 6 

                                                                                           CONCLUSION 

 

1) Degree of consolidation by Laurent series and transformations is successfully 

analysed here and rate of consolidation obtained by Laurent transform is 

compared with that obtained from Fourier transform.  

2) The Laurent transform is close to obtain rate of consolidation of soils of low 

permeability more clearly as compared to Fourier transform.  

3) Since Laurent series is a type of convergent series therefore degree of 

consolidation for varied sample thickness and pore water pressure converges 

to a single value.  

4) The nature of Laurent transform is transcendental. With the help of Laurent 

transform process of consolidation can be evaluated at microscopic level and 

for all kind of soils. 

5) It is also helpful in determining consolidation of clays and can be applied to 

secondary consolidation superior to Fourier transform. It can be a source of 

very useful information like quick determination of consolidation 

characteristics, time compression data of the present, past and future, type and 

stage of consolidation, drainage conditions, load increment etc. 

6) By using sand layer along  with clay layer the stiffness of clay layer decreases 

and water from pores of clay layer get dissipated fast, hence void ratio 

decreases and soil layer get compacted there by achieving maximum degree of 

consolidation.  

7) This analysis can be well supported and explained by transition of Fourier to 

Laurent transformation.  

8) From the above analytical analysis of ‘degree of consolidation’ by two 

mathematical models i.e. by Fourier transformation & Laurent transformation, 
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appropriate  predictions about completion of consolidation process for a given 

soil strata can be made. 

9) It is clear that being decreasing the thickness of clay layer & in place of it sand 

layer of corresponding thickness is used as a result of which ‘rate of 

consolidation’ increases and consolidation is achieved in faster rate. 

10) It is clear that being decreasing the thickness of clay layer & in place of it sand 

layer of corresponding thickness is used as a result of which ‘rate of 

consolidation’ increases and consolidation is achieved in faster rate. 

11) Amount of dissipation of pore pressure can be determined at any instant 

during the process of consolidation. 

12) Analytically from the curves of the two respective transformation it can be 

concluded that with the application of laurent transformation  

 Consolidation of stiff clays can be achieved in faster rate as compare to 

fourier series. 

 For fast decay of soils in terms of pore water pressure Laurent series will 

be more reliable. 

  It offers large boundaries domain that is from -  to +  and hence it is 

more  comprehensive. 

 

6.1 LIMITATION 

1) Experimental data can not be perfectly corelated as per the two transforms 

used here,only near by conclusions are drawn till now. 

2) Determination of imaginary(negative) roots for analysis of complete 

consolidation process is troublesome as the function varies with in the domain 

(-  to +  ) unlike in fourier series. 

3)  Laurent series gives good result for clayey soils of less thickness only. 

4) No such  conclusion can be drawn for three-dimensional consolidation using 

Laurent series 
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6.2 FUTURE SCOPE  

1. Application of Laurent series for 3-Dimensional consolidation can be studied 

and analysed both analytically & experimentally. 

2. Experimental validation of Laurent Series can be done for various types of 

soil. 

3. For stiff clays, degree of consolidation at different time factor is carried out. 

4. Comparison of rate of consolidation for different kinds of soil had to be done 

& verified by Laurent series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

64 
 

CHAPTER-8 

                                                                                           REFERENCES 

 

1) Arfken, G. 1970. Mathematical methods for physicists, Academic, New 

York. 

2) Atkinson, J. 2007. The mechanics of soils and foundation s, McGraw-Hill, 

Great Britain. 

3) Berry, P. L and Reid, D. 1988. An introduction to soil mechanics, McGraw-

Hill, England. 

4) Barden L, Berry, P. L. 1965.Consolidation of  normally consolidated clay. J 

Soil Mech Found Div ASCE (SM5):15–35. 

5) Carslaw, H. S. 1930. “Introduction to the theory of Fourier series and 

integrals”. Third edition, revised and enlarged, Macmillian & Co., London. 

6) Conte, E.  2006. Plane strain and axially symmetric consolidation in 

unsaturated soils, International Journal of Geomechanics, ASCE, 6(2), 131-

135. 

7) Conte, E. and Troncone, A. 2006. One-Dimensional Consolidation under 

General Time-Dependent Loading. Canadian Journal of Geotechnical 

Engineering, 43(11), 1107 – 1116. 

8) Craig, R. F. 2004. Craig’s soil mechanics, 7th edition, Spon Press, 

9) Davis, E. H. and Raymond, G. P. 1965; a non-linear theory of consolidation. 

Geotechnique 15(2):161–73. 

10) Darrag, A. A. and Tawil, M. A. 1993. The consolidation of soils under 

stochastic initial excess pore pressure. Appl. Math. Model, 17(11), 609–612. 

