
1 

 

CHAPTER 1 

INTRODUCTION 

Brain tumor is one of the most lethal human diseases, with the need for novel therapies 

remaining an unmet clinical challenge. A survey on statistics of brain tumor revealed that each 

year more than 2,00,000 people in the United States are diagnosed with a primary or metastatic 

brain tumor [1]. In India, the International Agency for Research on Cancer estimated indirectly 

that about 635 000 people died from cancer in 2008, representing about 8% of all estimated 

global cancer deaths and about 6% of all deaths in India [2]. Data regarding frequencies of 

various primary brain tumors (diagnosed according to the World Health Organization (WHO) 

classification), in 3936 pediatric patients (<18 yrs of age), was collected from seven tertiary care 

hospitals in India. Brain tumors are the leading cause of solid tumor cancer death in children 

under the age of 20. They are the second leading cause of cancer death in male adults ages 20-29 

and the fifth leading cause of cancer death in female adults ages 20-39.  Metastatic brain tumors, 

cancer that spreads from other parts of the body to the brain, are the most common types of brain 

tumors. They occur in 10-15% of people with cancer. Primary brain tumors generally do not 

metastasize to other parts of the body. 

There are currently no known causes of brain tumors, however, epidemiological studies are 

ongoing. Complete and accurate data on all primary brain tumors is needed to provide the 

foundation for investigations of its causes and research leading to improved diagnosis and 

treatment.  Brain tumors have no socio-economic boundaries and do not discriminate among 

gender or ethnicity.  At this time, brain tumor research is underfunded and the public remains 

unaware of the magnitude of this disease. The cure rate for most brain tumors is significantly 

lower than that for many other types of cancer. Males have a 0.66% lifetime risk of being 

diagnosed with a primary malignant brain tumor and a 0.50% chance of dying from a brain 

tumor. Females have a 0.54% lifetime risk of being diagnosed with a primary malignant brain 

tumor and a 0.41% chance of dying from a brain tumor.  

There are over 120 different types of brain tumors, making effective treatment very complicated. 

Because brain tumors are located at the control center for thought, emotion and movement, their 
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effects on an individual's physical and cognitive abilities can be devastating. At present, brain 

tumors are treated by surgery, radiation therapy, and chemotherapy, used either individually or in 

combination. No two brain tumors are alike. Prognosis, or expected outcome, is dependent on 

several factors including the type of tumor, location, response to treatment, an individual's age, 

and overall health status. An estimated 35% of adults living with a primary malignant brain or 

CNS tumor will live five years or longer. Brain tumors in children are different from those in 

adults and are often treated differently. Although over 72% percent of children with brain tumors 

will survive, they are often left with long-term side effects. 

In the recent century, increasingly use of sophisticated laboratory tests has made diagnosis a 

sensitive and accurate issue. The use of computer technology in medical decision support is now 

widespread and pervasive across a wide range of medical area, such as brain tumor research, 

gastroenterology etc. To identify a tumor, a patient will undergo several tests. Most commonly 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are used to locate brain 

tumor. The information obtained will influence the treatment a patient will receive. Perhaps the 

most widely used clinical diagnostic and research technique is MRI. It’s an efficient medical 

imagery tool that has different methods (T1,T2, ARM, …) having each particular property and 

an effective way that enables to clarify the various tissues and to obtain a 2D, 3D and even 4D 

sight (3D+T) of a part of the body, in particular of the brain. It’s based on the principal of 

nuclear magnetic resonance (NMR).  

Actually, many medical imagery diagnosis systems have to face the problem of cells and their 

nuclei separation from the rest of the image content. As the process of separation is very 

important, much attention in the construction of the expert diagnosis system has to be paid to the 

segmentation & features extraction stage. In studying human brain, magnetic resonance imaging 

(MRI) plays an important role in progressive researches. Magnetic resonance (MR) imaging was 

introduced into clinical medicine and has ever since assumed an unparalleled role of importance 

in brain imaging. Magnetic resonance imaging is an advanced medical imaging technique that 

has proven to be an effective tool in the study of the human brain. The rich information that MR 

images provide about the soft tissue anatomy has dramatically improved the quality of brain 

pathology diagnosis and treatment. 
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1.1 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI), nuclear magnetic resonance imaging (NMRI), or magnetic 

resonance tomography (MRT) is a medical imaging technique used in radiology to visualize 

internal structures of the body in detail. MRI makes use of the property of nuclear magnetic 

resonance (NMR) to image nuclei of atoms inside the body. MRI provides good contrast 

between the different soft tissues of the body, which makes it especially useful in imaging the 

brain, muscles, the heart, and cancers compared with other medical imaging techniques such as 

computed tomography (CT) or X-rays. 

Magnetic resonance (MR) imaging is currently an indispensable diagnostic imaging technique in 

the study of the human brain [3]. It is now one of the fastest-growing areas of medical 

technology. The modalities usually used to obtained medical images are X-rays, Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound imaging. In medical 

imaging, one of the primary diagnostic and treatment evaluation tools for brain interpretation has 

been magnetic resonance imaging (MRI). It has been a widely-used method of high quality 

medical imaging, especially in brain imaging where MR’s soft tissue contrast and non 

invasiveness are clear advantages. MR images can also be used to determine normal and 

abnormal types of brain. Moreover, the MRI characteristics will help the doctor to avoid the 

human error in manual interpretation of medical content. MRI is one of the scanning devices 

which uses magnetic fields to capture images onto films. Due to its outstanding soft tissue 

contrast and detailed resolution, MRI is used in anatomical assessment of human brain 

structures.  

The MRI machine is a large, cylindrical (tube-shaped) machine that creates a strong magnetic 

field around the patient. The magnetic field, along with a radiofrequency, alters the hydrogen 

atoms' natural alignment in the body. Computers are then used to form a two-dimensional (2D) 

image of a body structure or organ based on the activity of the hydrogen atoms. Cross-sectional 

views can be obtained to reveal further details. MRI does not use radiation, as do x-rays or 

computed tomography (CT scans). 
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A magnetic field is created and pulses of radio waves are sent from a scanner. The radio waves 

knock the nuclei of the atoms in your body out of their normal position. As the nuclei realign 

back into proper position, they send out radio signals. These signals are received by a computer 

that analyzes and converts them into an image of the part of the body being examined. This 

image appears on a viewing monitor. Some MRI machines look like narrow tunnels, while others 

are more open. 

Magnetic resonance imaging (MRI) may be used instead of computed tomography (CT) in 

situations where organs or soft tissue are being studied, because bones do not obscure the images 

of organs and soft tissues, as they do in CT. Because radiation is not used, there is no risk of 

exposure to radiation during an MRI procedure. Due to the use of the strong magnet, MRI cannot 

be performed on patients with implanted pacemakers, intracranial aneurysm clips, cochlear 

implants, certain prosthetic devices, implanted drug infusion pumps, neurostimulators, bone-

growth stimulators, certain intrauterine contraceptive devices, or any other type of iron-based 

metal implants. MRI is also contraindicated in the presence of internal metallic objects such as 

bullets or shrapnel, as well as surgical clips, pins, plates, screws, metal sutures, or wire mesh. 

 

Figure 1.1: MRI machine 
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The scanning of brain in MRI machine produces images in the form of slices as shown below 

 

 

Figure 1.2: A sequence of MR image slices 
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The brain MRI images may contain both normal and defective abnormal slices. Normal and 

abnormal brain image are determined by its symmetry at the axial and coronal images. 

Asymmetry beyond a certain degree is a sure indication of the diseased brain and this has been 

exploited for initial classification at a gross level. Therefore, further examination involving MRI 

brain classification on the images is required. 

