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1. ABSTRACT 

 

The aromatic amino acid hydroxylases represent a family of structurally and functionally closely 

related enzymes like phenylalanine hydroxylases, tyrosine hydroxylases and tryptophan 

hydroxylases. All the enzymes catalyze key steps in important metabolic pathways by utilizing a 

cofactor known as tetrahydrobiopterin. The purpose of the present study is to undertake a 

molecular docking study for various analogues of the cofactor on these amino acid hydroxylases 

using GLIDE application of Maestro (a molecular modeling module of Schrodinger software) 

and to develop a pharmacophore model for the best screened compounds using PHASE 

application of Maestro (a molecular modeling module of Schrodinger software). The 

intermolecular hydrogen bonding interaction of the best-fit ligands are found to be associated 

with Arg270, Glu280, Thr278, Pro279, Gly346, Ser349, Glu353, Val379 and Fe425 amino acid 

residue at the phenylalanine hydroxylase receptor active site. Among all the observed 

interactions with similar binding pattern, ligand 6-(1,4-Dihydroxy-2-methyl-butyl)-2-methyl-7,8-

dihydro-3H-pteridin-4-one (3 (f)) showed higher affinity with a glide score of -9.3. For 

tryptophan hydroxylase receptor active site, interactions are found to be associated with Tyr125, 

Leu236, Thr265, Pro266, Glu317, Gly333, Ser336, Ser337, Glu340, Thr367 and Thr368 and 

ligand 2,7-Diamino-6-(4-amino-1,2-dihydroxy-butyl)-7-hydroxy-7,8-dihydro-3H-pteridin-4-one 

(22 (f)) showed  higher affinity with a glide score of -10.1. In addition, pharmacophore mapping 

studies were undertaken for 24 best screened compounds. Two pharmacophore models were 

developed, a pharmacophore with 2 H bond donors and 2 H bond acceptors and another with 2 H 

bond donors, 1 H bond acceptor and 1 aromatic ring. The pharmacophore hypotheses yielded a 

statistically significant 3-D QSAR model with correlation factors of 0.85 and 0.73 respectively 

for training and test set compounds. Also, the docking studies performed on mutant 

phenylalanine hydroxylase shows the therapeutic applications of these cofactor analogues.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. INTRODUCTION 

 

2.1 BIOLOGICAL INTRODUCTION 

 

To understand the function of a protein, it is necessary to know the physiological system it 

belongs to. Phenylalanine hydroxylase (PheOH), tyrosine hydroxylase (TyrOH) and tryptophan 

hydroxylase (TrpOH), all the three enzymes belong to a family of tetrahydro-biopterin dependent 

aromatic amino acid hydroxylases [1]. All the enzymes catalyze key steps in important metabolic 

pathways [2]. Thus the enzymes share many physical, structural and catalytic properties.  

PheOH catalyses the hydroxylation of phenylalanine to tyrosine (fig 1) and is the rate limiting 

step in the only pathway to catabolize phenylalanine [3]. TyrOH catalyses the hydroxylation of 

tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA), which is the rate limiting step in the 

biosynthesis of catecholamine (fig 2) [4]. And TrpOH is the rate-limiting step in the biosynthesis 

of 5-hydroxytryptamine (serotonin) (fig 3), and catalyses the hydroxylation of tryptophan to 5-

hydroxytryptophan [5].  

  

a. Localization of enzymes 

 

PheOH is mainly found in the liver [3]. TyrOH is present in the central nervous system (CNS), 

peripheral sympathetic neurons and the adrenal medulla [6]. TrpOH is involved in 

neurotransmitter synthesis and could be expected to be found in tissues of the nervous system. 

TrpOH activity has been detected in the brain, the pineal gland and also in the enteric neurons of 

the gut [7].  

 

 

b. Biological relevance of enzymes 

 

PheOH catalyzes the rate-limiting step in the breakdown of L-Phe to carbon dioxide and water. 

The hydroxylation of phenylalanine requires a heme iron and a non protein cofactor 

tetrahydrobiopterin (BH4) as it promotes the hydroxylation of phenylalanine to tyrosine. It acts 

as a monooxygenase, incorporating one molecule of oxygen into the amino acid substrate, while 

the other oxygen atom is reduced to water using BH4 as the reductant. The active cofactor is the 

reduced tetrahydrobiopterin, enzyme dihydropteridine reductase catalyses its regeneration by the 

reduction of the dihydrobiopterin back to BH4 [8]. Phenylalanine (L-Phe) is hydroxylated in the 

para position to tyrosine (L-Tyr) by PheOH and L-Tyr is hydroxylated in the meta position by 

TyrOH to 3,4-dihydroxyphenylalanine (DOPA).  

 



 
 

Fig1: Biochemistry of PheOH and reactivation of cofactor 

 

Thus, when there is any defect in the enzymatic activity of PheOH, often due to due to mutations 

in the PAH gene, this causes hyperphenylalaninemia (HPA), therefore, blood phenylalanine 

levels increase above 20 times the normal concentration, accumulate in toxic amounts and results 

in metabolic disease known as phenylketonuria (PKU) [9]. Excessive phenylalanine is 

metabolized into phenylketones through a transaminase pathway with glutamate forming 

metabolites like phenyl acetate, phenylpyruvate and phenethylamine [10].  

The oral administration of tetrahydrobiopterin can reduce blood levels of this amino acid in 

certain patients [11].  The company BioMarin Pharmaceutical has produced a tablet preparation 

of the compound sapropterin dihydrochloride (Kuvan), which is a form of tetrahydrobiopterin. 

Kuvan is the first drug that can help BH4-responsive PKU patients lower Phe levels to 

recommended ranges [12]. Some researchers and clinicians working with PKU are finding 

Kuvan a safe and effective addition to dietary treatment and beneficial to patients with PKU [13].  

 

TyrOH (Tyrosine hydroxylase) catalyzes the conversion of the amino acid L-tyrosineto L-3,4-

dihydroxyphenylalanine (L-DOPA). DOPA is a precursor for dopamine, which, in turn, is a 

precursor for the important neurotransmitters like nor epinephrine (nor adrenaline) 

and epinephrine (adrenaline) [14].  

 



 
 

Fig2: Biosynthesis of neurotransmitters: dopamine, norepinephrine and epinephrine  

 

Any alteration in the enzymatic activity of TyrOH leads to disorders such as Parkinson's 

disease and schizophrenia. Since TyrOH catalyzes the formation of L-DOPA, the rate-limiting 

step in the biosynthesis of dopamine, enzymatic deficiency leads to the degeneration of 

dopaminergic neurons in substantia nigra, leading to a reduction of stratial dopamine levels [15]. 

 

TrpOH (Tryptophan hydroxylase) oxidizes L-tryptophan to 5-hydroxy-L-tryptophan in the rate-

determining step of serotonin biosynthesis. In humans, the stimulation of serotonin production by 

administration of tryptophan has an antidepressant effect and inhibition of tryptophan 

hydroxylase may precipitate depression [16].   



Serotonin (5-hydroxytryptamine) is a hormone and neurotransmitter that serves regulatory 

purposes in the central nervous system (CNS) and in several peripheral organs. In the human 

brain, serotonin is involved in numerous physiological functions, including sleep, pain, appetite, 

sexual behaviour, and mood, and is the precursor of the pineal hormone melatonin. In addition to 

its role in the nervous system, serotonin is important for smooth muscle contraction, haemostasis, 

and intestinal function [17]. It has been implicated in a variety of physiological and pathological 

functions in CNS. Numerous studies have suggested associations between various 

neuropsychiatric disorders and genes that modulate central serotonergic neurotransmission, such 

as the 5-HT transporter, 5-HT receptors, and monoamine oxidases. Therefore, the brain 5-HT 

system is a major target for several psychiatric disorders such as tricyclic antidepressants, 

selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and psychostimulants. 

Hence any defect in the enzymatic activity of TrpOH leads to neuropsychiatric disorders [18]. 

 

 

 
 

Fig3: Pathway for serotonin synthesis 

 

 

 

 

 

 



c. Structural insight into the enzymes 

 

All the three enzymes have a three domain structure: a regulatory N-terminal domain, a catalytic 

domain and a C-terminal domain. Also they have a common structural motif for the iron active 

site. The motif has been referred to as a 2-His-1-carboxylate facial triad [19]. The three 

endogenous iron ligands are completely conserved in all known amino acid hydroxylases. The 

remaining coordination sites are occupied by water molecules and are accessible to exogenous 

ligands [20]. All enzymes are activated by phosphorylation of Ser residues in the regulatory 

domain. 

 

PheOH (pdb id 1DMW from http://www.rcsb.org): 

 

The PheOH monomer (51.9 kDa) consists of three distinct domains: a regulatory N-terminal 

domain (residues 1-117), the catalytic domain (residues 118-427), and a C-terminal domain 

(residues 428-453). 

The regulatory nature of the N-terminal domain is conferred by its structural flexibility [21]. 

Hydrogen/deuterium exchanges analysis indicates that allosteric binding of Phe globally alters 

the conformation of PheOH such that the active site is less occluded as the interface between the 

regulatory and catalytic domains is increasingly exposed to solvent [22].  

The active site consists of an open and spacious pocket lined by hydrophobic residues. Three 

glutamic acid residues, two histidines, and a tyrosine are also present and critical for pterin- and 

iron-binding. The pterin binds in the second coordination sphere of the catalytic iron and 

interacts through several hydrogen bonds to two water molecules coordinated to the iron, as well 

as to the main chain carbonyl oxygens of Ala322, Gly247, and Leu249 and the main chain amide 

of Leu249 [16]. The N1 and N8 pterin atoms form hydrogen bonds to the amide backbone of 

Leu249 at distances of 3.3 and 2.8 Å, respectively. N2 also makes a strong hydrogen bond to the 

main chain carbonyl oxygen of Gly247 at a distance of 2.8 Å. The dihydroxypropyl side chain 

interacts with the main chain carbonyl oxygen of Ala322 through a strong hydrogen bond with 

O10 (2.8 Å) [23]. 

Fe(II) is coordinated by 3 water molecules (wat1, wat2, wat3), His285, His290, and Glu330, 

thereby showing an octahedral geometry. Two waters are located approximately equidistant 

between the iron and O4 of the pterin (Wat3 and Wat1), and the third is on the opposite side of 

the iron (Wat2), facing His290.Another water molecule is hydrogen bonded to N3 of the pterin 

ring at a distance of 2.7 Å (Wat4). This water molecule is further hydrogen bonded to Glu286, 

thus making important connections between this residue and the pterin (fig 4). Glu286 has been 

identified as a critical residue for pterin function [24].  

 



 
 

Fig4: Active site of PheOH (pdb id 1DMW) co-crystallized with BH2 

 

Regulation of the enzymatic activity is provided by Ser16.  Some important conformational 

changes are seen in the active site upon pterin binding. The loop between residues 245 and 250 

moves in the direction of the iron, and thus allows for several important hydrogen bonds to the 

pterin ring to be formed.  The loop between residues 245 and 250 shows the largest 

displacements. The pterin ring forms an aromatic π-stacking interaction with Phe254, and 

Tyr325 contributes to the positioning of the pterin ring and its dihydroxypropyl side chain by 

hydrophobic interactions. This explains that the dihydroxypropyl side chain is very essential. 

Tyr325 also contributes to the correct positioning of the pterin, but has no direct function in the 

catalytic reaction. In the binary complex, the phenyl ring of Tyr325 establishes hydrophobic 

contacts with the C3 methyl group of the dihydroxypropyl side chain of the pterin, and thus 

contributes to the correct positioning of the pterin cofactor for catalysis.  

There are several interactions between the pterin and the protein on the other side of the pterin 

molecule, pointing away from the iron. As mentioned above, this is the region of the protein that 

undergoes the largest movements upon pterin binding, and is thus involved in recognizing the 

pterin as a cofactor [25].  

The pyrimidine portion of the pterin ring seems most essential for cofactor activity [26]. This can 

be explained by the strong hydrogen bonds between N2 and N1 and active site amino acid 

residues (Gly247 and Leu249). 

 

TyrOH (pdb id 2TOH from http://www.rcsb.org): 

 

The TyrOH monomer (51.9 kDa) consists of three distinct domains: a regulatory N-terminal 

domain (457-498 residues), the catalytic domain (188-456 residues), and a C-terminal domain.  

The active site of TyrOH consists of a 17 Å deep cleft at the center of the catalytic domain 

basket. The cleft is lined primarily by four α-helices (residues 297-304, 329-340, 343-356, and 

361-372) (fig 5). The iron is directly coordinated by the “2-his-1-carboxylate facial triad” 

analogous to PheOH [27]. 

 



 
 

Fig5: Active site of TyrOH (pdb id 2TOH) co-crystallized with BH2 

 

The N8 pterin atom forms hydrogen bond to the amide backbone of Leu295 (3.1 Å). Pterin also 

forms hydrogen bonds from O-4 to Tyr371 and Glu376, from the C-1׳ OH to the main-chain 

amides of Leu294 (3.2 Å) and Leu295 (3.2 Å), and from the C-2׳ hydroxyl to an iron-

coordinating water (3.3 Å). This hydroxyl is also 4.0 Å from the carboxyl of the conserved 

residue Glu332. 

The pterin binds on one face of the large active-site cleft, forming an aromatic π-stacking 

interaction with Phe300. This phenylalanine residue of TyrOH is found to be hydroxylated in the 

meta position, most likely through an autocatalytic process, and to consequently form a hydrogen 

bond to the main-chain carbonyl of Gln310 which anchors Phe300 in the active site.  The part of 

the pterin closest to the iron is the O-4 carbonyl oxygen at a distance of 3.6 Å. The iron is 5.6 Å 

from the pterin 4a carbon which is hydroxylated in the enzymatic reaction. 

The carbonyl at position C-4 of the pterin ring forms two hydrogen bonds with active site 

residues. One is with the iron-binding residue Glu376 (3.1 Å), and the second is with the highly 

conserved residue Tyr371 (3.2 Å). Three additional hydrogen bonds are formed by the 

hydroxypropyl group attached to C-6 [28]. Tyrosine hydroxylase activity is increased in the short 

term by phosphorylation.  

 

TrpOH (pdb id 1MLW from http://www.rcsb.org): 

 

The structure of TrpOH is similar to TyrOH and PheOH. Few differences are observed in the 

position of amino acid residues. They are:  

The hTrpOH active site consists of an approximately 9 Å deep and 10 Å wide cavity. Lining the 

active site channel are two loops (residues 263-269 and residues 363-372). The largest positional 

differences observed in the TrpOH structure, as compared to the rTyrOH and hPheOH structures, 

are found in these two loops close to the substrate binding region. The pterin π-stacks on Phe241 

(3.8 Å) and Tyr235 (3.6 Å), forming hydrogen bonds to Gly234 [BH2(NH2)-Gly234(C=O) 

distance of 3.1 Å] and Leu236 [BH2(N1)-Leu236(N) distance of 3.0 Å, BH2(N8)- Leu236(C=O) 



distance of 2.7 Å]. The pterin O4 atom is also hydrogen bonded to two of the three water 

molecules coordinated to the iron, with distances of 2.4 and 2.8 Å. The O4 atom of the pterin 

ring is 3.3 Å away from the third water molecule coordinated to the iron (fig 6).  

 

 
 

Fig6: Active site of TrpOH (pdb id 1MLW) co-crystallized with BH2 

 

Glu273 also forms two water-mediated hydrogen bonds to the pterin (one of which is the iron 

ligand Wat3) at the following distances: 

BH2(NH2)-Wat4-Glu273 distances of 2.9 and 2.7 Å and BH2(O4)-Wat3-Glu273 distance of 2.8 

and 2.7 Å, respectively. The pterin N3 atom also forms a hydrogen bond to Wat4 (2.8 Å). 

Catalytic Fe(III) atom is coordinated to His272 (N-Fe distance of 2.1 Å), His277 (N-Fe distance 

of 2.0 Å), one carboxyl oxygen atom of Glu317 (O-Fe distance of 2.4 Å) and 3 water molecules: 

Wat1 (axial to His272)-Fe distance of 2.2 Å, Wat2 (axial to His277)-Fe distance of 2.3 Å, and 

Wat3 (axial to Glu317)-Fe distance of 2.2 Å.  

Pro238 is 3.6 Å away from the BH2 dihydroxypropyl side chain 1׳-OH atom. The 

dihydroxypropyl hydroxyl groups hydrogen bond to a water molecule at equivalent distances 

(2.8 Å), and the dihydroxypropyl side chain 2׳-OH atom also has a long hydrogen bond (3.3 Å) 

to the carbonyl oxygen of Ala309 [29].  