11) Fox, P. J. and Lee, J.  2008. Model for consolidation-induced solute 

transport with nonlinear and non equilibrium sorption. Int. J. Geomech.8(3), 

188–198. 

12) Gibson, R. E. and England, G. L. 1967. The theory of one dimensional soil 

consolidation of saturated clays: I. Finite non linear consolidation of thin 

homogeneous layers. Geotechnique : 261–73. 

 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

65 
 

13) Gibson, R. E. and Schiffman, R. L. 1981.The theory of one dimensional soil 

consolidation of saturated clays: II. Finite nonlinear consolidation of thick 

homogeneous layers. Can Geotech J: 280–93. 

14) Holtz, R. D. and Kovacs, W. D. 1981. An introduction to geotechnical 

engineering, Prentice-Hall, Englewood Cliffs, N.J. 

15) Hsu, T. W. and Lu, S. C. 2006. Behaviour of One Dimensional 

Consolidation under Time- Dependent Loading. The Journal of Engineering 

Mechanics, 132(4), 457 – 462. 

16) Janbu, N. and Bjerrum, L. 1956. Veiledning ved losning av fundamentering 

sappgaver.” Norwegian   Geotechnical Institute Publication No. 16, Oslo, 

Norway. 

17) Katarzyna Gabry’s, Alojzy Szymanski. 1964. Interpretation of the 

Consolidation Test, J. Soil Mech. Found. Div. Vol. 90, No. SM 5, 86–102. 

18) Kim, H. J. and Mission, J. L. 2011. Numerical analysis of onedimensional 

consolidation in layered clay using interface boundary relations in terms of 

infinitesimal strain.  ASCE, Int. J. Geomech., 11, 72. 

19) Lambe, W. T. and Whitman R. V. 1978. Soil Mechanics, T. 2, cz. IV, V, 

Arkady, Warszawa (in Polish). 

20) Lancellotta, R. 2009. Geotechnical engineering, Taylor and Francis,Great 

Britain. 

21) Maurice, A. Biot. February 1941. General Theory Of Three-Dimensional 

Consolidation. Reprinted from Journal of Applied Physics, Vol. 12, No. 2, 

pp. 155-164. 

22) Mesri, G. and Castro, A. 1987. Journal of Geotechnical Engineering, Vol. 

113, No. 3, 230–247. 

23) Mesri, G. and Choi, Y. K. 1985. The Uniqueness of the End-of-Primary 

(EOP) Void Ratio–Effective Stress Relationship, Proc. 11th Int. Conf. on 

Soil Mech. and Found. Eng., San Francisco, 587–590. 

24) Mesri, G. and Rokhsar, A. 1974. Theory of consolidation for clays. ASCE; 

100 (GT8):889–903. 

25) Mikasa, M. 1963. The consolidation of soft clay – A new consolidation 

theory and its application, Kajima Institution, Tokyo. 

 

 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

66 
 

26) Olson, R. E. 1986. Consolidation of Soils: Testing and Evolution, STP 892, 

Philadelphia: ASTM, 7–70. 

27)  Olson, R. E. 1977. Consolidation under time dependent loading, Jour., 

Geot.   Engr.Div. ASCE, Vol. 103, No. 1, pp. 55-60. 

28) Powrie, W. 1997, Soil mechanics: Concepts and applications, Chapman and 

Hall, London. 

29) Rani, S. and Kumar, R. and Singh, S. J. 2011. Consolidation of an 

anisotropic compressible   poroelastic clay layer by axisymmetric surface 

loads,International Journal of Geomechanics, ASCE, 11(1), 65-71. 

30) Robinson, R. G. 1999. Consolidation Analysis with Pore Water Pressure 

Measurements, Geotechnique, Vol. 49, No. 1, 127–132. 

31) Poskitt, T. J. 1971. Consolidation of clay and peat with variable properties. Journal 

of the Soil Mechanics and Foundation Division ASCE (SM6):841–80. 

32)   Schiffman, R. L. and Stein, J. R.  1970. One-dimensional consolidation of 

layered     systems. Jour., Soil Mech. and Found. Div., ASCE, Vol. 96, No. 

SM4, pp. 1499-1504. 

33) Schiffman, R. L. 2002. Consolidation of soil under time-dependent loading 

and varying permeability. Proceedings Highway Research Board 1958; 

37:584–617. K.-H. Xie et al. / Computers and Geotechnics 29(151),168 - 

167 

34) Singh, S. K. 2008. Identifying consolidation coefficient: Linear excess pore-

water pressure. J.  Geotech. Geoenviron. Eng., 134(8), 1205–1209. 

35) Singh, S. K. and Swamee, P. K. 2008. Approximate simple invertible 

equations for consolidation curves under triangular excess pore-water 

pressures. Geotech. Geologic Eng., 26(3), 251–257. 