 

 

(a) 

 

(b) 
Figure 1.3: (a) Normal MRI images (b) Abnormal MRI images 

 

 

 

 

 

 

 

 

 



7 

 

 
 

Figure 1.4: Brain Tumor Infected M.R.I Image 

 

The most important advantage of MR imaging is that it is a non-invasive technique. The use of 

computer technology in medical decision support is now widespread and pervasive across a wide 

range of medical area, such as cancer research, gastroenterology, heart diseases, brain tumors, 

etc. Fully automatic normal and a pathological brain, suffering from brain lesion classification 

can be obtained from magnetic resonance images, which is a great importance for research and 

clinical studies. The rich information that MR images provide about the soft tissue anatomy has 

dramatically improved the quality of brain pathology diagnosis and treatment. However, the 

amount of data is far too much for manual interpretation and hence there is a great need for 

automated image analysis tools. Pattern recognition techniques are being increasingly employed 

in magnetic resonance imaging (MRI) data analysis.  

1.1.1 MRI Analysis using Image Processing 

The Images obtained using MRI scanning are used in Machine intelligence for detection of 

diseases like brain tumor using image processing techniques. For this algorithms are to be 

developed so that the normal & abnormal MRI Images can be classified by machine or computer. 

The MRI Image undergoes series of following steps for analysis using image processing 

techniques. 
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A). Image Segmentation & Features extraction: 

Firstly the MRI Image is segmented & features are extracted using various image processing 

techniques. Various schemes used for Image Segmentation and features extraction are: 

1) Discrete Wavelet Transformation 

2) Edge based segmentation techniques include: 

a) Roberts & Prewitt filters 

b) Sobel filters 

c) Canny Edge filters 

d)  Laplacian filters 

Features extraction schemes that can be used in above Edge based segmentation techniques are 

including Mahalanobis distances, Euclidian distance etc. 

3) Region based segmentation techniques like Region Growing, Watershed algorithm, 

Thresholding etc.Features extraction schemes that can be used in above Region based 

segmentation techniques are including Texture features or more precisely, GrayLevel Co- 

occurrence Matrix (GLCM) features, Mahalanobis distance, Euclidian distance etc. 

B). Features Reduction: 

After Features extraction the dominant features are selected using Principal component analysis. 

C). Classification: 

After dominant features vectors are selected, a classifier is to be selected for training & 

classification. Various schemes of classifiers are available as: 

a) Artificial Neural Network (A.N.N) 

        b) Maximum Likelihood 

c) k-Nearest Neighbors (k-NN) 

d) Parzen Window Method 
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1.2 Previous Work 

The automatic classification of brain magnetic resonance images is vital process for separating 

healthy subjects and subjects with various brain diseases like, cerebrovascular, Alzheimer, brain 

tumor, inflammatory, etc. The process of automatically classifying MR image is a challenging 

process. This leads to many different approaches. Recent research work has shown that features 

extraction of human brain in magnetic resonance (MR) images is possible via various methods 

like Region based segmentation techniques like Region Growing, Watershed algorithm [4], Edge 

based segmentation techniques. Wavelet Transform is best suitable method for features 

extraction among all above methods according to latest research papers. So, in our Thesis work 

wavelet transform is used as features extraction method of Brain MRI Images. For features 

reduction principal component analysis is best suitable method used widely in various latest 

research papers. For classification a large variety of methods are discussed in the literature. 

Sonka and Fitzpatrick in [5] provide a review of classification methods ranging from computer 

vision through statistical approaches to machine learning. Besides this various unsupervised 

classification techniques such as self-organization map (SOM) and fuzzy c-means [6] & other 

supervised classification techniques, such as Maximum Likelihood, Parzen Window Method are 

widely used in latest research to classify the normal/pathological T1 and T2-weighted MRI 

images. 
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1.3 Thesis Objective  

In this thesis, our goal is to achieve higher classification rate in order to diagnosis normal images 

from those with brain abnormality like Brain Tumor. Firstly, features are extracted using discrete 

wavelet transformation. Wavelets seem to be a suitable tool for this task, because they allow 

analysis of images at various levels of resolution. Secondly, principal component analysis (PCA) 

is used for reducing the feature vector dimension and also increasing discrimination between 

classes. Principal component analysis is appealing since it effectively reduces the dimensionality 

of the data and therefore reduces the computational cost of analyzing new data. Finally, pattern 

recognition method ANN is used for classification. The results indicate classification of data. In 

our work the database contains different images. We use artificial neural network as a different 

classifier technique. The number of features obtained by PCA for maximum classification rate is 

less and we obtain better classification rate. However, DWT, PCA, and classifiers are commonly 

used steps in pattern recognition problems. 
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1.4 Thesis Outline 

The Rest of the thesis is outlined in this section. In second chapter the basics of MRI is 

discussed. The physics behind the neuro imaging or MRI imaging has been discussed. The 

overview of MRI Imaging sessions is also discussed in this chapter. In third chapter the various 

methods used in the processing of MRI image are discussed. For Features Extraction wavelet 

Transform is discussed. Features Reduction is done using Principal Component Analysis & for 

classification Artificial Neural Network is discussed. The simulation results in MATLAB are 

discussed in chapter four. Finally, thesis ends with the conclusion and the scope for the future 

work in chapter five. 
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CHAPTER 2 

THE BASICS OF MRI 

Magnetic Resonance Imaging, or MRI, typically measures the response of hydrogen molecules 

to a perturbation while in a magnetic field. There are three basic steps involved in measuring the 

MRI signal. The first step is to place the brain in a magnetic field. The second step is the 

application of a brief radiofrequency (RF) pulse and the third step is measuring the relaxation 

[7]. Each of these steps will in turn be considered in the following paragraphs.  

2.1 The brain in a magnetic field  

The first step to measuring an MRI signal is to place the brain in a magnetic field. This will 

cause the atomic nuclei to align with the magnetic field. This occurs to all nuclei that are 

electrically charged and spin around their axis. Of the many types of nuclei in the brain, it is the 

hydrogen nucleus that is most commonly measured in MRI [8] [9]. This is because hydrogen 

nuclei are abundant in the human brain and give a strong MRI signal. Hydrogen nuclei are 

positively charged particles that spin around their axis. When an electrically charged particle 

moves, it produces a magnetic field. This magnetic field can be represented as a vector (a 

mathematical entity with both amplitude and a direction).  

Generally, a vector is mathematically depicted as an arrow where the length of the arrow 

represents the amplitude of the vector and the direction in which the arrow is pointing reflects the 

direction of the vector. Since each hydrogen nucleus produces a magnetic field, which can be 

represented as a vector, this equals saying that each hydrogen nucleus in the brain can be seen as 

a vector with the vector representing the strength and direction of the magnetic field of the 

hydrogen nucleus produced by its spinning around its axis. This vector is also known as the 

Magnetic Dipole Moment (MDM) [7] [8] [9] .Before the brain is placed in a magnetic field, the 

MDM.s of each hydrogen nucleus points in a random direction: the nuclei are not aligned. When 

the brain is placed in a magnetic field, two things happen simultaneously [8] [9].  
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Firstly, the MDM.s of many of the hydrogen nuclei aligns themselves in the direction of the main 

magnetic field. How many of the MDM.s align themselves in the direction of the main magnetic 

field depends on the strength of this magnetic field. The stronger the magnetic field, the higher 

the percentage of the MDM.s that align themselves to the magnetic field [8] [9].  

Secondly, when the brain is placed in a magnetic field the MDM.s of the hydrogen nuclei start to 

precess. The frequency of this precession depends first of all on the type of nucleus. This means 

that the MDM of a hydrogen nucleus will have a different frequency of precession from, for 

instance, the MDM of sodium nuclei in a certain magnetic field. Second of all, the frequency of 

precession depends on the strength of the magnetic field.  

The frequency of precession is directly proportional to the strength of the magnetic field, so the 

stronger the magnetic field the higher the frequency of precession. For example, in a magnetic 

field of 1.5 Tesla the frequency of precession for the MDM.s of hydrogen nuclei will be 64 MHz 

(64000000 revolutions per second) and in a magnetic field of 3 Tesla the frequency of precession 

will be 128 MHz [7] . 