 

d. Mechanism of hydroxylation 

 

The reactions are divided into two partial reactions, formation of the hydroxylating intermediate 

and oxygen transfer to the amino acid substrate. The reaction proceeds in 3 steps: 

 

1. Formation of a Fe(II)-O-O-BH4 bridge- 

 

An iron dioxygen complex is initially formed and stabilized as a resonance hybrid of Fe
2+

O2 and 

Fe
3+

O2
-
. The activated O2 then attacks BH4, forming a transition state characterized by charge 



separation between the electron-deficient pterin ring and the electron-rich dioxygen species. The 

Fe(II)-O-O-BH4 bridge is subsequently formed [30]. 

 

2. Heterolytic cleavage of the O-O bond to yield the ferryl oxo hydroxylating intermediate 

Fe(IV)=O- 

 

 Once formed, the Fe(II)-O-O-BH4 bridge is broken through heterolytic cleavage of the O-O 

bond to Fe(IV)=O and 4a-hydroxytetrahydrobiopterin; thus, molecular oxygen is the source of 

both oxygen atoms used to hydroxylate the pterin ring and phenylalanine (fig 7). Fe(IV)=O 

intermediate is added to phenylalanine in an electrophilic aromatic substitution reaction that 

reduces iron from the ferryl to the ferrous state. Also, the evidence strongly supports Fe(IV)=O 

as the hydroxylating intermediate [31]. 

 

 
 

Fig7: Formation and cleavage of Fe(II)-O-O-BH4 bridge to form Fe(IV)=O 

 

3. Attack on Fe(IV)=O to hydroxylate phenylalanine substrate to tyrosine. 

 

The reaction instead proceeds through a cationic intermediate that requires Fe(IV)=O to be 

coordinated to a water ligand [32]. This cationic intermediate subsequently undergoes a 1,2-

hydride NIH shift, yielding a dienone intermediate that then tautomerizes to form the tyrosine 

product (fig 8) [33].  

The pterin cofactor is regenerated by hydration of the carbinolamine product of PheOH to 

quinonoid dihydrobiopterin (qBH2), which is then reduced to BH4. 

 

 
 

Fig8: Hydroxylation of phenylalanine to tyrosine 

 

 



2.2 COMPUTATIONAL BACKGROUND 

 

a. Rational Drug Design (RDD) 

 

It is a process used in the biopharmaceutical industry to discover and develop new drug 

compounds. RDD uses a variety of computational methods to identify novel compounds, design 

compounds for selectivity, efficacy and safety, and develop compounds into clinical trial 

candidates. Depending on how much information is available about drug targets and potential 

drug compounds, these methods fall into several categories: 

Structure-based drug design  

Ligand-based drug design 

De novo design   

Homology modeling  

Drugs work by interacting with target molecules (receptors) in our bodies and altering their 

activities in a way that is beneficial to our health. In some cases, the effect of a drug is to 

stimulate the activity of its target (an agonist) while in other cases the drug blocks the activity of 

its target (an antagonist). With the advent of greater understanding of bioinformatics & 

physiological mechanisms it is now possible to rationally design drugs. It is an inventive process 

of finding new medications based on the knowledge of the biological target. Rational drug 

design is a more focused approach, which uses information about the structure of a drug receptor 

or one of its natural ligands to identify or create candidate drugs. The three-dimensional structure 

of a protein can be determined using methods such as X-ray crystallography or nuclear 

magnetic resonance spectroscopy. The search for small molecules (drugs) that bind to the 

target begins by screening libraries of potential drug compounds. If the structure of the target is 

available, a virtual screen may be performed for candidate drugs. Ideally the candidate drug 

compounds should be "drug-like", that is they should possess properties (drug like properties) 

such as oral bioavailability, adequate chemical and metabolic stability, and minimal toxic effects 

[34]. 

This type of drug designing often relies on computers, so it is also known as Computer-aided 

drug design. It uses computational chemistry to discover, enhance, or study drugs and related 

biologically active molecules.  The most fundamental goal is to predict whether a given molecule 

will bind to a target and if so, then how strongly. Molecular mechanics or molecular 

dynamics are most often used to predict the conformation of the small molecule and to model 

conformational changes in the biological target that may occur when the small molecule binds to 

it [35]. 

 

b. Molecular modeling 

 

Molecular modeling is the science of representing molecular structures numerically and 

simulating their behavior with the equations of quantum and classical physics. It is also called 

computer aided molecular modeling (CAMM). It has proven to be a highly valuable tool for 

rational drug design. Main applications of CAMM come from structure-based drug design (if 3D 

information of the target molecule is available) and QSAR (Quantitative Structure Activity 

Relationship). By using molecular modeling, we will be able to design new and more potent 

drugs against diseases.  



It is a field that is used to model and deduce the information of the system at atomic level. It 

includes all methodologies used in computational chemistry like computation of the energy of a 

molecular system, energy minimization, molecular dynamics etc. in turn, this knowledge is 

aimed at designing new active molecules that can be successfully used as drugs [36]. 

The role of molecular modeling in drug design has been divided into two separate paradigms, 

one focuses on the structure-activity problem in the absence of detailed, three-dimensional 

structural information about the receptor, and the other focuses on understanding the interactions 

in receptor-ligand complexes and using the known three-dimensional structure of the therapeutic 

target to design novel drugs [37]. 

 

c.  Structure-based drug designing- from computer to clinic 

 We used Structure-based drug design (SBDD) to design and find ligands which are specific for 

certain known target receptors. SBDD is an iterative process in which macromolecular 

crystallography has been the predominate technique used to elucidate the three-dimensional 

structure of drug targets. Although both nucleic acids and proteins are potential drug targets, by 

far the majority of such targets are proteins. Given that many proteins undergo considerable 

conformational change upon ligand binding, it is important to design drugs based on the 

crystallographic structures of protein-ligand complexes, not the unliganded structure. It relies on 

the knowledge of the three dimensional structure of the biological target obtained through 

methods such as x-ray crystallography or NMR spectroscopy. It takes on a systematic approach 

to rationally designing drugs.  Determining the structure is crucial because it provides key 

information about a protein's function and how it may possibly interact on the molecular level 

with other substances. This knowledge is very useful because it enables a rational and direct 

approach to developing drugs [38]. 

In SBDD, scientists use detailed knowledge of the active sites of protein targets associated with 

particular diseases to design synthetic compounds that fight the disease. The active site of an 

enzyme is the area into which a chemical or biological molecule fits to initiate a biochemical 

reaction. SBDD aims to create a molecule that will bind to the active site of a targeted enzyme, 

thereby preventing the normal chemical reaction and ultimately halting the progression of the 

disease. 

Once a target is selected, researchers use x-ray crystallography to determine the precise three-

dimensional molecular structure of the proteins. This structure serves as a blueprint for the drug 

design of a lead compound. The compounds are modeled for their fit in the active site of the 

target, considering both steric aspects (i.e., geometric shape) and functional group interactions, 

such as hydrogen bonding and hydrophobic interactions [39]. 

 

d. Structure determination by NMR and X-ray crystallography 

 A fundamental component of the SBDD protocol is the iterative structure determination process. 

As each new lead candidate is identified, a new complex structure is required. Clearly this aspect 

of the process is critically dependent on a very rapid determination of the protein–ligand 

complex. The two most common methods used to investigate molecular structures are X-ray 

crystallography (also called X-ray diffraction) and nuclear magnetic resonance (NMR) 

spectroscopy.  

The knowledge of accurate molecular structures is a prerequisite for rational drug design and for 

structure based functional studies to aid the development of effective therapeutic agents and 



drugs. Crystallography can provide the answers to many structure related questions, from global 

folds to atomic details of bonding. In contrast to NMR (which is a spectroscopic method), no size 

limitation exists for the molecule or complex to be studied. X-ray crystallography has historically 

been a major source for obtaining three-dimensional structures of protein–ligand complexes for 

the iterative drug design cycle. But the use of NMR for the structure elucidation of protein-ligand 

complexes is a relatively recent addition to the SBDD approach. Specifically, NMR requires 

extensive isotope labeling of the protein and may take six months to a year using standard 

methodology to determine a high-resolution structure for proteins <40 kDa. Conversely, X-ray 

crystallography routinely solves protein–ligand structures in weeks to months and in some cases 

as fast as a few days. Recent advances in probe technology, software development and NMR 

methodology show exciting promise in significantly reducing the time requirement to determine 

a protein structure by NMR [38]. 

After the structure has been determined, the first category of SBDD methods is about “finding 

ligands” for a given receptor, which is usually referred as database searching. In this case, a 

large number of potential ligand molecules are screened to find those fitting the binding pocket 

of the receptor. This method is usually referred as ligand-based drug design. The key advantage 

of database searching is that it saves synthetic effort to obtain new lead compounds.  

Another category of structure-based drug design methods is about “building ligands”, which is 

usually referred as receptor-based drug design. In this case, ligand molecules are built up within 

the constraints of the binding pocket by assembling small pieces in a stepwise manner. These 

pieces can be either individual atoms or molecular fragments. The key advantage of such a 

method is that novel structures, not contained in any database, can be suggested. This is also 

known as pharmacophore modeling [34]. 

 

e. Protein data bank (PDB) 

The information regarding the protein-ligand complex can be obtained from Protein Data 

Bank (PDB). It is a repository for the 3-D structural data of large biological molecules, such 

as proteins and nucleic acids. The data is obtained by X-ray crystallography or NMR 

spectroscopy and submitted by biologists and biochemists from around the world. The data is 

freely available worldwide and are freely accessible on the Internet via the websites of its 

member organisations [40]. 

PDB was developed and managed by the Brookhaven National Laboratories but now it is 

managed & maintained by the RCSB (Research Collaboratory for Structural Bioinformatics). It 

is a non profit consortium of three organizations: Rutzers, The State University of New Jersey; 

the San Diego Supercomputer Center at the university of California, San Diego and the National 

Institute of Standards and Technology. Information on structures can be retrieved from the main 

PDB website at http://www.pdb.org/ or one of its major sites 

http://www.rcsb.org/pdb/mirrors.html. PDB is a member of Worldwide  Protein Data Bank, 

wwPDB. It curates and   annotates PDB data according to agreed upon standards. The file format 

initially used by the PDB was called the PDB file format. Around 1996, the "macromolecular 

Crystallographic Information file" format, mmCIF, started to be phased in. An XML version of 

this format, called PDBML, was described in 2005. The structure files can be downloaded in any 

of these three formats. When the author has completed his/her deposition, PDB IDs are 

automatically assigned by the software. The 3-dimensional co-crystallized structure of the 

receptor with some ligand could be easily obtained from PDB and studied. Then the information 

can be further processed for protein preparation, ligand preparation, docking and finally 



obtaining the docking score which tells how selective the ligand is for the receptor. Then this 

analysis can be used for synthesis of drugs [40]. 

 

f. Docking 

Docking is a method which predicts the preferred orientation of one molecule to a second when 

bound to each other to form a stable complex.
 
Knowledge of the preferred orientation in turn 

may be used to predict the strength of association or binding affinity between two molecules. It 

is the Core of the target-based structure-based drug design for lead generation and optimization. 

Molecular docking is thought of as an optimization problem, which describes the “best-fit” 

orientation of a ligand that binds to a particular protein of interest. It is similar to “lock-and-key” 

model, where one is interested in finding the correct relative orientation of the “key” which will 

open up the “lock”. Thus the protein can be thought of as the “lock” and the ligand can be 

thought of as a “key”. 
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During docking and scoring                   

 

 

 

Fig9: Three Components of Docking 
 

Docking is important as a binding interaction between a small molecule ligand and an enzyme 

protein may result in activation or inhibition of the enzyme. If the protein is a receptor, ligand 

binding may result in agonism or antagonism. Docking is most commonly used in the field of 

drug design — most drugs are small organic molecules, and docking may be applied to: 

Hit identification – docking combined with a scoring function can be used to quickly screen 

large databases of potential drugs in silico to identify molecules that are likely to bind to protein 

target of interest  

Lead optimization – docking can be used to predict in where and in which relative orientation a 

ligand binds to a protein (also referred to as the binding mode or pose). This information may in 

turn be used to design more potent and selective analogs [38]. 

Representation of receptor  

binding site and ligand  

 

Sampling of configuration space  

of the ligand-receptor complex 

 

Evaluation of ligand-receptor  

interactions 

 



GLIDE (grid-based ligand docking with energetics): 

 

Glide has been designed to perform an exhaustive search of the positional, orientational, and 

conformational space available to the ligand. Glide uses a series of hierarchical filters to search 

for possible locations of the ligand in the active-site region of the receptor. The shape and 

properties of the receptor are represented on a grid by different sets of fields that provide 

progressively more accurate scoring of the ligand pose. The next step produces a set of initial 

ligand conformations. Given these ligand conformations, initial screens are performed over the 

entire phase space available to the ligand to locate promising ligand poses. Starting from the 

poses selected by the initial screening, the ligand is minimized in the field of the receptor using a 

standard molecular mechanics energy function (OPLS-AA force field [41]). Finally, the lowest-

energy poses obtained in this fashion are subjected to a Monte Carlo procedure that examines 

nearby torsional minima and a GlideScore is generated for use in predicting binding affinity and 

rank-ordering ligands in database screens [42]. 

 

g. Pharmacophore modelling 

 

The concept of pharmacophore was first introduced in 1909 by Paul Ehrlich, who defined the 

pharmacophore as ‘a molecular framework that carries (phoros) the essential features responsible 

for a drug’s (pharmacon) biological activity’. Ligand-based pharmacophore modeling has 

become a key computational strategy for facilitating drug discovery in the absence of a 

macromolecular target structure. It is usually carried out by extracting common chemical 

features from 3D structures of a set of known ligands representative of essential interactions 

between the ligands and a specific macromolecular target. In general, pharmacophore generation 

from multiple ligands (usually called training set compounds) involves two main steps: 

 

1. Creating the conformational space for each ligand in the training set to represent 

conformational flexibility of ligands 

2. Aligning the multiple ligands in the training set and determining the essential common 

chemical features to construct pharmacophore models [43]. 

 

Molecular alignment is the major challenging issue in ligand based pharmacophore modeling. 

The alignment methods can be classified into two categories in terms of their fundamental 

nature: point-based and property-based approaches [44].  

The points (in the point-based method) can be further differentiated as atoms, fragments or 

chemical features. In point-based algorithms, pairs of atoms, fragments or chemical feature 

points are usually superimposed using a least squares fitting. The biggest limitation of these 

approaches is the need for predefined anchor points because the generation of these points can 

become problematic in the case of dissimilar ligands.  

The property-based algorithms make use of molecular field descriptors, usually represented by 

sets of Gaussian functions, to generate alignments. The alignment optimization is carried out 

with some variant of similarity measure of the intermolecular overlap of the Gaussians as the 

objective function. 

 

Another challenging problem lies in the practical task of proper selection of training set 

compounds. This problem, apparently being simple and non-technical, often confuses users, even 



experienced ones. It has been demonstrated that the type of ligand molecules, the size of the 

dataset and its chemical diversity affect the final generated pharmacophore model considerably 

[45].  

 

h. Pharmacophore based virtual screening 

 

Once a pharmacophore model is generated by either the ligand based or the structure-based 

approach, it can be used for querying the 3D chemical database to search for potential ligands, 

which is so-called ‘pharmacophore-based virtual screening’ (VS). In the pharmacophore-based 

VS approach, a pharmacophore hypothesis is taken as a template. The purpose of screening is 

actually to find such molecules (hits) that have chemical features similar to those of the template. 

Some of these hits might be similar to known active compounds, but some others might be 

entirely novel in scaffold. Pharmacophore-based VS can be very time-consuming, especially in 

cases of screening large chemical databases with flexible molecules. After pharmacophore-based 

VS, the de novo design approach can be used to create completely novel candidate structures that 

conform to the requirements of a given pharmacophore [43].  

 

In the present study, we have investigated a series of cofactor 7, 8-dihydro-biopterin analogues, 

which is found to act as a common cofactor for all the three enzymes under study: phenylalanine 

hydroxylases, tyrosine hydroxylases and tryptophan hydroxylases. We performed molecular 

docking studies of a series of cofactor analogues with these target proteins. Then, ligand based 

drug design approaches like pharmacophore mapping and 3-D QSAR to develop a 

pharmacophore model. Here, we describe the development of robust ligand based 3D 

pharmacophore hypotheses using pharmacophore alignment. The alignment obtained from 

pharmacophore points was used to derive an atom based 3D-QSAR model. In addition, the best 

screened compounds were docked with the mutant phenylalanine hydroxylase receptor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. REVIEW OF LITERATURE 

 

Robert S. Phillips et al have examined the interaction of phenylalanine hydroxylase with 

phenylalanine, tetrahydropterin cofactors, and an activating phospholipid, 

lysophosphatidylcholine. They suggested that activation of phenylalanine hydroxylase results in 

a conformation change and the exposure of buried tryptophan(s) and possibly a cysteine residue 

[46].  