36) Skempton, A. W. and Bjerrum, L. 1957. A contribution to the settlement 

analysis of   foundations on clay. Geotechnique, 7(4), 168–178. 

37) Sridharan, A. and Prakash, K. and Asha, S. R. 1995. Consolidation 

behaviour of Soils, ASTM, Geotechnical Testing Journal,Vol 18, No 1 pp 

58-68. 

38) Sridharan, A., Nagaraj, H. B. and Srinivas, N. 1999. Rapid Loading Method 

of Consolidation Testing, Can. Geotech. J. / Rev. can. Geotech. 36(2): 392-

400.   

 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

67 
 

39) Tewatia, S. K., Venkatachalam, K. and Sridharan, A. 1998. T-chart to 

evaluate consolidation test results. American Society for Testing and 

Materials, Geotechnical Testing Journal, 21 (3), 270–274. 

40) Tewatia, S. K. 1998a. Evaluation of true Cν   and instantaneous Cν, and 

isolation of secondary consolidation. American Society for Testing and 

Materials, Geotechnical Testing Journal, 21 (2)102–108. 

41) Tewatia, S. K. 1998b. Discussion on comparison of the hyperbolic and Asaoka 

observational methods of monitoring consolidation with vertical drains. Soils 

and Foundations, Japanese Geotechnical Society, 38 (2), 224–225. 

42) Tewatia, S. K. and Bose, P. R. 2006. Discussion on the beginning of 

secondary consolidation by G. Robinson. American Society for Testing and 

Materials, Journal of Testing and Evaluation, 34 (5),253–258. 

43) Tewatia, S. K. and Dhawan, A. K. and Bose, P. R. 2006. An alternative to a 

3D crack monitor 4-pin algorithm. American Society for Testing and 

Materials, Journal of Testing and Evaluation, 34 (5), 437–439. 

44) Tewatia, S. K. and Bose, P. R. and Sridharan, A. and Rath, S. 2007. Stress 

induced time dependent behaviour of clayey soils. Geotechnical and 

Geological Engineering Journal, Springer’s Publication, 25 (2), 239–255. 

45) Tewatia, S. K., 2010.Time Dependent Behavior of Clayey Soils, Thesis 

(PhD). Department of Civil Engineering, Delhi College of Engineering, 

Delhi University, India. 

46) Tewatia, S. K. and Sridharan, A. and Phalswal, M. K. and Gupta, D. K. 2012. 

Fastest rapid loading methods of vertical and radial consolidations. ASCE 

International Journal of Geomechanics, DOI 10.1061/ (ASCE) GM.1943-

5622.0000213. 

47) Tewatia, S. K. and Sridharan, A. and Singh, M. and Rath, S. 2011. Theoretical 

equations of vertical and radial consolidation by equating degrees of 

consolidation by settlement analysis and dissipation of pore pressure. 

Geotechnical and Geological Engineering Journal, Springer’s Publication, 

DOI 10.1007/s10706-011-9485y. 

48) Taylor, D. W. 1962. Fundamentals of soil mechanics, Wiley, New York. 

 

 



 Consolidation of Thin Clay Laminae Using Laurent Transform.  

68 
 

49) Terzaghi, K. 1925. Erdbaumec hanik auf bodenphysikalischer Grundlage, 

Franz   Deuticke, Leipzig und. Wein, Vienna, Austria. 

50) Whitlow R. 1990, Basic Soil Mechanics, John Wiley and Sons, New York. 

51)  Xie, K. H and Li, Q. L 1965. A nonlinear theory of consolidation under 

time-dependent loading in Proceedings of 2nd International Conference on 

Soft Soil Engineering. Nanjing China 27–30 May 1996, pp. 193–196. 

52) Xie, K. H. and Jiang W. A. 2002. Study on one-dimensional non linear 

consolidation of double-layered soil. Computer Geotech; 29:151–68. 

53) Zhu, G. and Yin J. H. 1998. Consolidation of Soil under Depth-Dependent 

Ramp Load. Canadian Journal of   Geotechnical Engineering, 35(2), 344 – 

350. 

54) http://www.soilworks.com/consol_2/introduction. 

55)    http://www.geotechdata.info/geotest/consolidation-test. 
 

 

 

 

 

 

 

 

 

                                              

            

 

 

 

http://www.soilworks.com/consol_2/introduction
http://www.geotechdata.info/geotest/consolidation-test


 Consolidation of Thin Clay Laminae Using Laurent Transform.  