 

Figure 2.1: Precession of the MDM 
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2.2 Application of the radiofrequency pulse  

The second step when measuring the MRI signal is the brief application of the radiofrequency 

pulse. The Radiofrequency (RF) pulse is typically an electromagnetic wave resulting from the 

brief application of an alternating current perpendicular to the direction of the main magnetic 

field, otherwise known as a 90
0
 RF-pulse. The ultimate goal of this 90

0
 RF-pulse is to tip the 

MDM.s of the hydrogen nuclei. Conventionally, the direction along the main magnetic field is 

referred to as the z-axis. 

The 90
0
 RF-pulse then basically tips the MDM.s in the x-y plane. This will only work if the 

frequency of the RF- pulse equals the frequency of the precession of the MDM.s. Because the 

MDM.s of the hydrogen nuclei have their own specific frequency of precession in a given 

magnetic field, it is possible to selectively tip the MDM.s of the hydrogen nuclei [8] [9]. 

 

 

Figure 2.2: Tipping of an MDM into the x-y plane during application of the RF-pulse 
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After the MDM.s of the hydrogen nuclei are tipped the 90
0
 RF-pulse is terminated and the 

MDM.s return to their original orientation. This returning to the original orientation is known as 

relaxation [8] [9]. 

2.3 Relaxation  

After the 90
0
 RF-pulse is terminated, the MDM.s of the hydrogen nuclei will return from their 

tipped state to their original lower energy state of being aligned in the direction of the magnetic 

field [8] [9]. Basically, the RF-pulse poured energy into the system and this energy is released 

when the MDM.s return to their original state. This release of energy is known as relaxation and 

is the signal that is measured during MRI [8] [9]. 

The MDM of a hydrogen nucleus can be broken down into two components. One component of 

the MDM is the amplitude in the z-axis. The other component of the MDM is the amplitude in 

the x-y plane [8] [9]. Before application of the RF-pulse the amplitude in the z-axis is maximal 

while the amplitude in the x-y plane is zero. Just after application of the RF-pulse the amplitude 

in the z-axis is zero while the amplitude in the x-y plane is maximal.  

During relaxation the amplitude in the z-axis will slowly increase while the amplitude in the x-y 

plane slowly decreases. Therefore, the relaxation of the MDM.s of the hydrogen nuclei has two 

components; firstly, a re-growth along the z-axis and secondly, a decay in the x-y plane. The re-

growth along the z-axis of the MDM.s is referred to as T1 relaxation. The decay in the x-y plane 

of the MDM.s is referred to as T2 relaxation [8] [9]. 

2.4 When it all comes together 

 The application of the 90
0
 RF-pulse and the measuring of the energy released during relaxation 

is repeated over a vast amount of times in a typical MRI experiment. Different tissues in the 

brain have different T1 and T2 relaxation rates [8] [9]. This means that at each moment after 

termination of the RF-pulse, the amplitude of the MDM.s of the hydrogen nuclei in the z-axis 

and the amplitude of the MDM.s in the x-y plane will be different for different tissues.  
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If now the MRI signal is measured at a point after termination of the RF-pulse where either the 

relative difference between the amplitudes of the MDM.s of the hydrogen nuclei of different 

tissues in the z-axis is maximized or the relative difference between the amplitudes of the 

MDM.s of different tissues in the x-y plane is maximized a maximum contrast between different 

tissues will be obtained [8] [9]. At first, it sounds a bit counterintuitive that not the absolute 

difference in amplitude is maximized but instead the relative difference between the amplitudes 

is maximized.  

When the MRI signal is measured at a point when the ratio of the amplitudes of MDM.s of 

different tissues in the z-axis is maximized, the signal is known as a T1 weighted signal. 

Alternatively, when the MRI signal is measured at a point when the ratio of the amplitudes of the 

MDM.s of different tissues in the x-y plane is maximized, the signal is known as a T2 weighted 

signal [8] [9].  

By changing certain scanner parameters either a T1 weighted signal or a T2 weighted signal can 

be acquired [8] [9]. When the time from RF-pulse to measurement of the signal (TE) is kept 

short, while at the same time the time between two successive RF pulses (TR) is also kept short, 

the difference in T1 for the different tissues is maximized and the acquired scan is called a T1 

weighted scan. T1 weighted scans are also known as anatomical scans, because they particularly 

show good contrast between grey and white matter.  

On the other hand, when the TE is long while at the same time the TR is also long, the difference 

in T2 for the different tissues is maximized and the acquired scan is called a T2 weighted scan. 

T2 weighted scans are also known as pathological scans, because lesions appear very bright. 

2.5 T2* and the spin-echo pulse cycle  

In the previous sections, it was implied that the decay of the MDM.s in the x-y plane after 

termination of the 90
0
 RF-pulse equals the T2 relaxation signal. This is, however, a 

simplification and to really understand the use of MRI we will need to explain T2 in more detail. 

True T2 decay is actually a lot slower than the decay of the MDM.s in the x-y plane after 

termination of the 90
0
 RF-pulse. The decay of the MDM.s in the x-y plane is more accurately 
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described as T2* decay [8] [9]. The reason why the MDM.s decay in the x-y plane (the T2* 

signal) is essentially due to dephasing [8] [9]. Remember that the MDM.s of hydrogen nuclei in a 

magnetic field of a certain field strength all precess at the same frequency. However, before the 

application of the 90
0
 RF-pulse, they are not precessing in the same phase. 

When applied to the precession of the MDM.s in a magnetic field, this means that even though 

the MDM.s precess at the same frequency, they will each be at a different position in their cycle 

at a given point in time i.e. they are precessing in a different phase. As shown in Figure 2.3 the 

top row displays one moment in the cycle of precession of 3 MDM.s that are in phase & the 

bottom row displays one moment in the cycle of precession of 3 MDM.s that are not in phase. 

 

 

Figure 2.3: Cycle of precession of 3 MDM.s that are in phase & not in phase 
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At the moment when the 90
0
 RF-pulse is applied, the MDM.s are tipped in the x-y plane and are 

forced to precess in phase (as the brief RF-pulse tips all the MDM.s simultaneously). Now the 

MDM signals are additive and therefore result in a strong signal in the x-y plane. 

After termination of the 90
0
 RF-pulse, however, the precession of the MDM.s will gradually 

dephase. The MDM signals are now no longer additive, but cancel each other out and the signal 

decays. This is the T2* decay [8] [9]. 

There are two reasons why the MDM.s dephase after termination of the 90
0
 RF-pulse and the 

signal decays [8] [9]. The first one is magnetic field inhomogeneity. The strength of the magnetic 

field is not uniform and since the frequency of precession of the MDM.s depends on the strength 

of the magnetic field it follows that different MDM.s will precess at a different frequency and 

therefore this precession will get out of phase. The second reason why the MDM.s dephase is 

because of spin-spin interaction [8] [9]. 

Different hydrogen nuclei are surrounded by different other nuclei. These other nuclei affect the 

frequency of precession of the MDM of the hydrogen nuclei. The frequency of precession of 

each MDM.s will be differently affected by the surrounding nuclei. This, again, results in 

different frequencies of precession for different MDM.s and hence dephasing occurs [8] [9]. 

To summarize, initially the precession of the MDM.s is dephased. When the 90
0
 RFpulse is 

applied, the MDM.s are forced to precess in phase, resulting in a signal in the x-y plane. After 

termination of the 90
0
 RF-pulse, the precession of the MDM.s will dephase again due to the 

inhomogeneities in the magnetic field and spin-spin interactions and the signal in the x-y plane 

decays. This is T2* decay. 

The trick is that the dephasing due to the inhomogeneity of the magnetic field is correctable and 

by correcting for this source of dephasing the true T2 signal is obtained [8] [9]..Directly after 

application of the 90
0
 RF-pulse the precession of the MDM.s is in phase.  

This means that at a given time, all the MDM.s will be at the same point in their cycle of 

precession. After termination of the 90
0
 RF-pulse the precession of the MDM.s will slowly 
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dephase. Basically, at a given time, different MDM.s will not longer be at the same point in their 

cycle of precession.  