Heidi Erlandsen et al presented the crystal structure of the dimeric catalytic domain (residues 

117-424) of human phenylalanine hydroxylase (hPheOH), cocrystallized with various potent and 

well-known catechol inhibitors and refined at a resolution of 2.0 Å and suggested that the 

catechols bind by bidentate coordination to each iron in both subunits of the dimer through the 

catechol hydroxyl groups, forming a blue-green colored ligand-to-metal charge-transfer 

complex. Crystallographic comparison with the structurally related rat tyrosine hydroxylase 

binary complex with the oxidized cofactor 7,8-dihydrobiopterin revealed overlapping binding 

sites for the catechols and the cofactor, compatible with a competitive type of inhibition of the 

catechols versus BH4 [47].  

The conformation and distances to the catalytic iron of both L-Phe and the cofactor analogue L-

erythro-7,8-dihydrobiopterin (BH2) simultaneously bound to recombinant human PAH have 

been estimated by 1H NMR by Knut Teigen et al. They demonstrated that the pterin ring of BH2 

π-stacks with Phe254, and the N3 and the amine group at C2 hydrogen bond with the carboxylic 

group of Glu286. The ring also establishes specific contacts with His264 and Leu249. The 

distance between the O4 atom of BH2 and the iron (2.6 Å) is compatible with coordination.  

Also the hydroxyl groups in the side-chain at C6 hydrogen bond with the carbonyl group of 

Ala322 and the hydroxyl group of Ser251, an interaction that seems to have implications for the 

regulation of the enzyme by substrate and cofactor. Some frequent mutations causing PKU are 

located at residues involved in substrate and cofactor binding. These are adequate for the 

intercalation of iron-coordinated molecular oxygen, in agreement with a mechanistic role of the 

iron moiety both in the binding and activation of dioxygen and in the hydroxylation reaction 

[48].  

 Torben Gjetting et al showed that the majority of PAH missense mutations impair enzyme 

activity by causing increased protein instability and aggregation. Naturally occurring N-terminal 

PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 and 65–

69, two motifs highly conserved in PDH. Their work suggested that impairment of 

phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of 

some N-terminal PAH mutations, which may explain some well-documented genotype-

phenotype discrepancies in PAH deficiency [49]. 

Phenylalanine hydroxylase from a bacterial source Chromobacterium violaceum phenylalanine 

hydroxylase (CvPheOH) has been structurally characterized by Joo Y. Kim at high resolution 

and compared to the human analog . The bacterial enzyme displayed higher activity and thermal 

melting temperature, and structurally, differences were observed in the N and C termini, and in a 

loop close to the active-site iron atom [50]. 

The crystal structures of the catalytic domain of human phenylalanine hydroxylase (hPheOH) in 

complex with the physiological cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) and 

the substrate analogues 3-(2-thienyl)-L-alanine (THA) or L-norleucine (NLE) have also been 

determined at 2.0A ° resolution by Ole Andreas Andersen et al. Both structures demonstrate that 

substrate binding triggers structural changes throughout the entire protomer, including the 



displacement of Tyr138 from a surface position to a buried position at the active site, with a 

maximum displacement of 20.7 A ° for its hydroxyl group. The carboxyl and amino groups of 

THA and NLE are positioned identically in the two structures, supporting the conclusion that 

these groups are of key importance in substrate binding, thus explaining the broad non-

physiological substrate specificity observed for artificially activated forms of the enzyme [51]. 

 

Activity of tyrosine hydroxylase is regulated by feedback inhibition and inactivation by 

catecholamines, and activation by protein phosphorylation. The regulatory domain of tyrosine 

hydroxylase contains multiple serine (Ser) residues that are phosphorylated by a variety 

of protein kinases [52]. Long term regulation of tyrosine hydroxylase can also be mediated by 

phosphorylation mechanisms. Hormones (e.g glucocorticoids), drugs (e.gcocaine), or second 

messengers such as cAMP increase tyrosine hydroxylase transcription. Increase in tyrosine 

hydroxylase activity due to phosphorylation can be sustained by nicotine for up to 48 hours [53].  

Reaction mechanisms for the conversion of tyrosine hydroxylase to an inactive/stable form by 

catecholamines, and activation of tyrosine hydroxylase by phosphorylation at Ser-40 were 

discussed by Hitoshi Fujisawa et al. [54]. Also, a study by S. Colette Daubner demonstrated the 

role of polypeptide loop in tyrosine hydroxylase (TyrH) whose homolog in phenylalanine 

hydroxylase (PheH) takes on a different conformation when substrates are bound has been 

studied using sitedirected mutagenesis. Mutagenesis of residues in the center of the loop resulted 

in alterations in the KM values for substrates, the Vmax value for DOPA synthesis, and the 

coupling of tetrahydropterin oxidation to tyrosine hydroxylation. The variant with the most 

altered KM value for 6-methyltetrahydropterin was TyrH F184A. The variants with the most 

affected Ktyr values were those with substitutions in the center of the loop, TyrH K183A, 

F184A, D185A, P186A and D187A. These variants also had the most reduced Vmax values for 

DOPA synthesis and thus play a dominant role in determining amino acid substrate specificity 

[55]. 

 

Using rational site-directed mutagenesis, G. C. T. Jiang determined that Tyr235 (Y235), within 

the active site of TPH, appears to be involved as a tryptophan substrate orienting residue [56]. A 

stable N-terminally truncated form of human TPH that includes the catalytic domain was 

prepared and characterized by Jeffrey McKinney et al. The conformation and distances to the 

catalytic non-heme iron of both L-Trp and the tetrahydrobiopterin cofactor analogue L-erythro-

7,8-dihydrobiopterin (BH2) were also determined by using 1H NMR spectroscopy and the bound 

conformers of the substrate and the pterin were then docked into the modeled three-dimensional 

structure of TPH. Finally they concluded that L-Trp binds to the enzyme through interactions 

with Arg257, Ser336, His272, Phe318, and Phe313, and the ring of BH2 interacts mainly with 

Phe241 and Glu273. The distances between the hydroxylation sites at C5 in L-Trp and C4a in the 

pterin, i.e., 6.1 (0.4 Å), and from each of these sites to the iron, i.e., 4.1 (0.3 Å) and 4.4 (0.3 Å), 

respectively, were also in agreement with the formation of a transient iron-4a-

peroxytetrahydropterin in the reaction, as proposed for the other hydroxylases [57]. Insight into 

the nature of oxygen activation in tryptophan hydroxylase has been obtained from density 

functional computations. Conformations of O2-bound intermediates have been studied with 

oxygen trans to glutamate and histidine, respectively by Kasper P. Jensen et al. The weaker trans 

influence of histidine has shown to give rise to a bent O2 coordination mode with O2 pointing 

towards the cofactor and a more activated O–O bond (1.33 Å) than in Oglu (1.30 Å). It has been 

shown that the cofactor can hydrogen bond to O2 and activate the O–O bond further (from 1.33 



to 1.38 Å). The Ohis intermediate leads to a ferryl intermediate (Fhis) with an isomer shift of 

0.34 mm/s, which is also consistent with the experimental value (0.25 mm/s) which was 

proposed to be the structure of the hydroxylating intermediate, with the tryptophan substrate well 

located for further reaction 3.5 Å from the ferryl group [58].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. OBJECTIVE 

 

The objective of the present study is: 

(i) Screening of more effective ligand for in-vivo binding with amino acid hydroxylase enzymes. 

(ii) Generation of a 3-D QSAR mathematical model to produce pharmacophore features for the 

best screened molecules. 

(iii) Designing of a new molecular entity on the basis of docking and pharmacophores modeling 

to reduce the cost-effectiveness for designing drugs for neurodegeneration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. METHODOLOGY 
 

1. To perform a docking screen, the first requirement is a structure of the protein of interest and 

to identify the active site of protein. So, the first step was to search for a suitable protein structure 

from the website of RCSB PDB by applying various parameters like resolution, bound ligand 

etc. 

All the protein structures studied were downloaded in the PDB file format for the ease of study 

in the available software for molecular modeling known as the SCHRODINGER 

SOFTWARE. 

 

2. Next step is to ensure the chemical correctness and to optimize the protein structures for use 

with Glide. This is done via protein preparation wizard application of maestro. 

 

3. All the ligand structures were drawn in CHEMDRAW and the Schrödinger ligand preparation 

product LigPrep was used to prepare high quality, all atom 3D structures for large numbers of 

drug-like molecules, starting with 2D or 3D structures.  

 

4. In order to predict the preferred orientation of one molecule to a second, when bound to each 

other and to predict the affinity of the binding, ligand-receptor docking was performed. The 

ligands were docked with the protein PDB files using GLIDE application of maestro. Thus, we 

could visualize the docking results in terms of Gscore, electrostatic, hydrophobic and hydrophilic 

interactions. 

 

5. For pharmacophore perception, structure alignment and activity prediction, Pharmacophore 

modeling was carried out to generate a pharmacophore hypothesis using PHASE application of 

maestro. 

 

6. Finally, to study the interactions between the compounds and the mutant phenylalanine 

hydroxylase, ligand-receptor docking was again performed with the mutant PDB ID.  

 

Molecular modeling study 

 

Molecular modeling investigations were carried out using Maestro software package. 

Coordinates for the protein structure were taken from the RCSB Protein Data Bank (PDB) and 

prepared using the Protein Preparation Wizard, which is part of the Maestro software package 

(Maestro, v9.2, Schrodinger, LLC, NewYork, NY). 

 

1. Experimental procedure of Docking: 

 

a. Dataset of compounds: 

A dataset of 47 compounds consisting of different 7,8-dihydro-biopterin analogues were used in 

this study. Correct empirical structure of ligands were drawn (by using CHEM DRAW 7
th

 

VERSION) and converted into MOL-SD file. 

 



 
 

Fig10: Structure of BH2 

 

Since, it was found from the literature that tetrahydro-biopterin ( BH4) and its analogue 7,8-

dihydro-biopterin are obligatory enzymatic cofactors for amino acid hydroxylases, so we kept 

the basic skeleton of the cofactor as it is and did some modifications at different positions. 

Figures show the structures of the cofactor with positions 1, 2, 3 and 4, 5, 6 respectively. 

Modifications in the structure of cofactor were done by substituting electron donating groups at 

these positions. 

 

 
 

Fig11: Structure of BH2 showing positions 1, 2 and 3 

 

 
 

Fig12: Structure of BH2 showing positions 4, 5 and 6 

 

Prior to docking, a single low-energy 3D structure was generated for each ligand with the aid of 

LigPrep. 

 

b. Preparation of Ligand: 

  

Once imported the MOL file into the Maestro workspace, Ligprep were used for preparing the 

ligands. Thus this step left us with the ligand with a minimized ligand molecule ready to dock 

with the protein. 



The Schrodinger package was used to prepare the protein and ligand data required for the 

docking. LigPrep is a robust collection of tools designed to prepare high quality, all-atom 3D 

structures for large numbers of drug-like molecules, starting with 2D or 3D structures. It is a 

utility of Schrodinger software suit that combines tools for generating 3D structures from 1D 

(Smiles) and 2D (SDF) representation, searching for tautomers, steric isomers and performs a 

geometry minimization of the ligands. LigPrep can also produce a number of structures from 

each input structure with various ionization states, tautomers, stereochemistries, and ring 

conformations, and eliminate molecules using various criteria including molecular weight or 

specified numbers and types of functional groups present. 

The LigPrep process consists of a series of steps that perform conversions, apply corrections to 

the structures, generate variations on the structures, eliminate unwanted structures, and optimize 

the structures. This step removes unwanted molecules, add hydrogens, and minimize the ligand 

structure [59]. 

 

c. Preparation of the receptor:  

 

PDB structures with PDB ID (1DMW, 1TDW, 2TOH) from www.rcsb.org were downloaded 

and refined, prepared using Schrodinger protein preparation wizard tool, which performs the 

steps including assigning of bond orders, addition of hydrogens, optimization of hydrogen bonds 

by flipping amino side chains, correction of charges, and minimization of the protein complex. 

All the bound water molecules, ligands and cofactors were removed (preprocess) from the 

proteins which were taken in .mae format. The tool neutralized the side chains that are not close 

to the binding cavity and do not participate in salt bridges. 

This step is then followed by restrained minimization of co-crystallized complex, which reorients 

side chain hydroxyl groups and alleviates potential steric clashes.  

For each structure, a brief relaxation was performed using an all-atom constrained minimization 

carried out with the Impact Refinement module (Impref). Vander-walls radius scaling was taken 

as default absolute value less than the specified cutoff. Hydrogen atoms were added to the 

receptor atoms and input partial charges were assigned to receptor. Thus after this step, we had 

refined, hydrogenated structures of the ligand – receptor complex. 

 

d. Receptor grid generation: 

 

The receptor grid can be set up and generated from the Receptor Grid Generation panel. This 

step is necessary because Ligand docking jobs cannot be performed until the receptor grids have 

been generated. Also, the receptor grid generation requires a “prepared” structure: an all-atom 

structure with appropriate bond orders and formal charges. 

 

e. Ligand-Receptor Docking: 

 

Docking experiments were carried out by using GLIDE (grid based ligand docking with 

energetic) and ligand docking program from calculations in extra precision (XP) mode. GLIDE 

stands for Grid-based Ligand Docking with Energetics. Glide searches for favorable 

interactions between one or more ligand molecules and a receptor molecule, usually a protein. 

Glide can be run in rigid or flexible docking modes. The combination of position and orientation 

of a ligand relative to the receptor, along with its conformation in flexible docking, is referred to 



as a ligand pose. The ligand poses that Glide generates pass through a series of hierarchical 

filters that evaluate the ligand’s interaction with the receptor.  

 

The docking was initiated with putting specified receptor grid and prepared ligand molecule 

together. GLIDE was run in the flexible docking mode which automatically generates 

conformations for each input ligand. The ligand poses that GLIDE generates pass through a 

series of hierarchial filters that evaluate the ligand’s interaction with the receptor. The initial 

filters test the spatial fit of the ligand to the defined active site, and examine the complentarity of 

ligand-receptor interactions using a grid based method pattern after the empirical chemscore 

function. Poses that pass their initial screens enter the final stage of the algorithm, which 

involves evaluation and minimization of a grid approximation to the OPLS-AA non-bonded 

ligand receptor interaction energy. Final scoring was then carried out on the energy minimized 

poses [41]. 

The docking pattern for the various ligands and the docking scores were collected using the 

show-table tool. 

 

f. Those 25 compounds showing the higher binding affinity i.e. higher glide score (more than -

7.5) with the protein are subjected to further modifications by extending the bond length at 

positions 1 to 6.  

 

g. Docking was again performed between these modified ligands and all the 3 PDB IDs by  

repeating steps 2 and 5. Using the XP-visualiser of Glide, the interactions between the ligand and 

the receptor were studied and the corresponding images were saved.  

 

2. Experimental procedure of pharmacophore modeling 

 

Pharmacophore modeling was carried out using PHASE which is also a part of the Maestro 

software package (Maestro, v9.2, Schrodinger, LLC, NewYork, NY) for those 24 compounds 

which were found to have higher binding affinities. 

  

a. Generating conformers: 

This step Clean up the ligand structures, generate variations on stereochemistry or ionization 

state and generate sets of conformers for each ligand. Then we defined the pharm (active) set and 

the inactive set by setting the activity thresholds. 

 

b. Creating pharmacophore sites: 

 

For purposes of pharmacophore model development, each ligand structure is represented by a set 

of points in 3D space, which coincide with various chemical features that may facilitate non-

covalent binding between the ligand and its target receptor. These are called pharmacophore 

sites. From the total 24 compounds, 20 were randomly chosen for training set and remaining 4 

for test set by using “automated random selection” option present in PHASE software.  PHASE 

provides six built-in types of pharmacophore features: hydrogen bond acceptor (A), hydrogen 

bond donor (D), hydrophobe (H), negative ionizable (N), positive ionizable (P), and aromatic 

ring (R). The pharmacophore model was developed using a set of pharmacophore features to 

generate sites for all compounds. For QSAR development, pharmacophore models of training set 



molecules were placed into regular grid of cubes, with each cube allotted zero or more bits to 

account for the different type of pharmacophore features in the training set that occupy the cube. 