69 
 

                                                          APPENDIX 

Uav 

Tv (Fourier 

series with real 

roots) 

Tv (Fourier 

series with 

imaginary roots) 

Tv (Laurent 

series) 

0 0 0 0 

1 0.0025 0.0115 0.0215 

2 0.005 0.014 0.024 

3 0.0075 0.0165 0.0265 

4 0.0101 0.0191 0.0291 

5 0.0126 0.0216 0.0316 

6 0.0153 0.0243 0.0343 

7 0.0179 0.0269 0.0369 

8 0.0206 0.0296 0.0396 

9 0.0232 0.0322 0.0422 

10 0.026 0.035 0.045 

11 0.0287 0.0377 0.0477 

12 0.0315 0.0405 0.0505 

13 0.0343 0.0433 0.0533 

14 0.0372 0.0462 0.0562 

15 0.0401 0.0491 0.0591 

16 0.043 0.052 0.062 

17 0.0459 0.0549 0.0649 

18 0.0489 0.0579 0.0679 

19 0.0519 0.0609 0.0709 

20 0.055 0.064 0.074 

21 0.0581 0.0671 0.0771 

22 0.0612 0.0702 0.0802 

23 0.0644 0.0734 0.0834 

24 0.0676 0.0766 0.0866 

25 0.0709 0.0799 0.0899 

26 0.0742 0.0832 0.0932 

27 0.0776 0.0866 0.0966 

28 0.081 0.09 0.1 

29 0.0844 0.0934 0.1034 

30 0.0879 0.0969 0.1069 

31 0.0914 0.1004 0.1104 

32 0.095 0.104 0.114 

33 0.0987 0.1077 0.1177 

34 0.1024 0.1114 0.1214 

35 0.1062 0.1152 0.1252 

36 0.11 0.119 0.129 

37 0.1139 0.1229 0.1329 
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Uav 

Tv (Fourier series 

with real roots) 

Tv (Fourier series 

with imaginary 

roots) 

Tv (Laurent 

series) 

38 0.1178 0.1268 0.1368 

39 0.1218 0.1308 0.1408 

40 0.1259 0.1359 0.1459 

41 0.13 0.14 0.15 

42 0.1342 0.1442 0.1542 

43 0.1385 0.1485 0.1585 

44 0.1429 0.1529 0.1629 

45 0.1473 0.1573 0.1673 

46 0.1518 0.1618 0.1718 

47 0.1564 0.1664 0.1764 

48 0.1611 0.1711 0.1811 

49 0.1659 0.1759 0.1859 

50 0.1708 0.1808 0.1908 

51 0.1758 0.1858 0.1958 

52 0.1809 0.1909 0.2009 

53 0.186 0.196 0.206 

54 0.1913 0.2013 0.2113 

55 0.1968 0.2068 0.2168 

56 0.2023 0.2123 0.2223 

57 0.208 0.218 0.228 

58 0.2138 0.2238 0.2338 

59 0.2197 0.2297 0.2397 

60 0.2258 0.2358 0.2458 

61 0.232 0.242 0.252 

62 0.2384 0.2484 0.2584 

63 0.245 0.255 0.265 

64 0.2517 0.2617 0.2717 

65 0.2587 0.2687 0.2787 

66 0.2658 0.2758 0.2858 

67 0.2732 0.2832 0.2932 

68 0.2808 0.2908 0.3008 

69 0.2886 0.2986 0.3086 

70 0.2967 0.3067 0.3167 

71 0.305 0.315 0.325 

72 0.3134 0.3234 0.3334 

73 0.3226 0.3326 0.3426 

74 0.3319 0.3419 0.3519 

75 0.3416 0.3516 0.3616 

76 0.3517 0.3617 0.3717 

77 0.3621 0.3721 0.3821 

78 0.3731 0.3831 0.3931 
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Uav 

Tv (Fourier series 

with real roots) 

Tv (Fourier series 

with imaginary 

roots) 

Tv (Laurent 

series) 

79 0.3846 0.3946 0.4046 

80 0.3966 0.4066 0.4166 

81 0.409 0.419 0.429 

82 0.4225 0.4325 0.4425 
83 0.4366 0.4466 0.4566 

84 0.4516 0.4616 0.4716 

85 0.4675 0.4775 0.4875 

86 0.4845 0.4945 0.5045 

87 0.5027 0.5127 0.5227 

88 0.5225 0.5325 0.5425 

89 0.5439 0.5539 0.5639 

90 0.5674 0.5774 0.5874 

91 0.5933 0.6033 0.6133 

92 0.6224 0.6324 0.6424 

93 0.6553 0.6653 0.6753 

94 0.6932 0.7032 0.7132 

95 0.7382 0.7482 0.7582 

96 0.7932 0.8032 0.8132 

97 0.864 0.874 0.884 

98 0.964 0.974 0.984 

99 1.1347 1.1447 1.1547 

 


	Results:
	Liquid limit WL (from graph)  =,,W-1.−,W-2.-,,log-10.-,,n-1.-,n-2....