If an RF-pulse is now applied from the opposite direction (180
0
) as the direction from which the 

original RF-pulse was applied (90
0
), the direction of rotation of the precession of the MDM.s is 

reversed.  

After the same amount of time has elapsed following the 180
0
  RF-pulse as the amount of time 

between the 90
0
 RF-pulse and the 180

0
  RF-pulse, the MDM.s will be in phase again [8] [9]. 

After application of the 90
0
 RF-pulse all the MDM.s are at the same point in their cycle of 

precession. After termination of the RF-pulse some MDM.s will rotate faster (have higher 

frequencies of precession) than others, the MDM.s dephase.  

After a while the 180
0
 RF-pulse is applied and this makes the direction of precession of all the 

MDM.s reverse. The MDM.s, however, all keep their own frequency of precession and will 

arrive at their starting point (the point where they were directly after application of the 90
0
 RF-

pulse) in the cycle of precession at the same time, they will be in phase again. 

The important thing is that the time between the 180
0
 RF-pulse and measurement of the signal 

must be the same as the time between the 90
0
 RF-pulse and the 180

0
 RF-pulse. A measurement 

cycle where one 90
0
 RF-pulse is followed by one or more 180

0
 RF-pulses with a measurement 

after each 180
0
 RF-pulse is known as a spin-echo pulse cycle. 

 Even though the spin-echo pulse cycle corrects for the decay in the signal caused by the 

inhomogeneities in the magnetic field, the signal still does eventually decay because of the 

dephasing due to spinspin interactions. The decay is now, however, a lot slower and this is the 

true T2 decay [8] [9]. 
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2.6 Overview of MRI Imaging sessions 

There are three primary steps to an MRI Imaging procedure: preparation, acquisition and 

processing. 

2.6.1 Preparation: 

The patient is given a detailed explanation of the procedure and carefully instructed on the 

chosen task in order to obtain the highest quality exam with the least amount of patient-induced 

motion. It is common to practice these tasks with the patient before the exam to assure the best 

results. 

2.6.2 Acquisition: 

The first step in the acquisition process is to collect routine 3D datasets. These will later be used 

as the anatomical data upon which the MRI information will be mapped. Activity in specific 

regions of the brain is induced and controlled by a set of tasks called a paradigm. These tasks are 

performed by the patient during the BOLD imaging measurements. MRI data collection is done 

in three sessions described below. 

The following table illustrates the overview of imaging sessions for MRI data collection 

Session 1: Structural & functional sequences Duration 

1.Volunteer preparation / equipment adjustment 20:00 

2. 3 plane localizer / Parallel imaging 

calibration 

00:22 

3. Axial T2 slices (site specific duration) ~01:19 

4. Axial T2 Flair slices (site specific duration) ~ 02:25 

5. Instructions / talk to volunteer 2:00 

6. Face task 5:00 

7. Instructions / talk to volunteer 2:00 

8. Stop-signal task 16:00 

9. B0 Map 00:40 

10. 3D Sagittal ADNI MPRAGE (Long) 09:17 

Duration ~60 min 
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Session 2: Structural & Functional sequences  Duration 

1.Volunteer preparation / equipment adjustment 14:00 

2.3 plane localizer / Parallel imaging calibration 00:22 

3. B0 Fieldmap 00:40 

4. 3D Sagittal ADNI MPRAGE (Short) 02:23 

5. Instructions / talk to volunteer 2:00 

6. M&M Incentive Delay Task 11:06 

7. Instructions / talk to volunteer 02:00 

8. Global Cognition Assessment 05:00 

9. Instructions / talk to volunteer 02:00 

10. Breath Hold Task (optional) 05:40 

11. DTI (duration is heart-rate dependent at 

sites with cardiac gating) 

10:00 

Duration ~60 min 

 

 

Optional Session 3: Structural & functional 

sequences 

Duration 

1.3 plane localizer / Parallel imaging calibration 00:22 

2. Despot 18:30 

3. 3D Sagittal ADNI MPRAGE (Short) 02:23 

Duration ~22 min 

 

Table 2.1: Overview of imaging sessions for MRI data collection 
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The various tasks performed during the coarse of imaging are 

a. Face task 

In this task volunteers are asked to passively watch video clips presenting faces with neural and 

angry expressions as well as control non-biological motion stimuli (concentric circles). After 

scanning a short recognition test is performed outside the scanner with 5 static pictures extracted 

from the movies. 

b. Stop-signal Task 

The main principle of this task is to respond to regular presented visual go stimuli (go trials) but 

to withhold the motor response to the go stimulus when it is followed unpredictably by a stop 

signal (stop trials). This task yields an estimate of a subject's stop-signal reaction time (SSRT). 

The SSRT is thought to be directly reflective of the central inhibitory mechanism. 

c. MID (M&M Incentive Delay) Task 

This task is a reaction time task - it tests how quickly the subject can react and pull the trigger to 

hit a target (with left or right index finger) that only appears for a short time on the left or right of 

the screen. If the subject can hit the target, they will score points. The subject can tell where the 

target will appear and how many points they can win by the symbol they see on the screen before 

each trial. A triangle means no points, a circle with a line means 2 points and a circle with three 

lines means 10 points. Responding too early or too late will result in a loss. 

d. Global Cognition Assessment Task 

This task is composed by the following brief tasks: 

1. Passive viewing of a flashing checkerboard (20 trials) 

2. Pressing three times the left button with the left index finger according to visual instructions (5 

trials) 

3. Pressing three times the right button with the right index finger according to visual instruction 

(5 trials) 
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4. Pressing three times the left button with the left index finger according to auditory instruction 

(5 trials) 

5. Pressing three times the right button with the right index finger according to auditory 

instruction (5 trials)  

6. Reading silently short visual sentences (10 trials) 

7. Listening to short sentences (10 trials) 

8. Solving silently visual subtraction problems (10 trials) 

9. Solving silently auditory subtraction problems (10 trials) 

e. Breath Hold Task (Paced Expiration Breath Hold Task) 

This task uses visual instructions to pace their breathing in a regular rhythm for 40 seconds 

(breathing in for 4 seconds and out for 4 seconds), followed by holding their breath on expiration 

for a short periods of 20 seconds. This cycle is then repeated five times, ending on paced 

breathing to give a total task length of 5 minutes 40 seconds. This task uses the small build up of 

carbon dioxide to assess vascular responsivity in each participant and which differs between 

participants. 

2.6.3 Processing: 

After data collection, a statistical evaluation (t-test) is used to generate BOLD maps that are 

combined with routine 3D imaging datasets such as MPRAGE. The combined data can then be 

used as a neuronavigational roadmap for use in pre surgical planning or treatment assessment. 
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CHAPTER 3 

MRI IMAGE PROCESSING 

This Chapter introduces the various methods used for the processing of MRI image. The MRI 

image analysis is performed under following sequence of operations: 

1. Features Extraction Using Wavelet Transform 

2. Features Reduction Using Principal Component Analysis 

3. Classification using Artificial Neural Network 

The detailed explanation of all above operations is presented here.  

3.1 Wavelet Transform 

The transform of a signal is just another form of representing the signal. It does not change the 

information content present in the signal. The Wavelet Transform provides a time-frequency 

representation of the signal. It was developed to overcome the short coming of the Short Time 

Fourier Transform (STFT), which can also be used to analyze non-stationary signals. While 

STFT gives a constant resolution at all frequencies, the Wavelet Transform uses multi-resolution 

technique by which different frequencies are analyzed with different resolutions.  A wave is an 

oscillating function of time or space and is periodic. In contrast, wavelets are localized waves. 

They have their energy concentrated in time or space and are suited to analysis of transient 

signals. While Fourier Transform and STFT use waves to analyze signals, the Wavelet 

Transform uses wavelets of finite energy. 