This representation gives rise to binary valued occupation patterns that can be used as 

independent variables to create Partial Least Square (PLS) factors 3-D QSAR models.  

 

c. Scoring hypotheses: 

 

The process of scoring with respect to actives is designed to filter out inappropriate 

pharmacophores. Hypotheses are assigned a score comprised of geometric and heuristic factors 

that can be weighted according to the user’s preference. Each pharmacophore is treated 

temporarily as a reference in order to assign a score. Accordingly, all other non-reference 

pharmacophores are aligned, one-by-one, to the reference pharmacophore, and the quality the 

alignments are measured using two criteria: 

(1) The root-mean-squared deviation (RMSD) in the site point positions and  

(2) The average cosine of the angles formed by corresponding pairs of vector features (acceptors, 

donors and aromatic rings). These factors are combined with separate weights to yield a 

combined site + vector score for each non-reference pharmacophore i that’s been aligned to the 

reference. After all pharmacophores have been treated as a reference, the one yielding the highest 

Reference_ Score is selected as the hypothesis.  

The ligand that contributes the reference pharmacophore is referred to as the reference ligand for 

that hypothesis.  

 

d. Building 3D QSAR models 

If a sufficient number of molecules of varying activity are available, a 3D QSAR model can be 

developed for each hypothesis using training set structures that match the pharmacophore on 

three or more sites [60].  

The data related to distance and angle measurements were studied, recorded and the 

corresponding images were saved. 

 

 

3. Finally docking was again performed between these 24 compounds and mutant PDB ID 

(1TDW) using same procedure as in step1 and the interactions were studied using XP Visualiser.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. RESULTS AND DISCUSSION 

 

Since one of the main goal of drug discovery is the identification of small molecules that can act 

as lead molecules, we have investigated a series of cofactor 7, 8-dihydro-biopterin analogues, 

which is found to act as a common cofactor for all the three enzymes under study: phenylalanine 

hydroxylases, tyrosine hydroxylases and tryptophan hydroxylases. The study mainly focuses at 

identification of small molecules that exhibit high binding affinity for all the target proteins. For 

this purpose, the approach that we followed was the docking study of all the designed cofactor 

analogues via Glide, selection of the best suited candidates according to their binding affinity 

and then using those selected candidate molecules to prepare a pharmacophore model via Phase. 

[61]  

 

1. Glide docking analysis 

Glide performs grid-based ligand docking with energetics and searches for favourable 
interactions between one or more typically small ligand molecules and a typically larger 
receptor molecule, usually a protein. For each of the 3 amino acid hydroxylases: phenylalanine 

hydroxylases (1DMW), tyrosine hydroxylases (2TOH) and  tryptophan hydroxylases (1TDW), it 

was found that a common cofactor analogue 7,8-dihydro-biopterin was bound in all the protein 

structures as obtained from protein data bank (PDB).  
For each of the PDB IDs: 1DMW, 2TOH and 1MLW, a set of 47 compounds were assessed for 

binding affinity. So, a total of 141 compounds were docked into the binding sites of these 

enzymes.  

They are as follows: 

 

 
 

Fig11: Structure of BH2 showing positions 1, 2 and 3 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

COMPOUND POSITION 1 POSITION 2 POSITION 3 
DOCKING 

SCORE 

1. CH3 NH2 NH2 -8.0 

2. NH2 CH3 NH2 -7.6 

3. NH2 NH2 CH3 -6.6 

4. OH OH CH3 -7.2 

5. OH CH3 OH -7.2 

6. CH3 OH OH -8.0 

7. NH2 CH3 CH3 -6.4 

8. CH3 NH2 CH3 -6.7 

9. CH3 CH3 NH2 -6.8 

10. OH NH2 OH -7.2 

11. OH OH NH2 -8.3 

12. CH3 CH3 OH -7.4 

13. CH3 OH CH3 -7.4 

14. OH CH3 CH3 -6.5 

15. OH NH2 NH2 -7.7 

16. NH2 OH NH2 -7.2 

17. NH2 NH2 OH -7.2 

18. CH3 OH NH2 -7.3 

19. CH3 NH2 OH -7.2 

20. OH NH2 CH3 -8.2 

21. OH NH2 CH3 -6.6 

22. NH2 OH CH3 -7.2 

23. NH2 CH3 OH -7.0 

 

Table1: Docking results of compounds with modified groups at different positions with 

PDB ID 1DMW 

 

 

 
 

Fig12: Structure of BH2 showing positions 4, 5 and 6 

 

COMPOUND POSITION 4 POSITION 5 POSITION 6 
DOCKING 

SCORE 

24. CH3 NH2 NH2 -6.6 

25. NH2 CH3 NH2 -5.9 

26. NH2 NH2 CH3 -6.0 

27. OH OH CH3 -6.8 

28. OH CH3 OH -6.3 

29. CH3 OH OH -6.3 

30. NH2 CH3 CH3 -6.1 

31. CH3 NH2 CH3 -6.2 



32. CH3 CH3 NH2 -6.2 

33. NH2 OH OH -6.5 

34. OH NH2 OH -6.8 

35. OH OH NH2 -7.2 

36. CH3 CH3 OH -6.6 

37. CH3 OH CH3 -6.4 

38. OH CH3 CH3 -6.4 

39. OH NH2 NH2 -7.9 

40. NH2 OH NH2 -6.5 

41. NH2 NH2 OH -6.1 

42. CH3 OH NH2 -6.7 

43. CH3 NH2 OH -6.4 

44. OH NH2 CH3 -6.7 

45. OH NH2 CH3 -5.8 

46. NH2 OH CH3 -6.1 

47. NH2 CH3 OH -6.2 

 

Table2: Docking results of compounds with modified groups at different positions with 

PDB ID 1DMW 

 

 

COMPOUND POSITION 1 POSITION 2 POSITION 3 
DOCKING 

SCORE 

48. CH3 NH2 NH2 -8.3 

49. NH2 CH3 NH2 -7.4 

50. NH2 NH2 CH3 -7.4 

51. OH OH CH3 -7.6 

52. OH CH3 OH -7.6 

53. CH3 OH OH -7.9 

54. NH2 CH3 CH3 -7.6 

55. CH3 NH2 CH3 -7.7 

56. CH3 CH3 NH2 -7.7 

57. OH NH2 OH -6.9 

58. OH OH NH2 -7.5 

59. CH3 CH3 OH -7.9 

60. CH3 OH CH3 -8.0 

61. OH CH3 CH3 -7.9 

62. OH NH2 NH2 -10.2 

63. NH2 OH NH2 -6.8 

64. NH2 NH2 OH -6.7 

65. CH3 OH NH2 -6.9 

66. CH3 NH2 OH -7.7 

67. OH CH3 NH2 -7.4 

68. OH NH2 CH3 -6.7 

69. NH2 OH CH3 -7.5 

70. NH2 CH3 OH -7.6 

 

Table3: Docking results of compounds with modified groups at different positions with 

PDB ID 1MLW 

 

 

 



COMPOUND POSITION 4 POSITION 5 POSITION 6 
DOCKING 

SCORE 

71. CH3 NH2 NH2 -4.5 

72. NH2 CH3 NH2 -4.5 

73. NH2 NH2 CH3 -5.5 

74. OH OH CH3 -6.3 

75. OH CH3 OH -5.5 

76. CH3 OH OH -5.5 

77. NH2 CH3 CH3 -4.6 

78. CH3 NH2 CH3 -5.4 

79. CH3 CH3 NH2 -4.7 

80. NH2 OH OH -5.1 

81. OH NH2 OH -5.4 

82. OH OH NH2 -9.2 

83. CH3 CH3 OH -5.4 

84. CH3 OH CH3 -4.8 

85. OH CH3 CH3 -4.6 

86. OH NH2 NH2 -7.8 

87. NH2 OH NH2 -7.8 

88. NH2 NH2 OH -4.8 

89. CH3 OH NH2 -7.9 

90. CH3 NH2 OH -5.2 

91. OH NH2 CH3 -7.8 

92. OH NH2 CH3 -4.7 

93. NH2 OH CH3 -5.1 

94. NH2 CH3 OH -5.1 

 

Table4: Docking results of compounds with modified groups at different positions with 

PDB ID 1MLW 

 

COMPOUND POSITION 1 POSITION 2 POSITION 3 
DOCKING 

SCORE 

95. CH3 NH2 NH2 -7.2 

96. NH2 CH3 NH2 -6.2 

97. NH2 NH2 CH3 -6.6 

98. OH OH CH3 -5.1 

99. OH CH3 OH -5.0 

100. CH3 OH OH -6.1 

101. NH2 CH3 CH3 -4.7 

102. CH3 NH2 CH3 -6.4 

103. CH3 CH3 NH2 -6.1 

104. OH NH2 OH -6.7 

105. OH OH NH2 -6.5 

106. CH3 CH3 OH -5.4 

107. CH3 OH CH3 -5.3 

108. OH CH3 CH3 -4.6 

109. OH NH2 NH2 -7.0 

110. NH2 OH NH2 -6.2 

111. NH2 NH2 OH -6.7 

112. CH3 OH NH2 -6.2 

113. CH3 NH2 OH -6.9 

114. OH CH3 NH2 -6.1 

115. OH NH2 CH3 -6.2 



116. NH2 OH CH3 -5.2 

117. NH2 CH3 OH -5.1 

 

Table5: Docking results of compounds with modified groups at different positions with 

PDB ID 2TOH 

 

COMPOUND POSITION 4 POSITION 5 POSITION 6 
DOCKING 

SCORE 

118. CH3 NH2 NH2 -6.8 

119. NH2 CH3 NH2 -6.7 

120. NH2 NH2 CH3 -5.1 

121. OH OH CH3 -5.2 

122. OH CH3 OH -5.2 

123. CH3 OH OH -5.2 

124. NH2 CH3 CH3 -5.6 

125. CH3 NH2 CH3 -5.6 

126. CH3 CH3 NH2 -5.6 

127. NH2 OH OH -7.0 

128. OH NH2 OH -6.6 

129. OH OH NH2 -6.6 

130. CH3 CH3 OH -4.6 

131. CH3 OH CH3 -4.7 

132. OH CH3 CH3 -4.8 

133. OH NH2 NH2 -7.1 

134. NH2 OH NH2 -7.0 

135. NH2 NH2 OH -5.0 

136. CH3 OH NH2 -6.3 

137. CH3 NH2 OH -6.4 

138. OH NH2 CH3 -6.3 

139. OH NH2 CH3 -6.6 

140. NH2 OH CH3 -6.3 

141. NH2 CH3 OH -6.3 

 

Table6: Docking results of compounds with modified groups at different positions with 

PDB ID 2TOH 

 

All the 141 compounds showed a wide range of binding affinity with the different PDB IDs in 

terms of glide score (Kcal/mol). Those 25 compounds showing the higher binding affinity i.e. 

higher glide score (more than -7.5) with the protein are subjected to further modifications by 

extending the bond length at positions 1 to 6. This is because more negative the glide score, 

indicates better fitting to the receptor active sites [43]. List of interactions of these higher affinity 

compounds with the protein and the interacting residues is given in table 7 to table 10.  

 

 

 

 



 
 

Fig11: Structure of BH2 showing positions 1, 2 and 3 

 

COMPOU

ND 

POSITI

ON 1 

POSITI

ON 2 

POSITI

ON 3 

DOCKI

NG 

SCORE 

RESIDUES and DISTANCE (Å) 

FE 

425 

GLU 

280 

THR 

278 

VAL 

379 

SER 

349 

GLU 

353 

ARG 

270 

1. CH3 NH2 NH2 -8.0        

a. C2H5 NH2 NH2 -7.8 
2.27

3 
2.117 
(NH2) 

1.823 
(NH2) 

- - - - 

b. C3H7 NH2 NH2 -8.4 
2.26

3 
- 

1.911 
(NH3

+) 
- - - - 

c. CH3 CH2NH2 NH2 -8.3 
2.24

5 
- 

2.231 
(NH3

+) 
- - - - 

d. CH3 C2H4NH2 NH2 -8.8 
2.33

2 
- 

1.830 
(NH3

+) 

2.175 
(NH3

+) 
- - - 

e. CH3 NH2 CH2NH2 -8.1 
2.25

2 
- - 

2.114 
(NH3

+) 
- - - 

f. CH3 NH2 C2H4NH2 -8.7 
2.32

0 
2.132 
(NH3

+) 
- - - 

2.086 
(NH3

+) 
- 

2. NH2 CH3 NH2 -7.6        

a. CH2NH2 CH3 NH2 -7.3 
2.23

7 
- 

1.955 
(NH2) 

- - - - 

b. C2H4NH2 CH3 NH2 -7.8 
2.24

3 
- 

2.128 
(NH2) 

- - - - 

c. NH2 C2H5 NH2 -7.0 
2.23

7 
- 

1.933 
(NH2) 

- - - - 

d. NH2 C3H7 NH2 -7.7 
2.23

7 
- 

1.829 
(NH2) 

- - - - 

e. NH2 CH3 CH2NH2 -7.4 
2.23

7 
- - - 

2.369 
(NH2) 

- - 

f. NH2 CH3 C2H4NH2 -8.4 
2.23

7 
- - - 

1.800 
(NH2) 

- - 

3. CH3 OH OH -8.0        

a. C2H5 OH OH -8.0 
2.23

8 

1.889 

(OH) 
- - - - - 

b. C3H7 OH OH -8.1 
2.23

8 

2.100 

(OH) 
- - - - - 

c. CH3 CH2OH OH -8.4 
2.25

9 
- 

2.018 

(OH) 

2.055 

(OH) 
- - - 

d. CH3 C2H4OH OH -8.6 
2.23

7 
- 

2.114 

(OH) 
- 

2.123 

(OH) 
- - 

e. CH3 OH CH2OH -8.6 
2.29

1 

1.825 

(OH) 
- - 

2.018 

(OH) 
- - 

f. CH3 OH C2H4OH -9.3 
2.23

7 

1.875 

(OH) 
- - 

2.038 

(OH) 
- 

2.493 

(OH) 

4. OH OH NH2 -8.3        



a. CH2OH OH NH2 -7.4 
2.25

2 

1.917 

(OH) 
- - - - - 

b. C2H4OH OH NH2 -7.6 
2.23

8 

- 

 
2.017 
(NH2) 

- - - - 

c. OH CH2OH NH2 -7.3 
2.23

8 

- 

 
2.194 
(NH2) 

- - - - 

d. OH C2H4OH NH2 -7.8 
2.24

6 

 

- 
- - 

2.146 

(OH) 
- - 

e. OH OH CH2NH2 -7.3 
2.23

7 

 

- 
- - 

2.309 

(NH2) 
- - 

f. OH OH C2H4NH2 -8.4 
2.23

7 

1.809 

(OH) 
- - 

1.954 

(NH2) 
- - 

5. OH NH2 NH2 -7.7        

a. CH2OH NH2 NH2 -7.7 
2.25

9 

- 

 
- 

1.694 
(NH3

+) 
- - - 

b. C2H4OH NH2 NH2 -8.1 
2.25

1 
2.005 
(NH2) 

1.907 
(NH2) 

- - - - 

c. OH CH2NH2 NH2 -8.0 
2.29

4 

- 

 
2.377 
(NH3

+) 

2.078 
(NH3

+) 
- - - 

d. OH C2H4NH2 NH2 -9.1 
2.25

3 
2.438 
(NH3

+) 
- 

1.992 
(NH3

+) 
- - - 

e. OH NH2 CH2NH2 -8.5 
2.15

1 

- 

 
1.677 
(NH3

+) 
- - - - 

f. OH NH2 C2H4NH2 -8.4 
2.23

7 

- 

 
1.713 
(NH3

+) 
- - - - 

6. OH CH3 NH2 -8.2        

a. CH2OH CH3 NH2 -7.4 
2.23

7 

- 

 
2.074 
(NH2) 

- - - - 

b. C2H4OH CH3 NH2 -7.9 
2.23

2 

- 

 
2.023 
(NH2) 

- - - - 

c. OH C2H5 NH2 -7.1 
2.23

9 

- 

 
1.933 
(NH2) 

- - - - 

d. OH C3H7 NH2 -7.5 
2.27

6 

- 

 
1.791 
(NH2) 

- - - - 

e. OH CH3 CH2NH2 -7.3 
2.25

2 

- 

 
- - 

2.078 

(NH2) 
- - 

f. OH CH3 C2H4NH2 -7.8 
2.25

2 

- 

 
- - 

2.015 

(NH2) 
- - 

 

Table7: Docking score of the interactions between different analogs and the residues with 

PDB ID 1DMW, along with their distances from the interacting groups 

 

 
 

Fig12: Structure of BH2 showing positions 4, 5 and 6 

 



COM

POUN

D 

POSITIO

N 

4 

POSITIO

N 

5 

POSITIO

N 

6 

DOCKI

NG 

SCORE 

RESIDUES and DISTANCE (Å) 

FE 

425 

SER 

349 

VAL 

379 

THR 

278 

GLU 

280 

GLY 

346 

PRO 

279 

7. OH NH2 NH2 -7.9        

a. CH2OH NH2 NH2 -8.1 
2.239 

 
2.279 
(NH2) 

- - - 
2.137 
(NH2) 

- 

b. C2H4OH NH2 NH2 -8.4 
2.245 

 
- 

2.332 

(NH2) 

2.053 

(OH) 

2.163 

(OH) 
- - 

c. OH CH2NH2 NH2 -7.9 
2.237 

 
- - 

2.021 
(NH2) 

- - - 

d. OH C2H4NH2 NH2 -8.2 
2.243 

 
- 

2.197 

(NH2) 
- - - 

2.01

3 
(NH2) 

e. OH NH2 CH2NH2 -8.9 
2.227 

 

2.053 

(NH2) 
 - 

2.098 

(OH) 
- - 

f. OH NH2 C2H4NH2 -9.1 
2.264 

 

1.875 

(NH2) 

2.102 

(NH2) 
- - - - 

 

Table8: Docking score of the interactions between different analogs and the residues with 

PDB ID 1DMW, along with their distances from the interacting groups 

 

All the 42 compounds were found to show interactions with phenylalanine hydroxylase enzyme 

residues: Arg270, Glu280, Thr278, Pro279, Gly346, Ser349, Glu353, Val379 and Fe425. Fe (III) 

was found to be associated with 6 active site residues including water and also with the 

compound. The interacting distance of Fe (III) with the atom of different compounds was within 

a range of 2.151 to 2.291. 

However table 7 suggests that compounds with substituted groups at positions 1, 2 and 3 interact 

with residues Glu353 and Arg270 whereas table8 suggests that compounds with substituted 

groups at positions 4, 5 and 6 interact with residues Gly346 and Pro279. Rest interacting residues 

are the same.  

The docking poses of all the compounds represented that they bind in a very similar pattern with 

the active site of phenylalanine hydroxylase and the best results obtained with docking scores 

were -9.1 for 5 (d) and 7 (f). Compound 5 (d) show 2 hydrogen bond interactions, one with  

Glu280 with a distance of 2.438 (Å) and another with Val379 (Å) with a distance of 1.992        

(fig 13).  



 
 

Fig13: Interactions between compound 5(d) and 1DMW 

 

Compound 7 (f) also show 2 hydrogen bond interactions, one with Ser349 with a distance of 

1.875 (Å) and another with Val379 with a distance of 2.102 (Å) (table8). Also, based on the 

glide scores it can be inferred that –OH, -NH2, -NH2 substitutions at positions 1, 2, 3 and 4, 5, 6 

in compounds 5 (d) and 7 (f) respectively, with mainly long and branched chain increased the 

affinity. Further the presence of –NH2 assisted in hydrogen bond interaction with Glu280, Ser349 

and Val379 as shown in fig 14. 

  

 
                                            5 (d)                                                                       7 (f) 

 

Fig14: Ligand interaction diagram of compounds 5(d) and 7(f) with pdb id 1DMW 



 
 

Fig15: Legend for ligand interaction diagram 

 

S.NO LIGANDS 
DOCKING 

SCORE 

Glu280 

DISTANCE (Å) 

Ser349 

DISTANCE (Å) 

1. 3 (e) -8.6 1.825 2.018 

2. 3 (f) -9.3 1.875 2.038 

 

Table9: Docking score and distances of the interacting residues of the compounds 3(e) and 

3(f) with pdb id 1DMW 

 

 
 3 (e)                                                                    3 (f) 

Fig16: Ligand interaction diagram of compounds 3(e) and 3(f) with pdb id 1DMW 
 

The table suggests that, the distance between H
+
 atom of the compound 3 (e) and O

-
 atom of  

Ser349 is 2.018 and 2.038 for compound 3 (f) for a docking score of -8.6 and -9.3 respectively. It 

means that the docking score improved with an increase in distance between Ser349 and O
-
 atom 

of the compound. 

Similarly, the distance between H
+
 atom of the compound 3 (e) and O

-
 atom of  Glu280 is 1.825 

and 1.875 for compound 3 (f). So, the docking score again improved with an increase in distance 

between Glu280 and O
-
 atom of the compound. 



This suggests that distance between O
-
 atom of Ser349 as well as Glu280 and H

+
 atom of the 

compounds should be maximized in order to improve the binding affinity between the 

compounds and residues Ser349 and Glu280 of the protein as we know that the binding affinity 

improves with the improved docking score.  

 

S.NO LIGANDS 
DOCKING 

SCORE 

Val379 

DISTANCE (Å) 

Thr 278 

DISTANCE (Å) 

1. 5 (c) -8.0 2.078 2.377 

2. 1 (d) -8.8 2.175 1.830 

 

Table10: Docking score and distances of the interacting residues of the compounds 5(c) and 

1(d) with pdb id 1DMW 

 

 
                                 5(c)                                                                  1(d) 

Fig17: Ligand interaction diagram of compounds 5(c) and 1(d) with pdb id 1DMW 

 

The table suggests that, the distance between H
+
 atom of the compound 5 (c) and O

-
 atom of  

Val379 is 2.078 and 2.175 for compound 1 (d) for a docking score of -8.0 and -8.8 respectively. 

It means that the docking score improved with an increase in distance between Va379 and O
-
 

atom of the compound. 

Similarly, the distance between H
+
 atom of the compound 5 (c) and O

-
 atom of Thr278 is 2.377 

and 1.830 for compound 1 (d). So, the docking score improved with a decrease in distance 

between Thr278 and O
-
 atom of the compound. 

This suggests that distance between O
-
 atom of Val379 and H

+
 atom of the compounds should be 

maximized and distance between O
-
 atom of Thr278 and H

+
 atom of the compounds should be 

minimized in order to improve the binding affinity between the compounds and residues Val379 

and Thr278 of the protein as we know that the binding affinity improves with the improved 

docking score.  

 

 

 

 



 
 

Fig11: Structure of BH2 showing positions 1, 2 and 3 

 

COMP

OUND 

POSITI

ON 

1 

POSITIO

N 

2 

POSIT

ION 

3 

DOCK

ING 

SCOR

E 

RESIDUES and DISTANCE (Å) 

 

GLU 

317 

 

TYR 

125 

LEU 

236 

GLU 

340 

SER 

337 

THR 

265 

THR 

368 

PRO 

266 

8. CH3 NH2 NH2 -8.3         

a. 

 
C2H5 NH2 NH2 -8.3 

2.300 

(NH) 

2.385 

(NH) 
2.303 
(NH2) 

- - - - - 

b. 

 
C3H7 NH2 NH2 -8.4 

2.310 

(NH) 

2.392 

(NH) 
2.152 
(NH3

+) 
- - - - - 

c. 

 
CH3 CH2NH2 NH2 -7.8 

2.066 

(NH) 
- - - - - - - 

d. 

 
CH3 C2H4NH2 NH2 -8.1 

2.098 

(NH) 
- 

2.200 
(NH3

+) 
- - - - - 

e. 

 
CH3 NH2 

CH2N

H2 
-7.8 

1.965 

(NH) 
- 

2.183 
(NH3

+) 
- - - - - 

f. 

 
CH3 NH2 

C2H4N

H2 
-8.4 

2.045 

(NH) 
- 

1.713 
(NH3

+) 
- - - - - 

9. OH OH CH3 -7.6         

a. 

 
CH2OH OH CH3 -8.4 

2.153 

(NH) 

2.307 

(OH) 

2.483 

(NH) 
- - - - - - 

b. 

 

C2H4O

H 
OH CH3 -6.0 - 

2.200 

(NH) 
- - - 

1.823 

(OH) 
- - 

c. 

 
OH CH2OH CH3 -7.5 

2.252 

(NH) 

2.441 

(NH) 
- - - - - - 

d. 

 
OH C2H4OH CH3 -6.3 - 

2.110 

(NH) 

1.723 

(OH) 
- - - - - 

e. 

 
OH OH C2H5 -7.7 

2.092 

(NH) 
- - - - - - - 

f. 

 
OH OH C3H7 -7.6 - 

2.292 

(OH) 
- - - - - - 

10. OH CH3 OH -7.6         

a. 

 
CH2OH CH3 OH -7.9 

1.875 

(OH) 
- - 

1.818 
(OH) 

1.809 
(OH) 

1.803 

(NH) 
- - 

b. 

 

C2H4O

H 
CH3 OH -6.6 - 

2.178 

(NH) 

1.972 

(OH) 
- - 

2.031 

(OH) 
- - 

c. 

 
OH C2H5 OH -7.1 - - - - - - - - 

d. 

 
OH C3H7 OH -8.1 

2.175 

(NH) 

2.486 

(NH) 
- - - - - - 

e. OH CH3 CH2O -8.6 - - - 1.873 2.016 1.833 - - 



 H (OH) 

1.996 
(NH) 

(OH) (NH) 

f. 

 
OH CH3 

CH2O

H 
-8.1 

1.989 

(NH) 
- - - - - - - 

11. CH3 OH OH -7.9         

a. 

 
C2H5 OH OH 

-8.2 

 

2.198 

(NH) 

2.473 

(NH) 

2.259 

(OH) 
- - - - - 

b. 

 
C3H7 OH OH -8.1 

2.426 

(NH) 

2.379 

(NH) 

2.105 

(OH) 
- - - - - 

c. 

 
CH3 CH2OH OH -8.5 

2.119 

(NH) 
- 

2.166 

(OH) 
- - - - - 

d. 

 
CH3 C2H4OH OH -8.5 

2.181 

(NH) 
- 

1.711 

(OH) 
- - - - - 

e. 

 
CH3 OH 

CH2O

H 
-8.8 

2.145 

(NH) 

2.457 

(NH) 

2.080 

(OH) 
- - - - - 

f. 

 
CH3 OH 

CH2O

H 
-8.9 

2.108 

(NH) 

2.451 

(NH) 
-  - - - - 

12. NH2 CH3 CH3 -7.6         

a. 

 

CH2NH

2 
CH3 CH3 -7.7 

1.982 

(NH) 
- - - - - - - 

b. 

 

C2H4N

H2 
CH3 CH3 -7.5 

2.143 

(NH) 

2.104 

(NH) 
- - - - - - 

c. 

 
NH2 C2H5 CH3 -7.8 

2.091 

(NH) 
- - - - - - - 

d. 

 
NH2 C3H7 CH3 -7.9 

2.045 

(NH) 
- - - - - - - 

e. 

 
NH2 CH3 C2H5 -7.9 

2.235 

(NH) 

2.447 

(NH) 
- - - - - - 

f. 

 
NH2 CH3 C3H7 -8.0 

1.991 

(NH) 
- - - - - - - 

13. CH3 NH2 CH3 -7.7         

a. C2H5 NH2 CH3 -7.9 
2.234 

(NH) 

2.454 

(NH) 
- - - - - - 

b. C3H7 NH2 CH3 -8.3 
2.273 

(NH) 

2.423 

(NH) 
- - - - - - 

c. CH3 CH2NH2 CH3 -7.8 
2.013 

(NH) 
- - - - - - - 

d. CH3 C2H4NH2 CH3 -8.0 
2.048 

(NH) 
- - - - - - - 

e. CH3 NH2 C2H5 -7.7 
2.021 

(NH) 
- - - - - - - 

f. CH3 NH2 C3H7 -8.4 
2.131 

(NH) 

2.466 

(NH) 
- - - - - - 

14. CH3 CH3 NH2 -7.7         

a. C2H5 CH3 NH2 -7.9 
2.299 

(NH) 

2.418 

(NH) 
- - - - - - 

b. C3H7 CH3 NH2 -7.9 
2.299 

(NH) 

2.418 

(NH) 
- - - - - - 

c. CH3 C2H5 NH2 -7.8 
2.195 

(NH) 

2.486 

(NH) 
- - - - - - 

d. CH3 C3H7 NH2 -8.2 
2.169 

(NH) 

2.486 

(NH) 
- - - - - - 

e. CH3 CH3 
CH2N

H2 
-8.0 

1.995 

(NH) 
- - - - - - - 



f. CH3 CH3 
C2H4N

H2 
-8.4 

2.032 

(NH) 
- - - - - - - 

15. CH3 CH3 OH -7.9         

a. C2H5 CH3 OH -8.8 
2.094 

(NH) 

2.468 

(NH) 

2.213 

(OH) 
- - - - - 

b. C3H7 CH3 OH -8.6 
2.424 

(NH) 

2.405 

(NH) 

2.036 

(OH) 
- - - - - 

c. CH3 C2H5 OH -8.2 
2.206 

(NH) 
- 

2.187 

(OH) 
- - - - - 

d. CH3 C3H7 OH -8.8 
2.100 

(NH) 

2.478 

(NH) 
- - - - - - 

e. CH3 CH3 
CH2O

H 
-8.5 

1.995 

(NH) 
- 

2.212 

(OH) 

 

- - - - - 

f. CH3 CH3 
CH2O

H 
-9.1 

2.133 

(NH) 

2.484 

(NH) 

2.170 

(OH) 
- - - - - 

16. CH3 OH CH3 -8.0         

a. C2H5 OH CH3 -8.2 
2.236 

(NH) 

2.425 

(NH) 
- - - - - - 

b. C3H7 OH CH3 -8.7 
2.229 

(NH) 

2.383 

(NH) 
- - - - - - 

c. CH3 CH2OH CH3 -8.1 
2.205 

(NH) 

2.460 

(NH) 
- - - - - - 

d. CH3 C2H4OH CH3 -8.1 
2.158 

(NH) 
- - - - - - - 

e. CH3 OH C2H5 -7.9 
2.041 

(NH) 
- - - - - - - 

f. CH3 OH C3H7 -8.1 
1.972 

(NH) 
- - - - - - - 

17. OH CH3 CH3 -7.9         

a. CH2OH CH3 CH3 -7.4 - - - 
1.837 

(OH) 
1.808 
(OH) 

1.837 

(NH) 
- - 

b. 
C2H4O

H 
CH3 CH3 -8.6 

2.054 

(NH) 
- - - - - - - 

c. OH C2H5 CH3 -7.7 
2.155 

(NH) 
- - - - - - - 

d. OH C3H7 CH3 -7.9 
2.006 

(NH) 
- - - - - - - 

e. OH CH3 C2H5 -8.0 
2.035 

(NH) 
- - - - - - - 

f. OH CH3 C3H7 -8.1 
1.989 

(NH) 
- - - - - - - 

18. OH NH2 NH2 -10.2         

a. CH2OH NH2 NH2 -7.8 

2.216 

(NH) 

2.250 

(OH) 

- 
2.263 

(NH2) 
- - - - - 

b. 
C2H4O

H 
NH2 NH2 -8.3 

2.260 

(NH) 

2.409 

(NH) 

2.205 

(NH2) 
- - - - - 

c. OH CH2NH2 NH2 -9.3 - 
1.947 

(OH) 
- 

1.887 
(NH3

+) 
- - - 

2.073 

(NH) 

d. OH C2H4NH2 NH2 -8.4 - 
2.079 

(OH) 
- 

1.779 
(NH3

+) 
- 

2.203 

(NH3) 
1.785 
(NH3) 

2.093 

(NH) 

e. OH NH2 
CH2N

H2 
-7.6 - 

2.169 

(OH) 
- 

1.615 
(NH3

+) 
- - - 

1.872 

(NH) 



f. OH NH2 
C2H4N

H2 
-7.5 

2.007 

(NH) 
- - - - - - - 

19. CH3 NH2 OH -7.7         

a. C2H5 NH2 OH -7.8 
2.042 

(NH) 
- - - - - - - 

b. C3H7 NH2 OH -8.1 
2.080 

(NH) 
- - - - - - - 

c. CH3 CH2NH2 OH -7.6 - - 

1.970 

(OH) 

1.58 
(NH3

+) 

1.946 

(OH) 
- - 

1.841 
(NH3

+) 

2.054 

(NH) 

d. CH3 C2H4NH2 OH -7.3 
2.332 

(NH) 

2.445 

(NH) 

2.243 

(OH) 
- - - - - 

e. CH3 NH2 
CH2O

H 
-8.4 

2.150 

(NH) 
- 

2.077 

(OH) 
- - - - - 

f. CH3 NH2 
CH2O

H 
-8.0 

2.096 

(NH) 
- - - - - - - 

20. NH2 CH3 OH -7.6         

a. 
CH2NH

2 
CH3 OH -8.4 

2.348 

(NH) 

2.381 

(NH) 

1.952 

(OH) 
- - - - - 

b. 
C2H4N

H2 
CH3 OH -6.6 

- 

 

2.013 

(NH) 

2.089 

(OH) 
- -  - - 

c. NH2 C2H5 OH -8.4 
2.285 

(NH) 

2.444 

(NH) 
- - - - - - 

d. NH2 C3H7 OH -7.9 
2.155 

(NH) 

2.465 

(NH) 
- - - - - - 

e. NH2 CH3 
CH2O

H 
-8.4 

2.237 

(NH) 
- 

1.774 

(OH) 
- - - - - 

f. NH2 CH3 
CH2O

H 
-8.7 

1.996 

(NH) 
- 

1.833 

(OH) 
- - - - - 

 

Table11: Docking score of the interactions between different analogs and the residues with 

PDB ID 1MLW, along with their distances from the interacting groups 

 

 

 
 

Fig12: Structure of BH2 showing positions 4, 5 and 6 

 

 

 

 

 



COM

POU

ND 

POSIT

ION 

 4 

POSI

TION 

 5 

POSI

TION 

 6 

DOCK

ING 

SCOR

E 

                                  RESIDUES and DISTANCE (Å) 

GLU 

317 

TYR 

125 

GLU 

340 

THR 

265 

THR 

368 

PRO 

266 

THR 

367 

GLY 

333 

SER 

337 

SER 

336 

21. OH OH NH2 -9.2           

a. 