The wavelet analysis is done similar to the STFT analysis. The signal to be analyzed is 

multiplied with a wavelet function just as it is multiplied with a window function in STFT, and 

then the transform is computed for each segment generated. However, unlike STFT, in Wavelet 

Transform, the width of the wavelet function changes with each spectral component The Wavelet 

Transform, at high frequencies, gives good time resolution and poor frequency resolution, while 

at low frequencies, the Wavelet Transform gives good frequency resolution and poor time 

resolution.  
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Figure 3.1 Morlet Wavelet  

  

An analyzing function Ψ(t) is classified as a wavelet if the following mathematical criteria are 

satisfied: 

1. A wavelet must have finite energy 
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The energy E equals the integrated squared magnitude of the analyzing function Ψ(t) and must 

be less than infinity. 

2. If Ψ (f) is the Fourier transform of the wavelet  Ψ (t), the following condition must hold 
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This condition implies that the wavelet has no zero frequency component (Ψ (0) = 0), i.e. the 

mean of the wavelet  Ψ (t) must equal zero. This condition is known as the admissibility 

constant. The value of C Ψ  depends on the chosen wavelet. 

3. For complex wavelets the Fourier transform Ψ (f) must be both real and vanish for negative 

frequencies. 
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3.1.1 Continuous Wavelet Transform  

We define a mother wavelet function Ψ(t) ∈L
2
(R), which is limited in time domain. That is, Ψ(t) 

has values in a certain range and zeros elsewhere. Another property of mother wavelet is zero 

mean. The other property is that the mother wavelet is normalized. Original lectures can be 

found in [10]. Mathematically, they are 
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As the dilation and translation property states, the mother wavelet can form a basis set denoted 

by 
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u is the translating parameter, indicating which region we concern. s is the scaling parameter 

greater than zero because negative scaling is undefined. The multiresolution property ensures the 

obtained set {Ψu,s(t)} is orthonormal. Conceptually, the continuous wavelet transform is the 

coefficient of the basis Ψu,s(t) [11] . It is 
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The Continuous Wavelet Transform (CWT) is provided by equation 3.8, where f(t) is the signal 

to be analyzed. Ψ(t) is the mother wavelet or the basis function. All the wavelet functions used in 

the transformation are derived from the mother wavelet through translation (shifting) and scaling 

(dilation or compression). The transformed signal W f(s,u) is a function of the translation 



27 

 

parameter τ and the scale parameter s. The mother wavelet is denoted by Ψ, the * indicates that 

the complex conjugate is used in case of a complex wavelet. The signal energy is normalized at 

every scale by dividing the wavelet coefficients by 1/√s. This ensures that the wavelets have 

the same energy at every scale. The mother wavelet is contracted and dilated by changing the 

scale parameter s. The variation in scale s changes not only the central frequency fc of the 

wavelet, but also the window length. Therefore the scale s is used instead of the frequency for 

representing the results of the wavelet analysis. The translation parameter u specifies the location 

of the wavelet in time, by changing u the wavelet can be shifted over the signal. For constant 

scale s and varying translation u the rows of the time-scale plane are filled, varying the scale s 

and keeping the translation u constant fills the columns of the time-scale plane. The elements in 

Wf(s,u) are called wavelet coefficients, each wavelet coefficient is associated to a scale 

(frequency) and a point in the time domain. 

Via this transform, one can map an one-dimensional signal f(t) to a two-dimensional coefficients 

Wf(s,u). The two variables can perform the time frequency analysis. We can tell locate a 

particular frequency (parameter s) at a certain time instant (parameter u). If the f(t) is a L
2
(R) 

function. The inverse wavelet transform is 
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where CΨ  is defined as 
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Ψ(ω) is the Fourier transform of the mother wavelet Ψ(t). This equation is also called the 

admissibility condition Note that the admissibility constant C must satisfy the second wavelet 

condition. A wavelet function has its own central frequency fc at each scale, the scale s is 

inversely proportional to that frequency. A large scale corresponds to a low frequency, giving 

global information of the signal. Small scales correspond to high frequencies, providing detail 

signal information. The mother wavelet used to generate all the basis functions is designed based 

on some desired characteristics associated with that function. The translation parameter τ relates 



28 

 

to the location of the wavelet function as it is shifted through the signal. Thus, it corresponds to 

the time information in the Wavelet Transform. The scale parameter s is defined as |1/frequency| 

and corresponds to frequency information. 

Scaling either dilates (expands) or compresses a signal. Large scales (low frequencies) dilate the 

signal and provide detailed information hidden in the signal, while small scales (high 

frequencies) compress the signal and provide global information about the signal. Notice that the 

Wavelet Transform merely performs the convolution operation of the signal and the basis 

function. The above analysis becomes very useful as in most practical applications, high 

frequencies (low scales) do not last for a long duration, but instead, appear as short bursts, while 

low frequencies (high scales) usually last for entire duration of the signal. 

The Wavelet Series is obtained by discretizing CWT. This aids in computation of CWT using 

computers and is obtained by sampling the time-scale plane. The sampling rate can be changed 

accordingly with scale change without violating the Nyquist criterion. Nyquist criterion states 

that, the minimum sampling rate that allows reconstruction of the original signal is 2ω radians, 

where ω is the highest frequency in the signal. Therefore, as the scale goes higher (lower 

frequencies), the sampling rate can be decreased thus reducing the number of computations. 

3.1.2 Discrete Wavelet Transform: 

The Wavelet Series is just a sampled version of CWT and its computation may consume 

significant amount of time and resources, depending on the resolution required. The Discrete 

Wavelet Transform (DWT), which is based on sub-band coding is found to yield a fast 

computation of Wavelet Transform. It is easy to implement and reduces the computation time 

and resources required. The foundations of DWT go back to 1976 when techniques to 

decompose discrete time signals were devised. Similar work was done in speech signal coding 

which was named as sub-band coding. In 1983, a technique similar to sub-band coding was 

developed which was named pyramidal coding. Later many improvements were made to these 

coding schemes which resulted in efficient multi-resolution analysis schemes.   

In CWT, the signals are analyzed using a set of basis functions which relate to each other by 

simple scaling and translation. In the case of DWT, a time-scale representation of the digital 
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signal is obtained using digital filtering techniques. The signal to be analyzed is passed through 

filters with different cutoff frequencies at different scales. 

3.1.2.1 Filter banks 

A filter bank consists of filters which separate a signal into frequency bands [12]. An example of 

a two channel filter bank is shown in Fig.3.2. A discrete time signal x(k) enters the analysis bank 

and is filtered by the filters L(z) and H(z) which separate the frequency content of the input 

signal in frequency bands of equal width. The filters L(z) and H(z) are therefore respectively a 

low-pass and a high-pass filter.  The output of the filters each contains half the frequency 

content, but an equal amount of samples as the input signal. The two outputs together contain the 

same frequency content as the input signal, however the amount of data is doubled. Therefore 

down sampling by a factor two, denoted by ↓ 2, is applied to the outputs of the filters in the 

analysis bank. Reconstruction of the original signal is possible using the synthesis filter bank 

[12] [13]. In the synthesis bank the signals are up sampled (↑2) and passed through the filters 

L′(z) and H′(z). The filters in the synthesis bank are based on the filters in the analysis bank. The 

outputs of the filters in the synthesis bank are summed, leading to the reconstructed signal y(k). 

The different output signals of the analysis filter bank are called subbands, the filter-bank 

technique is also called subband coding [13]. 

 

 

Figure 3.2: Two channel filter bank 
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3.1.2.2 Conditions for Perfect Reconstruction 

For perfect reconstruction to be possible, the filter bank should be biorthogonal. Furthermore 

some design criteria for both the analysis and synthesis filters should be met to prevent aliasing 

and distortion and to guarantee a perfect reconstruction [12]. 

In the two channel filter bank of Fig. 3.2, the filters L(z) and H(z) split the signal into two 

frequency bands, i.e. the filters are respectively a low-pass and a high-pass filter. If the filters 

were perfect brick-wall filters, the down sampling would not lead to loss of information. 