 

CH2O

H 

OH NH2 -9.4 2.004 

(NH2) 

- - 1.863 

(NH) 

1.759 

(OH) 

2.185 

(NH) 

- - - - - 

 

b. 

C2H4O

H 

OH NH2 -7.7 1.890 

(NH2) 

- - 2.006 

(NH) 

1.899 

(OH) 

2.163 

(NH) 

- - - - - 

 

c. 

OH CH2O

H 

NH2 -9.2 2.477 

(NH2) 

2.323 

(NH) 

- - - - - - - - 

 

d. 

OH C2H4

OH 

NH2 -8.3 2.181 

(NH2) 

- - 1.952 

(NH) 

2.133 

(OH) 

2.079 

(NH) 

- - 1.961 

(OH) 

- - 

 

e. 

OH OH CH2N

H2 

-9.1 - 2.445 

(NH2) 

- 1.832 

(OH) 

2.108 

(NH) 

2.068 

(NH) 

1.985 

2.167 

(OH) 

- - - 

 

f. 

OH OH C2H4

NH2 

-9.1 - 2.092 

(NH2) 

1.918 

1.514 

(OH) 

1.820 

(OH) 

- 2.268 

(NH) 

- - 2.029 

(OH) 

- 

22. OH NH2 NH2 -7.8           

a. 

 

CH2O

H 

NH2 NH2 -6.8 - - - 1.772 

(NH) 

2.294 

(NH) 

- - - - - 

b. 

 

C2H4O

H 

NH2 NH2 -6.5 - - - 2.259 

(OH) 

1.762 

(NH2) 

- - 2.041 

(OH) 

1.833 

(NH2) 

- - 

c. 

 

OH CH2N

H2 

NH2 -7.8 - 2.058 

(NH2) 

- 2.195 

(NH) 

2.350 

(NH) 

- - - - - 

d. 

 

OH C2H4

NH2 

NH2 -6.8 2.158 

(NH2) 

- - 2.081 

(NH) 

2.220 

(NH) 

1.980 

(OH) 

- - - - 

e. 

 

OH NH2 CH2N

H2 

-7.9 1.928 

(NH2) 

- 1.821 

(OH) 

- - - - - 1.797 

(OH) 

- 

f. 

 

OH NH2 C2H4

NH2 

-10.1 - 1.951 

(NH2) 

1.906 

(OH) 

- - 2.028 

(NH) 

- - 1.895 

(OH) 

- 

23. NH2 OH NH2 -7.8           

a. 

 

CH2N

H2 

OH NH2 -8.0 - 2.054 

(NH2) 

- 2.072 

(NH) 

2.298 

(NH) 

- - - - - 

b. 

 

C2H4N

H2 

OH NH2 -6.9 1.866 

(NH2) 

- - - - - - - 2.204 

( NH2) 

1.947 

(NH2) 

c. 

 

NH2 CH2O

H 

NH2 -9.5 2.011 

(NH2) 

1.866 

(OH) 

- - 2.253 

1.912 

(NH) 

1.778 

(OH) 

2.112 

(NH) 

- - - - - 

d. 

 

NH2 C2H4

OH 

NH2 -7.1 2.315 

(NH2) 

- - 2.450 

(NH) 

1.908 

(OH) 

2.232 

(NH) 

1.959 

(NH) 

- - - - 

e. 

 

NH2 OH CH2N

H2 

-7.9 - - 1.975 

(NH2) 

2.343 

- 2.131 

(OH) 

- 2.177 

(OH) 

-- 1.897 

(OH) 

- 



 

 

 

Table12: Docking score of the interactions between different analogs and the residues with 

PDB ID 1MLW, along with their distances from the interacting groups 

 

 

 

 

 

 

 

1.887 

(OH) 

f. 

 

NH2 OH C2H4

NH2 

-7.9 - 2.080 

(NH) 

1.752 

(NH2) 

2.134 

(OH) 

- 1.920 

(NH) 

- - 1.925 

(NH2) 

- 

24. CH3 OH NH2 -7.9           

a. 

 

C2H5 OH NH2 -7.0 - - - 1.923 

(NH) 

2.126 

(OH) 

2.039 

(NH) 

- - - - - 

b. 

 

C3H7 OH NH2 -8.7 - 1.831 

(NH2) 

1.918 
(NH3

+) 

1.812 

(OH) 

 

1.807 

(NH) 

1.726 
(NH3

+) 

- - - - - 

c. 

 

CH3 CH2O

H 

NH2 -7.5 2.004 
(NH3

+) 

- - 1.837 

(NH) 

1.803 

(OH) 

2.170 

(NH) 

- - - - - 

d. 

 

CH3 C2H4

OH 

NH2 -7.7 1.814 

(OH) 

- - 1.815 

(NH) 

2.403 

(NH) 

1.869 

(OH) 

- - - - 

e. 

 

CH3 OH CH2N

H2 

-7.4 1.791 

(NH) 

- 1.665 
(NH3

+) 

1.616 

(OH) 

- 

 

- - - - - - 

f. 

 

CH3 OH C2H4

NH2 

-7.3 - - 1.860 
(NH3

+) 

- 1.746 
(NH3

+) 

2.179 

(OH) 

- - - - 

25. OH CH3 NH2 -7.8           

a. 

 

CH2O

H 

CH3 NH2 -7.8 2.270 

(NH2) 

- - 1.851 

(NH) 

1.949 

(OH) 

2.406 

(NH) 

- - - - - 

b. 

 

C2H4O

H 

CH3 NH2 -6.9 1.757 

(OH) 

1.793 

(OH) 

- 2.027 

(NH) 

2.309 

(NH) 

- - - - - 

c. 

 

OH C2H5 NH2 -7.9 1.973 

(NH2) 

- - 1.838 

(NH) 

2.433 

(NH) 

- - - - - 

d. 

 

OH C3H7 NH2 -7.8 1.970 

(OH) 

- - 1.793 

(NH) 

2.392 

(NH) 

- - - - - 

e. 

 

OH CH3 CH2N

H2 

-7.7 - 2.093 

(NH) 

- 1.853 

(NH) 

2.147 

(NH) 

- - - - - 

f. 

 

OH CH3 C2H4

NH2 

-7.3 - - - 1.777 

(NH) 

2.324 

(NH) 

- - - - - 



All the 108 compounds were found to show interactions with tryptophan hydroxylase enzyme 

residues: Tyr125, Leu236, Thr265, Pro266, Glu317, Gly333, Ser336, Ser337, Glu340, Thr367 

and Thr368. Interactions with these residues were within a range:  

However table12 suggests that compounds with substituted groups at positions 1, 2 and 3 

interacted with residues and Thr367, Gly333 and Ser336 whereas table13 suggests that 

compounds with substituted groups at positions 4, 5 and 6 interacted with residue Leu236. Rest 

interacting residues were the same.  

The docking poses of all the compounds show that they bind in a very similar pattern with the 

active site of tryptophan hydroxylase and the best results obtained with docking scores were -9.3 

for compound 18 (c), -9.4 for compound 21 (a), -9.5 for compound 23 (c) and -10.1 for 

compound 22 (f).  

Compound 18 (c) show 4 hydrogen bond interactions: 2 with Glu340, 1 with Tyr125 and 1 with 

Pro266 (fig 18).  

 

 
 

Fig18: Interactions between compound 18(c) and 1 MLW 

 

Compound 21 (a) show 4 hydrogen bond interactions: 1 with Thr368, 3 with Thr265 and 1 with 

Glu317. Compound 23 (c) show 6 hydrogen bond interactions: 3 with Thr265, 2 with Glu317 

and 1 with Thr368.  

Compound 22 (f) show 6 hydrogen bond interactions: 2 with Glu340, remaining each with 

Ser337, Thr265, Pro266 and Tyr125 (fig 19). 

 



 
 

Fig19: Interactions between compound 22(f) and 1MLW 

 

Also, based on the glide scores it can be inferred that –OH, -NH2, -NH2 substitutions at positions 

1, 2, 3 and 4, 5, 6 in compounds 18 (c) and 22 (f) respectively; -OH, -OH, -NH2 at positions 4, 5, 

6 in compound 21 (a) and –NH2, -OH, -NH2 at same positions in compound 23 (c) with mainly 

long and branched chain increased the affinity. Further the presence of –NH2 and –OH assisted in 

hydrogen bond interaction with Thr265, Thr368, Glu340, Glu317, Ser337, Tyr125 and Pro266 as 

shown in fig 20. 

 

 
   18 (c)      21 (a) 



 
   23 (c)      22 (f) 

 

Fig20: Ligand interaction diagram of compounds 18(c), 21(a), 23(c) and 22(f) with pdb id 

1MLW 

         

S.NO LIGANDS 
DOCKING 

SCORE 

Thr 265 

DISTANCE (Ǻ) 

Pro 266 

DISTANCE (Ǻ) 

1. 23 (d) -7.1 2.450 1.959 

2. 18 (d) -8.4 2.203 2.093 

 

Table13: Docking score and distances of the interacting residues of the compounds 23(d) 

and 18(d) with pdb id 1MLW 

 

 
                                            23(d)                                                           18(d) 

 

Fig21: Ligand interaction diagram of compounds 23(d) and 18(d) with pdb id 1MLW 

 

 

 



The table suggests that, the distance between H atom of the compound 23(d) and O atom of  

Thr265 is 2.450 and 2.203 for compound 18(d) for a docking score of -7.1 and -8.4 respectively. 

It means that the docking score improved with a decrease in distance between Thr265 and O 

atom of the compound. 

However, the distance between H atom of the compound 23(d) and O atom of Pro266 is 1.959 

and 2.093 for compound 18(d). So, the docking score improved with an increase in distance 

between Pro266 and O atom of the compound. 

This suggests that distance between O atom of Thr265 should be minimized and distance 

between O atom Pro266 and H atom of the compounds should be maximized in order to improve 

the binding affinity between the compounds and residues Thr265 and Pro266 of the protein as 

we know that the binding affinity improves with the improved docking score.  

 

S.NO LIGANDS 
DOCKING 

SCORE 

Thr 265 

DISTANCE (Ǻ) 

Tyr 125 

DISTANCE (Ǻ) 

1. 22 (c) -7.8 2.195 2.058 

2. 23 (a) -8.0 2.072 2.054 

3. 24 (b) -8.7 1.807 1.831 

 

Table14: Docking score and distances of the interacting residues of the compounds 22(c), 

23(a) and 24(b) with pdb id 1MLW 

 

 
                                  22 (c)                                                                                    23(a) 



 
24(b) 

 

Fig22: Ligand interaction diagram of compounds 22(c), 23(a) and 24(b) with pdb id 1MLW 

 

The table suggests that, the docking score improved with a decrease in distance between Thr265 

and O atom of the compound. Similarly, the docking score improved with decrease in distance 

between Tyr125 and O atom of the compound. 

Thus, the distance between O atom of Thr265 and Tyr125 should be minimized in order to 

improve the binding affinity between the compounds and residues Thr265 and Tyr125 of the 

protein as we know that the binding affinity improves with the improved docking score.  

 

S.NO LIGANDS 
DOCKING 

SCORE 

Thr 368 

DISTANCE (Ǻ) 

Pro 266 

DISTANCE (Ǻ) 

1. 23 (d) -7.1 2.232 1.959 

2. 19 (c) -7.6 1.841 2.054 

3. 18 (d) -8.4 1.785 2.093 

 

Table15: Docking score and distances of the interacting residues of the compounds 23 (d), 

19 (c) and 18 (d) with pdb id 1MLW 

 



 
23(d)                                                          19(c) 

 

 
18(d) 

 

Fig23: Ligand interaction diagram of compounds 23(d), 19(c) and 18(d) with pdb id 1MLW 

 

The table suggests that the docking score improved with a decrease in distance between Thr368 

and O atom of the compound. 

However, the docking score improved with an increase in distance between Pro266 and O atom 

of the compound. This suggests that distance between O atom of Thr368 should be minimized 

and distance between O atom Pro266 and H atom of the compounds should be maximized in 

order to improve the binding affinity between the compounds and residues Thr368 and Pro266 of 

the protein as we know that the binding affinity improves with the improved docking score. 

 

 

  

 



S.NO LIGANDS 
DOCKING 

SCORE 

Thr 368 

DISTANCE (Ǻ) 

Tyr 125 

DISTANCE (Ǻ) 

1. 22 (c) -7.8 2.350 2.058 

2. 23 (a) -8.0 2.298 2.054 

3. 24 (b) -8.7 1.726 1.831 

 

Table16: Docking score and distances of the interacting residues of the compounds 22 (c), 

23 (a) and 24 (b) with pdb id 1MLW 

 

 
                                  22(c)                                                                 23(a) 

 

 

 
24(b) 

 

Fig24: Ligand interaction diagram of compounds 22(c), 23(a) and 24(a) with pdb id 1MLW 

 



The table suggests that, the docking score improved with a decrease in distance between Thr368 

and O atom of the compound. Similarly, the docking score improved with decrease in distance 

between Tyr125 and O atom of the compound. 

Thus, the distance between O atom of Thr368 and Tyr125 should be minimized in order to 

improve the binding affinity between the compounds and residues Thr368 and Tyr125 of the 

protein as we know that the binding affinity improves with the improved docking score.  

                                                                                                                         

S.NO LIGANDS 
DOCKING 

SCORE 

Leu 236 

DISTANCE (Ǻ) 

Tyr 125 

DISTANCE (Ǻ) 

1. 18 (b) -8.3 2.205 2.409 

2. 8 (b) -8.4 2.152 2.392 

 

Table17: Docking score and distances of the interacting residues of the compounds 18(b) 

and 8(b) with pdb id 1MLW 

 

 
                                    18(b)                                                                                              8(b) 

 

Fig25: Ligand interaction diagram of compounds 18(b) and 8(b) with pdb id 1MLW 

The table suggests that, the docking score improved with a decrease in distance between Leu236 

and O atom of the compound. Similarly, the docking score improved with decrease in distance 

between Tyr125 and O atom of the compound. 

Thus, the distance between O atom of Leu236 and Tyr125 should be minimized in order to 

improve the binding affinity between the compounds and residues Leu236 and Tyr125 of the 

protein as we know that the binding affinity improves with the improved docking score.    

      

S.NO LIGANDS 
DOCKING 

SCORE 

Glu 340 

DISTANCE (Ǻ) 

Tyr 125 

DISTANCE (Ǻ) 

1. 23 (f) -7.9 1.752 2.080 

2. 24 (b) -8.7 1.918 1.831 

 

Table18: Docking score and distances of the interacting residues of the compounds 23(f) 

and 24(b) with pdb id 1MLW 

 



 
                                         23(f)                                                                                  24(b) 

 

Fig26: Ligand interaction diagram of compounds 23(f) and 24(b) with pdb id 1MLW 

The table suggests that the docking score improved with a decrease in distance between Tyr125 

and O atom of the compound. 