However ideal filters cannot be realized in practice, so a transition band exists. Besides aliasing, 

this leads to an amplitude and phase distortion in each of the channels of the filter band [13]. For 

the two channel filter bank of Fig. 3.2, aliasing can be prevented by designing the filters of the 

synthesis filter bank as [12] 

                                                      L′(z) = H(−z)                                                                      (3.11) 

                                                     H′(z) = −L(−z)                                                                    (3.12) 

To eliminate distortion, a product filter P0(z) = L′(z)L(z) is defined. Distortion can be avoided if 

                                                P0(z) − P0(−z) = 2z
−N                                                                                                

(3.13) 

where N is the overall delay in the filter bank. Generally an N
th 

order filter produces a delay of N 

samples [13]. The perfect reconstruction filter bank can be designed in two steps [12]: 

1. Design a low-pass filter P0 satisfying (3.13). 

2. Factor P0 into L′ (z)L(z) and use (3.11) and (3.12) to calculate H(z) and H′(z). 

3.1.2.3 Multi-Resolution Analysis using DWT Filter Banks 

The CWT of Chapter 3 performs a multiresolution analysis which makes it possible to analyze a 

signal at different frequencies with different resolutions. For high frequencies (low scales), 

which last a short period of time, a good time resolution is desired. For low frequencies (high 

scales) a good frequency resolution is more important. The CWT has a time-frequency 

resolution. This multiresolution can also be obtained using filter banks, resulting in the discrete 

wavelet transform (DWT). Note that the discretized version of the CWT is not equal to the 

DWT, the DWT uses filter banks, whereas the discretized CWT uses discretized versions of the 

scale and dilatation axes. 
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The low-pass and high-pass filtering branches of the filter bank retrieve respectively the 

approximations and details of the signal x(k). In Fig. 3.3, a three level filter bank is shown. The 

filter bank can be expanded to an arbitrary level, depending on the desired resolution. The 

coefficients cl(k) represent the lowest half of the frequencies in x(k), downsampling doubles the 

frequency resolution. The time resolution is halved, i.e. only half the number of samples are 

present in cl(k). In the second level, the outputs of L(z) and H(z) double the time resolution and 

decrease the frequency content, i.e. the width of the window is increased. After each level, the 

output of the high-pass filter represents the highest half of the frequency content of the low-pass 

filter of the previous level, this leads to a pass-band. For a special set of filters L(z) and H(z) this 

structure is called the DWT, the filters are called wavelet filters. 

 

Figure 3.3: Three level analysis filter bank 

At each decomposition level, the half band filters produce signals spanning only half the 

frequency band. This doubles the frequency resolution as the uncertainty in frequency is reduced 

by half. In accordance with Nyquist’s rule if the original signal has a highest frequency of ω, 

which requires a sampling frequency of 2ω radians, then it now has a highest frequency of ω/2 

radians. It can now be sampled at a frequency of ω radians thus discarding half the samples with 

no loss of information. This decimation by 2 halves the time resolution as the entire signal is now 

represented by only half the number of samples. Thus, while the half band low pass filtering 

removes half of the frequencies and thus halves the resolution, the decimation by 2 doubles the 

scale. With this approach, the time resolution becomes arbitrarily good at high frequencies, while 

the frequency resolution becomes arbitrarily good at low frequencies. The filtering and 

decimation process is continued until the desired level is reached. The maximum number of 
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levels depends on the length of the signal. The DWT of the original signal is then obtained by 

concatenating all the coefficients, a[n] and d[n], starting from the last level of decomposition. 

 

Figure 3.4: Three level synthesis filter bank 

Figure 3.4 shows the reconstruction of the original signal from the wavelet coefficients. 

Basically, the reconstruction is the reverse process of decomposition. The approximation and 

detail coefficients at every level are up sampled by two, passed through the low pass and high 

pass synthesis filters and then added. This process is continued through the same number of 

levels as in the decomposition process to obtain the original signal. Mallat [14] shows that 

wavelet transform is implemented by using two quadrature mirror filters H (low-pass) and G 

(high-pass) The Mallat algorithm works equally well if the analysis filters, G0and H0 , are 

exchanged with the synthesis filters, G1 and H1. 

3.1.3 Segmentation & Features Extraction Using Discrete Wavelet transform in 2-D Image 

After pre-processing phase, we adopt a segmentation algorithm. The basic aim of segmentation 

is the separation of an image into homogeneous regions (spatially connected groups of pixels 

called classes, or subsets) with respect to one or more characteristics or features; such that the 

union of any two neighboring regions yields a heterogeneous.   

Medical image segmentation is a promising field and imposes constraints related to the concept 

of time, the great number of implied data and the richness of image concerning the complexity of 

the organ’s anatomy, the patient’s position of catching image. All these medical images 

characteristics add more difficulties to the problem of image segmentation and make the 

construction of a general model more complex. This explains the variety of segmentation 
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methods appeared in the last years. In literature there exist two major classes of segmentation 

techniques: edge based segmentation approach and region based segmentation approach. 

Edge approach looks for limits between regions with different characteristics. Its aims at finding 

object boundaries and segmenting regions enclosed by the contours. There are various Edge 

based techniques widely used for edge based segmentation approach include Roberts, Prewitt, 

Robinson, Kirsch, and Laplacian [15]. They prove to be computationally fast and don’t require 

prior information about the image content. However a drawback of the edge approach is that the 

edges do not enclose the object completely. In region-based techniques, segmentation is applied 

by identifying all pixels that belong to the object based on the intensity of pixels. They include 

region growing, watershed algorithm and thresholding [16]. More recently, with the application 

of a spatial-frequency image analysis, multiscale techniques have sparked the interest of 

researchers for segmentation of images especially wavelet transform. 

Wavelet transform represents an image at different resolution levels. At resolution j, it provides 

an approximation of the original image Ij and three detail of image  D2
v
 , D2

H
 , D2 

D
 .Each of 

these details images privileges a particular orientation: horizontal, vertical and diagonal, and 

preserves the lost information during their passage from j-1 to j. Figure 3.5 illustrated a 

decomposition of image at two levels. It has been shown that the wavelet coefficients resulting 

from this transformation contain the information concerning the original image for different 

scales [17]. Wavelet coefficients represent the degree of correlation or similarity between the 

image and the mother wavelet at the particular scale and translation. Thus the set of all wavelet 

coefficients gives the wavelet domain representation of the image. 

 

Figure 3.5: Sub-images generated at two levels 
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Wavelet coefficients are used for generating the initial features. Wavelet transform is 

traditionally used for feature extraction. The provision of localized frequency information about 

a function of a signal is the main advantage of wavelets and is particularly beneficial for 

classification. Wavelets have been used as a feature extraction method for discrimination. 

In two-dimensional wavelet transform a scaling function Φ(x,y)and three wavelets ΨH
(x,y) 

measures variations along columns), ΨV
(x,y) (responds to variations along rows), ΨD

(x,y) 

(corresponds to variations along diagonals), are required. The discrete wavelet transform of 

image f(x,y) of size MXN is then 
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Where i identifies the directional wavelets (i= {H, V, D}) and J0 is an arbitrary starting scale. 

The WΦ(J0,m,n) coefficients define an approximation of f(x,y) and scale j0 .The W
i
Ψ(j,m,n) 

coefficients add horizontal, vertical, and diagonal details for scales j>=j0[18]. Fig.2.6 shows the 

process in block diagram form. There are several different kinds of wavelets which have gained 

popularity throughout the development of wavelet analysis. One important discrete wavelet is the 

Haar wavelet. Basically, it is one period of a square wave. Because of its simplicity, it is often 

the wavelet to be chosen [19]. Fig.3.6 shows the discrete wavelet transform of one example MR 

image. 

 

 Figure 3.6: The analysis filter banks of discrete wavelet transform                  
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Figure 3.7: Discrete wavelet transform of one example MR image                 

 

 

 

 

Figure 3.8: DWT schematically [20] 
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3.1.4 Wavelet Families  

There are a number of basis functions that can be used as the mother wavelet for Wavelet 

Transformation. Since the mother wavelet produces all wavelet functions used in the 

transformation through translation and scaling, it determines the characteristics of the resulting 

Wavelet Transform. Therefore, the details of the particular application should be taken into 

account and the appropriate mother wavelet should be chosen in order to use the Wavelet 

Transform effectively. 
    