However, the docking score improved with an increase in distance between Glu340 and O atom 

of the compound. 

This suggests that distance between O atom of Tyr125should be minimized and distance between 

O atom Glu340 and H atom of the compounds should be maximized in order to improve the 

binding affinity between the compounds and residues Tyr125 and Glu340 of the protein as we 

know that the binding affinity improves with the improved docking score.  

                              

        

S.NO LIGANDS 
DOCKING 

SCORE 

Leu 236 

DISTANCE (Ǻ) 

Glu 317 

DISTANCE (Ǻ) 

1. 18 (a) -7.8 2.263 2.216 

2. 18 (b) -8.3 2.205 2.260 

3. 8 (b) -8.4 2.152 2.310 

 

Table19: Docking score and distances of the interacting residues of the compounds 18(a), 

18(b) and 8(b) with pdb id 1MLW 

 



 
                                     18(a)                                                                                     18(b) 

 

 
8(b) 

 

Fig27: Ligand interaction diagram of compounds 18(a), 18(b) and 8(b) with pdb id 1MLW 

 

The table suggests that the docking score improved with a decrease in distance between Leu236 

and O atom of the compound. 

However, the docking score improved with an increase in distance between Glu317and O atom 

of the compound. 

This suggests that distance between oxygen (O) atom of Leu236 should be minimized and 

distance between O atom Glu317 and H atom of the compounds should be maximized in order to 

improve the binding affinity between the compounds and residues Leu236 and Glu317 of the 

protein as we know that the binding affinity improves with the improved docking score.  

 

 

 

 

 

 

 



S.NO LIGANDS 
DOCKING 

SCORE 

Glu 340 

DISTANCE (Ǻ) 

Pro 266 

DISTANCE (Ǻ) 

1. 18 (e) -7.6 1.615 1.872 

2. 23 (f) -7.9 1.752 1.920 

3. 18 (d) -8.4 1.779 2.093 

 

Table20: Docking score and distances of the interacting residues of the compounds 18(e), 

23(f) and 18(d) with pdb id 1MLW 

 

 
18(e)                                                                     23(f) 

 

 
18(d) 

 

Fig28: Ligand interaction diagram of compounds 18(e), 23(f) and 18(d) with pdb id 1MLW 



The table suggests that, the docking score improved with an increase in distance between Glu340 

and O atom of the compound. Similarly, the docking score improved with decrease in distance 

between Pro266 and O atom of the compound. 

Thus, the distance between O atom of Glu340 and Pro266 should be minimized in order to 

improve the binding affinity between the compounds and residues Glu340 and Pro266 of the 

protein as we know that the binding affinity improves with the improved docking score.  

   

2. Pharmacophore modeling analysis 

 

From the docking analysis of these compounds with modifications at positions 1 to 6, we have 

screened out following 24 common compounds on the basis of their highest G scores and were 

inspected to identify a target pharmacophore: 

 

 
 

Fig11: Structure of BH2 showing positions 1, 2 and 3 

 

 
 

Fig12: Structure of BH2 showing positions 4, 5 and 6 

 

COMPOUND POSITION 1 POSITION 2 POSITION 3 
G SCORE 

1DMW 1MLW 

1. C2H5 NH2 NH2 -7.7 -7.8 

2. C3H7 NH2 NH2 -8.1 -8.3 

3. CH3 CH2NH2 NH2 -8.0 -9.3 

4. CH3 C2H4NH2 NH2 -9.1 -8.4 

5. CH3 NH2 CH2NH2 -8.5 -7.6 

6. CH3 NH2 C2H4NH2 -8.4 -7.5 

7. C2H5 OH OH -7.8 -8.3 

8. C3H7 OH OH -8.4 -8.4 

9. CH3 CH2OH OH -8.3 -7.8 

10. CH3 C2H4OH OH -8.8 -8.1 

11 CH3 OH CH2OH -8.1 -7.8 

12. CH3 OH C2H4OH -8.7 -8.4 

13. CH2OH NH2 NH2 -8.0 -8.2 



14. C2H4OH NH2 NH2 -8.1 -8.1 

15. OH CH2NH2 NH2 -8.4 -8.5 

16. OH C2H4NH2 NH2 -8.6 -8.5 

17. OH NH2 CH2NH2 -8.6 -8.8 

18. OH NH2 C2H4NH2 -9.3 -8.9 

COMPOUND POSITION 4 POSITION 5 POSITION 6 1DMW 1MLW 

19. CH2OH NH2 NH2 -8.1 -6.8 

20. C2H4OH NH2 NH2 -8.4 -6.5 

21. OH CH2NH2 NH2 -7.9 -7.8 

22. OH C2H4NH2 NH2 -8.2 -6.8 

23. OH NH2 CH2NH2 -8.9 -7.9 

24. OH NH2 C2H4NH2 -9.1 -10.1 

 

Table21: List of compounds used to perform pharmacophores modeling along with their 

Gscore with PDB ID’s 1DMW and 1MLW 

 

 

To obtain the common pharmacophore features, the dataset were divided into active and inactive 

sets by using Gscore as activity of these molecules. Molecules with binding affinity values 

higher than 0.905 were considered to be active and those less than 0.905 were considered to be 

inactive. Hypotheses emerging from this process were subsequently scored and the hypotheses 

that survived the scoring process were used to build an atom-based QSAR model. A total of 387 

four point hypotheses were obtained after completion of the scoring process. Focusing only on 

those pharmacophore models whose scores ranked in the top 1% of the actives, two hypotheses 

were selected.  

 

Hypotheses 1: 

Hypotheses 1 with survival-inactive score of 1.396 is shown in table 22. Pharmacophore features 

which were identified as common to all the 24 compounds were: A (H bond acceptor), D (H 

bond donator) as shown in Fig 30. 

 

ID Surviva

l 

Surviva

l -

inactive 

Post

-hoc 

Site Vecto

r 

Volum

e 

Selectivit

y 

Energ

y 

activit

y 

AADD.52

9 

3.414 1.396 3.41

5 

0.7

7 

0.904 0.739 0.78 2.93 0.968 

 

Table22: Details of the hypotheses (AADD) 

 

 



 
 

Fig29: PHASE hypotheses that yielded the common pharmacophore features (AADD) 

 

 

 

Entry  Site1  Site2  Site3  Angle 

AADD.529  A2  A3  D8 28.9 

AADD.529  A2  A3  D6 114.9 

AADD.529  D8  A3  D6 114.8 

AADD.529  A3  A2  D8 125.8 

AADD.529  A3  A2  D6 29.8 

AADD.529  D8  A2  D6 123.7 

AADD.529  A3  D8  A2 25.3 

AADD.529  A3  D8  D6 19 

AADD.529  A2  D8  D6 33.1 

AADD.529  A3  D6  A2 35.3 

AADD.529  A3  D6  D8 46.1 

AADD.529  A2  D6  D8 23.2 

     

Table23: Site measurements for angles for AADD 

 

Entry Site1 Site2      Distance 

AADD.529  A3  A2 2.874 

AADD.529  A3  D8 5.455 

AADD.529 A3  D6 2.467 

AADD.529 A2  D8 3.251 

AADD.529 A2  D6 4.507 

AADD.529 D8  D6 6.867 

 

Table24: Site measurements for angles for AADD 



 

 
 

Fig30: Site measurements for QSAR model (AADD) 

 

Then the QSAR model was built using 4 PLS factors by randomly selecting 20 compounds as 

training sets and rest 4 as test sets as shown in table 25. 

 

Ligand 

Name 

 

QSAR Set 

 

Activity 

 

# Factors 

 

Predicted 

Activity 

 

Pharm 

Set 

 

Fitness 

 

1. 
test 

 

0.892 

 

1 

2 

3 

4 

 

0.92 

0.93 

0.92 

0.91 

 

inactive 

 

1.15 

 

2. 
training 

 

0.919 

 

1 

2 

3 

4 

 

0.93 

0.93 

0.92 

0.92 

 

active 

 

1.16 

 

3. 
training 

 

0.968 

 

1 

2 

3 

4 

 

0.95 

0.94 

0.94 

0.95 

 

active 

 

3 

 

4. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.94 

0.94 

0.93 

0.93 

 

active 

 

2.88 

 

5. 
training 

 

0.881 

 

1 

2 

3 

4 

 

0.89 

0.89 

0.88 

0.88 

 

inactive 

 

2.42 

 



6. 
training 

 

0.875 

 

1 

2 

3 

4 

 

0.89 

0.89 

0.89 

0.89 

 

inactive 

 

2.4 

 

7. 
test 

 

0.892 

 

1 

2 

3 

4 

 

0.92 

0.93 

0.92 

0.91 

 

inactive 

 

1.16 

 

8. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.93 

0.93 

0.92 

0.91 

 

active 

 

1.15 

 

9. 
training 

 

0.919 

 

1 

2 

3 

4 

0.95 

0.94 

0.94 

0.94 

 

active 

 

2.99 

 

10. 
training 

 

0.944 

 

1 

2 

3 

4 

 

0.94 

0.94 

0.94 

0.94 

 

active 

 

2.88 

 

11. 
training 

 

0.908 

 

1 

2 

3 

4 

 

0.90 

0.91 

0.91 

0.92 

 

active 

 

2.42 

 

12. 
training 

 

0.94 

 

1 

2 

3 

4 

 

0.90 

0.91 

0.92 

0.93 

 

active 

 

2.4 

 

13. 
training 

 

0.903 

 

1 

2 

3 

4 

 

0.92 

0.90 

0.91 

0.91 

 

inactive 

 

2.68 

 

14. 
training 

 

0.908 

 

1 

2 

3 

4 

 

0.92 

0.90 

0.91 

0.91 

 

active 

 

2.64 

 

15. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.92 

0.91 

0.92 

0.92 

 

active 

 

2.66 

 



16. 
training 

 

0.934 

 

1 

2 

3 

4 

 

0.93 

0.94 

0.94 

0.93 

 

active 

 

2.71 

 

17. 
training 

 

0.934 

 

1 

2 

3 

4 

 

0.93 

0.95 

0.95 

0.94 

 

active 

 

2.38 

 

18. 
training 

 

0.968 

 

1 

2 

3 

4 

 

0.94 

0.96 

0.97 

0.97 

 

active 

 

2.35 

 

19. 
training 

 

0.908 

 

1 

2 

3 

4 

 

0.91 

0.91 

0.90 

0.91 

 

active 

 

2.38 

 

20. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.92 

0.92 

0.92 

0.92 

 

active 

 

2.25 

 

21. 
test 

 

0.898 

 

1 

2 

3 

4 

 

0.92 

0.92 

0.92 

0.91 

 

inactive 

 

2.3 

 

22. 
training 

 

0.914 

 

1 

2 

3 

4 

 

0.92 

0.91 

0.91 

0.92 

 

active 

 

2.48 

 

23. 
training 

 

0.949 

 

1 

2 

3 

4 

 

0.95 

0.95 

0.95 

0.95 

 

active 

 

2.7 

 

24. 
test 

 

0.959 

 

1 

2 

3 

4 

 

0.94 

0.94 

0.94 

0.95 

 

active 

 

2.7 

 

 

Table25:  Alignment of hypotheses with other ligands (AADD) 

 

 

 



(i)      Analysis of 3D-QSAR Model: validation of pharmacophore modeling:  

Reliable predictions can only come from statistically validated QSAR model. There are several 

statistical parameters such as Leave-n-out cross validation for training set (R
2
), Leave-n-out 

cross validation for test set (Q
2
), standard deviation (SD), root mean square error (RMSE),  

variance ratio (F) that can evaluate the robustness of a QSAR model as shown in table 26. 

  

ID 

 

# Factors 

 

SD 

 

R-squared 

 

F 

 

Stability 

 

RMSE 

 

Q-squared 

 

AADD.529 

 

1 0.0165 0.5551 22.5 0.7742 0.0272 0.0733 

2 0.0129 0.7419 24.4 0.6009 0.0279 0.0265 

3 0.012 0.791 20.2 0.7487 0.023 0.3375 

4 

 

0.0108 

 

0.8405 

 

19.8 

 

0.5659 

 

0.0154 

 

0.7017 

 

 

Table26: QSAR results (AADD) 

 

High R
2 

is necessary but not sufficient condition for a predictive QSAR model. So, besides high 

R
2
, best QSAR model should be chosen based on its predictive ability, so, the best model should 

have high Q
2 

also [62]. Thus, hypotheses1 shows good R
2 

value, predictive (Q
2
) value and lowest 

RMSE value.  

 

(ii)        Analysis of scatter plot of 3-D QSAR Model 

The established QSAR model gave high slope of regression lines. The performance of the QSAR 

model on the training and test set molecules is shown in fig 31. 

The solid line in the test set plot indicates the hypothetical ‘‘best fit’’ line between the predicted 

and experimental binding affinity values, BA (Kcal). The scatter plot indicates a good correlation 

between the predicted and experimental affinities with r
2
=0.85 and equation: y=0.74x + 0.24 

 



 
 

Fig31: Scatter plot for the QSAR model (AADD) 

 

(iii)        Analysis of atom based PHASE 3-D QSAR model 

Additional insight into the binding activity can be gained by visualizing the QSAR model and 

identifying the most significant favorable and unfavorable features. The blue cubes are the 

features, important for the activity of the molecule and the red cubes are those indicating its 

potential for low activity as shown in fig 33. Thus, we can identify the features important for the 

interaction between ligands and their target protein. This is known as contribution map, and they 

allow identification of those positions that require a particular physiochemical property to 

enhance the bioactivity of a ligand. 

 

 
features responsible for high activity 

features responsible for low activity 

 

Fig32: QSAR model visualized in context of the best fit molecule in the training set (AADD) 

 

 



Hypotheses 2: 

Hypotheses 2 with survival-inactive score of 1.086 is shown in table 27. Pharmacophore features 

which were identified as common to all the 24 compounds were: A (H bond acceptor), D (H 

bond donator), R (aromatic ring) as shown in Fig 33. 

 

ID 
Surviva

l 

Surviva

l -

inactive 

Post-

hoc 
Site 

Vecto

r 

Volum

e 

Selectivit

y 

Energ

y 

activit

y 

AADR.

5 
2.916 1.086 

2.91

6 

0.5

4 
0.758 0.623 0.99 1.661 0.949 

 

Table27: Details of the hypotheses (AADR) 

 

 
 

Fig33: PHASE hypotheses that yielded the common pharmacophore features (AADR) 

 

Entry Site1  Site2 Distance 

AADR.5 A2  A6 2.879 

AADR.5 A2  D7 3.339 

AADR.5 A2  R15 2.8 

AADR.5 A6  D7 5.963 

AADR.5 A6  R15 2.669 

AADR.5 D7  R15 4.934 

 

Table28: Site measurements for distances for AADR 

 

Entry Site1  Site2 Site3 Angle 

AADR.5 A6  A2 D7 146.9 

AADR.5 A6  A2 R15 56 

AADR.5 D7  A2 R15 106.7 

AADR.5 A2  A6 D7 17.8 

AADR.5 A2  A6 R15 60.5 



AADR.5 D7  A6 R15 54.8 

AADR.5 A2  D7 A6 15.3 

AADR.5 A2  D7 R15 32.9 

AADR.5 A6  D7 R15 26.2 

AADR.5 A2  R15 A6 63.5 

AADR.5 A2  R15 D7 40.4 

AADR.5 A6  R15 D7 98.9 

 

Table29: Site measurements for angles for AADR 

 

 
 

Fig34: Site measurements for QSAR model (AADR) 

 

Then the QSAR model was built using 4 PLS factors by randomly selecting 20 compounds as 

training sets and rest 4 as test sets as shown in table 30. 