    

   

 

Figure 3.9: Wavelet families (a) Haar (b) Daubechies4 (c) Coiflet1 (d) Symlet2 (e) Meyer (f) Morlet (g) 

Mexican Hat. 
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3.2 Principal Component Analysis 

Measurement cost and classification accuracy are two predominant reasons for minimizing the 

dimensionality of the pattern representation (i.e., the number of features). Classifiers which are 

built on the selected representation can use less memory and be faster by utilizing the limited 

feature set. Linear transforms, due to their simplicity, have been widely used for feature 

extraction. These transforms create a smaller set of features from linear combination of the initial 

features. One of the best known linear feature extractor is the principal component analysis 

(PCA). PCA is a technique for simplifying a data set, by reducing multidimensional data sets to 

lower dimensions for analysis. 

 PCA is an orthogonal linear transformation that transforms the data to a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first coordinate 

(called the first principal component), the second greatest variance on the second coordinate, and 

so on. PCA can be used for dimension reduction in a data set while retaining those characteristics 

of the data set that contribute most to its variance, by keeping lower-order principal components 

and ignoring higher-order ones. Such low-order components often contain the “most important” 

information of the data. But this is not necessarily the case, depending on the application.  

PCA involves a mathematical procedure that transforms a number of (possibly) correlated 

variables into a (smaller) number of uncorrelated variables called “principal components”. The 

first principal component accounts for as much of the variability in the data as possible, and each 

succeeding component accounts for as much of the remaining variability as possible. Principal 

component analysis (Karhunen-Loeve or Hotelling transform) [21] - PCA belongs to linear 

transforms based on the statistical techniques. This method provides a powerful tool for data 

analysis and pattern recognition which is often used in signal and image processing [18] as a 

technique for data compression, data dimension reduction or their decorrelation as well.  

There are various algorithms based on multivariate analysis or neural networks that can perform 

PCA on a given data set. Excessive features increase computation time and storage memory 

which sometimes causes the classification process to become more complicated. This 
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consequence is called the curse of dimensionality. A strategy is necessary to reduce the number 

of features used in classification. 

PCA is an efficient tool to reduce the dimension of a data set consisting of a large number of 

interrelated variables while retaining the most significiant variations. It is achieved by 

transforming the data set to a new set of ordered variables according to their degree of variance 

or importance. This technique has three effects:  

(i) It orthogonalizes the components of the input vectors so that they are uncorrelated with each 

other. 

(ii) It orders the resulting orthogonal components so that those with the largest variation come 

first. 

(iii) It eliminates the components in the data set that contributing the least variation. 

3.2.1 PCA Theory 

Principal component analysis in signal processing can be described as a transform of a given set 

of n input vectors (variables) with the same length K formed in the n-dimensional vector x = [x1, 

x2, ...xn]
T
  into a vector y according to 

                                                               y = A (x− mx)                                                            (3.16) 

This point of view enables to form a simple formula (3.16) but it is necessary to keep in the mind 

that each row of the vector x consists of K values belonging to one input. The vector mX in Eq. 

(3.17) is the vector of mean values of all input variables defined by relation 
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Matrix A in Eq. (3.16) is determined by the covariance matrix Cx. Rows in the A matrix are 

formed from the eigenvectors e of Cx ordered according to corresponding eigenvalues in 

descending order. The evaluation of the Cx matrix is possible according to relation 
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As the vector x of input variables is n-dimensional it is obvious that the size of CX is n x n. The 

elements Cx(i, i) lying in its main diagonal are the variances 

                                                        CX (i,i)= E{ (xi - mi )
2

 }                                                  (3.19) 

                                                                            

of x and the other values Cx(i, j) determine the covariance between input variables xi, xj.  

 

                                                   CX (i,j) = E{(xi - mi )(xj-mj)}                                                 (3.20) 

 

between input variables xi, xj . The rows of A in Eq. (3.16) are orthonormal so the inversion of 

PCA is possible according to relation   

                                                             x= A
T
y+mx                                                                                         (3.21) 

 

The kernel of PCA defined by Eq. (3.21) has some other interesting properties resulting from the 

matrix theory which can be used in the signal and image processing [22] .  

In PCA, the input feature space is transformed into a lower-dimensional feature space using the 

largest eigenvectors of the correlation matrix. PCA is the most widely used subspace projection 

technique. When a set of data is given, PCA finds the linear lower-dimensional representation of 

the data such that the variance of the data is preserved. Using a system of feature reduction based 

on PCA limits the feature vectors to the component selected by the PCA which leads to an 

efficient classification algorithm. So, the main idea behind using PCA is to reduce the 

dimensionality of the wavelet coefficients which results in a more efficient and accurate 

classifier. 

These methods provide suboptimal solution with a low computational cost and computational 

complexity. Given a set of data, PCA finds the linear lower-dimensional representation of the 

data such that the variance of the reconstructed data is preserved. Using a system of feature 

reduction based on PCA limits the feature vectors to the component selected by the PCA which 

leads to an efficient approach to reduce the dimensionality of the wavelet coefficients which 

results in a more efficient and accurate classifier.  
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PCA "squeezes" as much information (as measured by variance) as possible into the first 

principal components. In some cases the number of principal components needed to store the 

vast majority of variance is shockingly small: a tremendous feat of data manipulation. This 

transformation can be performed quickly on contemporary hardware and is invertible, permitting 

any number of useful applications. The following algorithm is used to find out the principal 

components of the input matrix to the classifier. Now the input matrix consists of only these 

principal components.   

3.2.2 PCA algorithm 

Let X be an input data set (X: matrix of dimensions M × N). 

Perform the following steps [20]: 

1. Calculate the empirical mean:  [ ] [ ]∑
=

=
N

n

nmX
N

mu
1

,
1

 

2. Calculate the deviations from the mean and store the data in the matrix  

B[M × N]: B = X -u · h, where h is a 1 × N row vector of all 1’s: h[n] = 1 for n = 1, . . . , N. 

3. Find the covariance matrix C: C = B · B* 

4. Find the eigenvectors and eigenvalues of the covariance matrix V 
-1

CV = D 

V – the eigenvectors matrix;   

D – the diagonal matrix of eigenvalues of  C, 

D[p, q] = λm for p=q=m is mth eigen value of covariance matrix C. 

5. Rearrange the eigenvectors and eigenvalues: λ1≥ λ2≥ λ3≥…… λN. 

6. Choosing components and forming a feature vector: save the first L columns of V as the M × 

L matrix W 

W[p, q] = V [p, q], for p = 1, . . . ,M, q = 1, . . . , L where 1≤L ≤M. 

7. Deriving the new data set: The eigenvectors with the highest eigenvalues are projected into 

space, this projection results in a vector represented by fewer dimension (L < M) containing the 

essential coefficients. 
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3.3 Artificial Neural Network 

Classification is a data mining (machine learning) technique used to predict group membership 

for data instances. To simplify the problems of prediction or classification, neural networks are 

being introduced. Neural networks are simplified models of the biological neuron system. A 

small neuron is a small cell that receives electrochemical stimuli from multiple sources and 

responds by generating electrical impulses that are transmitted to other neurons or effectors cells. 

There is something like 1010 to 1012 neurons in the human nervous system and each is capable 

of storing several bits of “information”. The total weight of an average brain is 1.5kg, so an 

average neuron weighs something less than 1.5 X 10-9 g. 

Neurons receive input from sensory or other types of cells and send outputs to other neurons or 

effectors organs such as muscles and glands. About 10% of neurons are input (afferent) and 

output (efferent). The remaining 90% are interconnected with other neurons which store 

information or perform various transformations on the signals being propagated through the 

networks. Although many different types of neurons have been identified, they all share some 

common characteristics. Neurons are complex cells that respond to electrochemical signals. They 

are composed of nucleus, a cell body, numerous dendrite links providing input connections from 

other neurons through synapses, and an axon trunk that carries an action potential output to other 

neurons through terminal links and synapses. A single neuron may be connected to hundreds or 

even tens of thousands of other neurons. The connections are made through two general types of 

synapses, excitatory and inhibitory.  