 

 

 

Ligand 

Name 

 

QSAR Set 

 

Activity 

 

# Factors 

 

Predicted 

Activity 

 

Pharm 

Set 

 

Fitness 

 

1. 
test 

 

0.892 

 

1 

2 

3 

4 

 

0.92  

0.91  

0.92  

0.92 

 

inactive 

 

1.41 

 

2. 
training 

 

0.919 

 

1 

2 

3 

4 

 

0.92  

0.91  

0.92  

0.92 

 

 

active 

 

1.39 

 



3. 
training 

 

0.968 

 

1 

2 

3 

4 

 

0.94 

 0.94  

0.94  

0.95 

 

active 

 

1.83 

 

4. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.92  

0.92  

0.92  

0.92 

 

active 

 

1.59 

 

5. 
training 

 

0.881 

 

1 

2 

3 

4 

 

0.88  

0.89  

0.89  

0.89 

 

inactive 

 

1.99 

 

6. 
training 

 

0.875 

 

1 

2 

3 

4 

 

0.92  

0.91  

0.90  

0.88 

 

inactive 

 

2.15 

 

7. 
test 

 

0.892 

 

1 

2 

3 

4 

 

0.92  

0.93  

0.92  

0.92 

 

inactive 

 

1.39 

 

8. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.93  

0.93  

0.93  

0.92 

 

active 

 

1.37 

 

9. 
training 

 

0.919 

 

1 

2 

3 

4 

 

0.94  

0.94  

0.94  

0.95 

 

active 

 

1.83 

 

10. 
training 

 

0.944 

 

1 

2 

3 

4 

 

0.94  

0.95  

0.94  

0.94 

 

active 

 

1.66 

 

11. 
training 

 

0.908 

 

1 

2 

3 

4 

 

0.88  

0.90  

0.90  

0.90 

 

active 

 

1.99 

 

12. 
training 

 

0.94 

 

1 

2 

3 

4 

 

0.93  

0.92  

0.92  

0.92 

 

active 

 

2.15 

 



13. 
training 

 

0.903 

 

1 

2 

3 

4 

 

0.91  

0.90  

0.91  

0.90 

 

inactive 

 

2.09 

 

14. 
training 

 

0.908 

 

1 

2 

3 

4 

 

0.91  

0.90  

0.91  

0.91 

 

active 

 

2.08 

 

15. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.93  

0.93  

0.93  

0.93 

 

active 

 

1.9 

 

16. 
training 

 

0.934 

 

1 

2 

3 

4 

 

0.93  

0.93  

0.93  

0.94 

 

active 

 

1.93 

 

17. 
training 

 

0.934 

 

1 

2 

3 

4 

 

0.93  

0.93  

0.94  

0.94 

 

active 

 

2.08 

 

18. 
training 

 

0.968 

 

1 

2 

3 

4 

 

0.95  

0.96 

 0.98 

 0.97 

 

active 

 

2.13 

 

19. 
training 

 

0.908 

 

1 

2 

3 

4 

 

0.92  

0.91  

0.90  

0.91 

 

active 

 

2.53 

 

20. 
training 

 

0.924 

 

1 

2 

3 

4 

 

0.92  

0.92  

0.92  

0.92 

 

active 

 

1.94 

 

21. 
test 

 

0.898 

 

1 

2 

3 

4 

 

0.92  

0.91  

0.91  

0.91 

 

inactive 

 

1.97 

 

22. 
training 

 

0.914 

 

1 

2 

3 

4 

 

0.92  

0.91  

0.91  

0.91 

 

active 

 

2.03 

 



23. 
training 

 

0.949 

 

1 

2 

3 

4 

 

0.94  

0.95  

0.95  

0.95 

 

active 

 

3 

 

24. 
test 

 

0.959 

 

1 

2 

3 

4 

 

0.94  

0.94  

0.94 

 0.94 

 

active 

 

2.88 

 

 

Table30: Alignment of hypotheses with other ligands (AADR) 

 

 

(i)      Analysis of 3D-QSAR Model: validation of pharmacophore modeling 

Reliable predictions can only come from statistically validated QSAR model. There are several 

statistical parameters such as Leave-n-out cross validation for training set (R
2
), Leave-n-out 

cross validation for test set (Q
2
), standard deviation (SD), root mean square error (RMSE),  

variance ratio(F) that can be used to evaluate the robustness of a QSAR mode as shown in table 

31.  

 

ID 

 

# Factors 

 

SD 

 

R-squared 

 

F 

 

Stability 

 

RMSE 

 

Q-squared 

 

AADR.5 

 

1 
0.0168  

 
0.5366  

 
20.8  

 
0.7038  

 
0.0249.  

 
0.2214  

 

2 0.0141 0.6896 18.9 0.4016 0.0227 0.352 

3 0.0127 0.7642 17.3 0.2699 0.0228 0.3507 

4 

 
0.0116 0.8158 16.6 0.147 0.0211 0.4421 

 

Table31: QSAR results (AADR) 

 

High R
2 

is necessary but not sufficient condition for a predictive QSAR model. So, besides high 

R
2
, best QSAR model should be chosen based on its predictive ability, so, the best model should 

have high Q
2 

also. Thus, hypotheses1 shows good R
2 

value, predictive (Q
2
) value and lowest 

RMSE value.  

 

(ii)        Analysis of scatter plot of 3-D QSAR Model 

The established QSAR model gave high slope of regression lines. The performance of the QSAR 

model on the training and test set molecules is shown in fig 35. 

The solid line in the test set plot indicates the hypothetical ‘‘best fit’’ line between the predicted 

and experimental binding affinity values, BA (Kcal). The scatter plot indicates a good correlation 

between the predicted and experimental affinities with r
2
=0.73 and equation: y=0.71x + 0.27 

 



 
 

Fig35: Scatter plot for the QSAR model (AADR) 

 

 

(iii)        Analysis of atom based PHASE 3-D QSAR model 

Additional insight into the binding activity can be gained by visualizing the QSAR model and 

identifying the most significant favorable and unfavorable features. The blue cubes are the 

features, important for the activity of the molecule and the red cubes are those indicating its 

potential for low activity as shown in fig 33. Thus, we can identify the features important for the 

interaction between ligands and their target protein. This is known as contribution map, and they 

allow identification of those positions that require a particular physiochemical property to 

enhance the bioactivity of a ligand. 

 

 

 
features responsible for high activity 

features responsible for low activity 

 

Fig36: QSAR model visualized in context of the best fit molecule in the training set (AADR) 

 



Thus, the results indicated that QSAR models possessed a high accommodating capacity; they 

may be reliable for being used to predict the activities of new derivatives. Hence, both the 

hypotheses were retained for further studies.  

 

Since the phamacophore models define the essential features of the molecules, thus they can be 

used to identify or search for novel ligands that will bind to the same receptor.  

 

 

3. Therapeutic application of cofactor analogues 

 

We have also considered a mutant phenylalanine hydroxylase (PDB ID 1TDW) in which Ala at 

position 313 is mutated with Thr in order to see the responsiveness of structurally modifies 

cofactor analogues. This is because, Phenylketonuria (PKU) patients having a subset of 

mutations in phenylalanine hydroxylase, have also shown normalization of blood phenylalanine 

level upon oral administration of cofactor. Cofactor treatment instead of a phenylalanine-

restricted diet might be possible in many patients and would be expected to improve their quality 

of life substantially [63]. Interestingly, BH4 has been administered as a pharmacological 

treatment and has been shown to reduce blood levels of phenylalanine for a segment of PKU 

patients whose genotypes lead to some residual PAH activity but have no defect in 

BH4 synthesis or regeneration. Follow-up studies also suggest that in the case of certain PheOH 

mutants, excess BH4 acts as a pharmacological chaperone to stabilize mutant enzymes with 

disrupted tetramer assembly and increased sensitivity to proteolytic cleavage and aggregation 

[64].  

 

So, finally we performed docking study of these 24 compounds with mutant phenylalanine 

hydroxylase (1TDW)  

 

 
 

Fig11: Structure of BH2 showing positions 1, 2 and 3 

 

 

 

 

 

 

 

 

 

 



COMPO

UND 

POSITI

ON 

 1 

POSITI

ON 

 2 

POSITI

ON 

 3 

DOC

KIN

G 

SCO

RE 

                  RESIDUES and DISTANCE (Å) 

GLY 

247 
(NH2) 

LEU 

249 
(NH) 

LEU 

249 

(N) 

SER 

251 
(NH3

+) 

SER 

251 
(OH) 

TYR 

377 
(NH3

+

) 

TYR 

377 
(OH) 

ALA 

322 
(NH3

+) 

ALA 

322 
(OH) 

26. CH3 NH2 NH2 -8.6          

a. C2H5 NH2 NH2 -8.5 - 1.84

2 

2.22

5 

- - - - - - 

b. C3H7 NH2 NH2 -10.8 - - - - - - - - - 

c. CH3 CH2NH

2 

NH2 -9.8 - - - - - - - - - 

d. CH3 C2H4N

H2 

NH2 -9.6 - - - - - - - - - 

e. CH3 NH2 CH2NH

2 

-7.4 - - - - - - - - - 

f. CH3 NH2 C2H4N

H2 

-9.0 - 1.76

5 

2.14

3 

- 2.17

2 

- - - - 

27. CH3 OH OH -7.9          

a. C2H5 OH OH -8.4 - 1.75

9 

2.17

1. 

- - - - - - 

b. C3H7 OH OH -8.8 - 1.75

2 

2.18

5 

- - - - - - 

c. CH3 CH2OH OH -8.5 - 1.77

1 

2.09

1 

- - - - - - 

d. CH3 C2H4O

H 

OH -9.3 - 1.81

2 

2.09

7 

- - - - - - 

e. CH3 OH CH2OH -8.7 - 1.83

6 

2.25

4 

- - - - - - 

f. CH3 OH C2H4O

H 

-9.8 - 1.72

0 

2.07

6 

- - - - - - 

28. OH NH2 NH2 -8.9          

a. CH2OH NH2 NH2 -7.0 2.010 2.00

8 

2.36

1 

- - - - - - 

b. C2H4O

H 

NH2 NH2 -6.0 - 2.09

5 

2.46

5 

- - - - 2.136 - 

c. OH CH2NH

2 

NH2 -7.5 2.204 1.79

1 

2.11

8 
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H2 
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Table32: Docking score of the interactions between different analogs and the residues with 

PDB ID 1TDW, along with their distances from the interacting groups 

 

 

 

 

 



 
 

Fig12: Structure of BH2 showing positions 4, 5 and 6 
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Table33: Docking score of the interactions between different analogs and the residues with 

PDB ID 1TDW, along with their distances from the interacting groups 

 

 

 

 

 

 

 

 

 

 

 

 

 



S.NO POSITION 1 POSITION 2 POSITION 3 1DMW 1MLW 1TDW 

1. C2H5 NH2 NH2 -7.8 -8.3 -8.5 

2. C3H7 NH2 NH2 -8.4 -8.4 -10.8 

3. CH3 CH2NH2 NH2 -8.3 -7.8 -9.8 

4. CH3 C2H4NH2 NH2 -8.8 -8.1 -9.6 

5. CH3 NH2 CH2NH2 -8.1 -7.8 -7.4 

6. CH3 NH2 C2H4NH2 -8.7 -8.4 -9.0 

7. C2H5 OH OH -8.0 -8.2 -8.4 

8. C3H7 OH OH -8.1 -8.1 -8.8 

9. CH3 CH2OH OH -8.4 -8.5 -8.5 

10. CH3 C2H4OH OH -8.6 -8.5 -9.3 

11. CH3 OH CH2OH -8.6 -8.8 -8.7 

12. CH3 OH C2H4OH -9.3 -8.9 -9.8 

13. CH2OH NH2 NH2 -7.7 -7.8 -7.0 

14. C2H4OH NH2 NH2 -8.1 -8.3 -6.0 

15. OH CH2NH2 NH2 -8.0 -9.3 -7.5 

16. OH C2H4NH2 NH2 -9.1 -8.4 -9.6 

17. OH NH2 CH2NH2 -8.5 -7.6 -7.7 

18. OH NH2 C2H4NH2 -8.4 -7.5 -8.5 

S.NO POSITION 4 POSITION 5 POSITION 6 1DMW 1MLW 1TDW 

19. CH2OH NH2 NH2 -8.1 -6.8 -10.1 

20. C2H4OH NH2 NH2 -8.4 -6.5 -9.9 

21. OH CH2NH2 NH2 -7.9 -7.8 -10.6 

22. OH C2H4NH2 NH2 -8.2 -6.8 -11.1 

23. OH NH2 CH2NH2 -8.9 -7.9 -10.4 

24. OH NH2 C2H4NH2 -9.1 -10.1 -10.7 

 

Table34: Comparison of docking scores of 24 compounds for all 3 PDB IDs (1DMW, 

1MLW, 1TDW) 

 

The table suggests that docking scores of 18 out of 24 compounds for PDB ID 1TDW were 

higher in comparison to 1DMW and 1MLW. This shows that PKU patients will also be 

responsive for these structurally modified analogues of the cofactor. Thus, we can propose that 

high-dose cofactor treatment may compensate for the decreased affinity of the mutant 

phenylalanine hydroxylase for the cofactor and can prove to be useful for the correction of 

impaired phenylalanine hydroxylation, already known as cofactor therapy [65].  



7. CONCLUSION 

 

The purpose of this study was to understand the mechanistic aspect of interaction between 

structurally modified cofactor (dihydrobiopterin) analogues with different amino acid 

hydroxylase enzymes like phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan 

hydroxylase via combined approach of ligand-recpetor docking and pharmacophores modeling. 

Most of the newly designed molecules were found to show interactions with phenylalanine 

hydroxylase enzyme residues: Arg270, Glu280, Thr278, Pro279, Gly346, Ser349, Glu353, 

Val379 and Fe425 and the best results obtained with docking scores were -9.1 for 5 (d) and 7 (f). 

Similarly, Most of the newly designed molecules were found to show interactions with 

tryptophan hydroxylase enzyme residues: Tyr125, Leu236, Thr265, Pro266, Glu317, Gly333, 

Ser336, Ser337, Glu340, Thr367 and Thr368 and the best results obtained with docking scores 

were -9.3 for compound 18 (c), -9.4 for compound 21 (a), -9.5 for compound 23 (c) and -10.1 for 

compound 22 (f).  

In addition, a pharmacophore modeling approach was applied to identify the essential features 

common to all the screened compounds on the basis of their Gscore. Different pharmacophores 

hypotheses of cofactor analogues of amino acid hydroxylases were developed using PHASE and 

alignment based on these pharmacophores hypothesis were used as input for the development of 

3D-QSAR models. A four point pharmacophore hypothesis AADD and another pharmacophore 

hypothesis AADR with correlation coefficient of 0.85 and 0.73 respectively were associated with 

a 3D-QSAR model with good statistical significance and good predictive ability.  

Further analysis of the docking results of these best screened compounds with the mutant 

phenylalanine hydoxylase enzyme suggested the therapeutic application of these compounds. 

Thus, it would be concluded that these compounds could be potential selective cofactors of 

amino acid hydroxylases that could be validated through some wet lab experimentally. The 

obtained model can also be employed for 3D search query to screen against compound libraries 

in order to identify some more scaffolds. And their backbone structure scaffold could serve as 

building blocks in designing cofactors for amino acid hydroxylases.  

Hence, Structure based drug design (docking) and Ligand based drug design (pharmacophores 

modeling) play a very important role in drug designing and produces some exciting results if 

implemented together in order to strengthen drug designing. In summary, both SBDD and LBDD 

3D-QSAR model presented in this study could be very useful for designing new molecules 

which can bind with the amino acid hydroxylase enzymes similarly as the cofactor.  

 

 

 

 

 

 

 

 

 

 
 

 



8. FUTURE PERSPECTIVE  

 
One of the main goals in drug discovery is the identification of innovative small molecular 

scaffolds exhibiting high binding affinity and selectivity for the target together with a reasonable 

absorption, distribution, metabolism, excretion and toxicity (ADMET) profile, lead and/or drug 

likeness. Such chemical entities are likely to be able to enter higher phases of the drug 

development process. Lipinski's rule of 5 is a rule of thumb to evaluate drug likeliness or to 

determine if a chemical compound with a certain pharmacological or biological activity has 

properties that would make it a likely orally active drug in humans. The rule describes molecular 

properties important for a drug’s pharmacokinetics in the human body, including its ADMET.   

Thus, in vitro approaches can be used to investigate the ADMET properties of these newly 

designed chemical entities and to optimize selection of the most suitable candidates for drug 

development.  

 

Thus, the QikProp program can be further used to obtain the ADMET properties of the 

analogues. It will predict both physically significant descriptors and pharmaceutically relevant 

properties.  

Also, virtual screening on the basis of pharmacophore model can be done in order to propose 

various drug molecules, which have all the essential features. Then wet lab synthesis of these 

compounds as well as characterization via techniques like H
1
 N.M.R and L.C.M.S can be done.  

 

Further, the acceptability of the analogues can also be evaluated as this also plays an essential 

role for rational drug design. Since, drug safety evaluation is an important issue in new drug 

discovery. Given a low success rate of drug candidates, the compounds can also be tested for 

safety as detection of potential toxicity and side effect in early stages of drug development can 

potentially save money and time by focusing resources on only those drug leads and candidates 

that are likely to be safe to patients. 
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