Neural activity is related to the creation of an internal electric potential called a membrane 

potential. This potential may be increased or decreased by the input activity received from other 

cells through the synapses. When the cumulative inputs raise the potential above a threshold 

value, the neuron “fires” by propagating a sequence of action potential spikes down the axon to 

either excite or inhibit other neurons. The pulses cause a chemical neurotransmitter substance to 

be released at the terminating synapses which, in turn, can excite or inhibit other neurons. The 

rate of pulse propagation ranges from about 5 to 125 ms-1, and the time required for a stimulus 

to “traverse” a synapse is about 10ms during which the neuron cannot fire again. The activity of 

a neuron is measured by the firing frequency of the potential analogue spikes which it generates. 
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They range from about 50 to a few hundred spikes per second. Figure 3.10 below shows a 

simplified biological neuron. 

 

Figure 3.10: Biological neuron [23] 

The above Biological neuron can be modeled as an artificial neuron shown below 

 

Figure 3.11: A Non linear model of a neuron as a processing device. 

1. A set of synapses, each of which is characterized by a weight or strength of its own. 

Specifically, a signal xj at the input of synapse j connected to neuron k is multiplied by the 

synaptic weight wkj. The weight wkj is positive if the associated synapse is excitatory; it is 

negative if the synapse is inhibitory. 
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2. An adder for summing the input signals, weighted by the respective synapses of the neuron. 

3. An activation function for limiting the amplitude of the output of a neuron. The activation 

function is also referred to in the literature as a squashing function in that it squashes (limits) the 

permissible amplitude range of the output signal to some finite value. Typically, the normalized 

amplitude range of the output of a neuron is written as the closed unit interval [0, 1] or 

alternatively [-1, 1]. The model of a neuron also includes an externally applied bias (threshold) 

wk0 = bk that has the effect of lowering or increasing the net input of the activation function. 

3.3.1 Activation Function 

Typically, φ(·) is a non-linear function called as activation function. Commonly used forms for 

φ(·) are the binary and bipolar threshold functions, the piece-wise linear function (“hard-limited” 

linear function), and the so-called sigmoid function. Examples of these are as follows. 

a. Binary threshold activation function: 
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c. Piecewise-linear activation function: 
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d. Sigmoid (logistic) activation function: 

 

A sigmoid function is any differentiable function φ (·), say, such that φ (v) → 0 as v → −∞, 

φ (v) → 1 as v → ∞ and φ ′(v) > 0. 

  
 

A specific example of a sigmoid function is given by 

 

)exp(1
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α
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The larger the value of the constant parameter α, the greater is the slope. (The slope is sometimes 

called the “gain”.) In the limit when α → ∞, this sigmoid function becomes the binary threshold 

function (except for the single value v = 0, for which φ (0) is equal to 1/2, for all α). One could 

call this the threshold limit of φ. 
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In mathematical terms, we may describe a neuron k by writing the following pair of equations: 

                                                                  ∑
=

=
P

j

jkjk XWv
1

                                                                              (3.22) 

                                                                       )( kk vy ϕ=                                                                                (3.23) 

3.3.2 Neural Network Architecture 

A neural network is formed when we place units at the vertices of the directed graph, with the 

arcs of the digraph representing the flows of signals between units. Some of the units are termed 

input units: these receive signals not from other units, but instead they take their signals from the 

outside environment. Units that do not transmit signals to other units are termed output units. 

The network is said to be a feed-forward network when the units can be labeled with integers in 

such a way that there is a connection from the computation unit labeled i to the computation unit 

labeled j, then i < j and it also can be in multilayer networks. This is illustrated in the Figure 3.12 

below. 

 
Figure 3.12: Single-hidden-layer feed forward neural network with one output. [24] 
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3.3.3 Neural Network Learning   

Basically, there are two ways of learning in artificial neural network which are supervised and 

unsupervised learning. The overall concept of learning is to change the weights in the neuron in 

such a way that the error value is minimized for each pair of patterns of the fixed learning 

problem. As a stop criterion for the learning process, generally a total error E is used that is 

usually chosen to be the sum of the single error values. This total error is calculated a new after 

each epoch. An epoch is a complete run through the learning problem such that each pair of input 

/output patterns is processed once by the network using the learning algorithm. The learning 

process stops when the total error E is close enough to 0, or when the network is obviously not 

able to solve the learning problem. 

A supervised learning algorithm can be divided into five steps: 

i. A pair of patterns of the learning problem is chosen and the input i presented to the neural 

network. 

ii. The input is then, propagated through the network, until it has reached its inoperative mode. 

iii. The output determined by the network is compared to the target pattern. The error value (e) is 

determined and added to the total error E. 

iv. If e ≠ 0, then the weights are changed in a way that a reduction of the absolute value of error. 

The most common supervised learning algorithms involve approximation of a gradient descent 

method and try to reduce the total error E to zero. However, this learning procedure cannot 

always guarantee convergence, because it is equivalent to a local heuristic search procedure. The 

algorithm stops when it reaches a local minimum. There are however, some disadvantages of this 

technique as the local minimum is not the global minimum. This means that the minimized error 

is not reached and the learning process has failed. 

On the other hand, unsupervised learning algorithm works on a free learning problem which only 

contains input patterns. However, for this kind of learning procedure the network is also 

supposed to map similar input patterns to output that are similar to each other. In unsupervised 

learning algorithm, the units compete with each other and the principle of winner-takes-all 

applied. It is trained without teaching signals or targets and it is only supplied with examples of 
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the input patterns that it will solve eventually. This type of learning usually has an auxiliary cost 

function which needs to be minimized and the weights are modified where a cost function is 

minimized. At the end of the learning phase, the weights would have been adapted in such a 

manner such that similar patterns are clustered into a particular node. 

3.3.3.1 Perceptron learning rule: 

The perceptron is the simplest form of a neural network used for the classification of a special 

type of patterns, which are linearly separable. It consists of a single McCulloch-Pitts neuron with 

adjustable synaptic weights and bias (threshold). Rosenblatt proved that if the patterns (vectors) 

used to train the perceptron are drawn from linearly separable classes, then the perceptron 

algorithm converges and positions the decision surface in the form of a hyperplane between the 

classes. The proof of convergence of the algorithm is known as the perceptron convergence 

theorem. The single-layer perceptron shown has a single neuron. Such a perceptron is limited to 

performing pattern classification with only two classes. 

 

 

Figure 3.13: Perceptron (left), computing unit of ANN, analogous to a 

biological neuron (right) [25] 
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The training technique used is called the perceptron-learning rule. Perceptrons are especially 

suited for simple problems in pattern classification. Suppose we have a set of learning samples 

consisting of an input vector x and a desired output d(k). For a classification task, the d(k) is 

usually +1 or −1. The perceptron-learning rule is very simple and can be stated as follows: 

1. Start with random weights for the connections. 

2. Select an input vector x from the set of training samples. 

3. If output yk ≠ d(k) (the perceptron gives an incorrect response), modify all connections wi 

according to: 

                                    δwi = η (dk − yk) xi ; (η = learning rate). 

                              wi (new) = wi(old) + η (dk − yk) xi  ;   wi(new) is updated value of weight    

4. Go back to step 2. 

3.3.4 Back propagation Learning: 

Multilayer perceptrons have been applied successfully to solve some difficult diverse problems 

by training them in a supervised manner with a highly popular learning known as the error back-

propagation learning. This is based on the error-correction learning rule. Basically, the error 

back-propagation process consists of two passes through the different layers of the network: a 

forward pass and a backward pass. In the forward pass, activity pattern (input vector) is applied 

to the sensory nodes of the network, and its effect propagates through the network, layer by 

layer. Finally, a set of outputs is produced as the actual response of the network. During the 

forward pass the synaptic weights of network are all fixed. During the backward pass, on the 

other hand, the synaptic weights are all adjusted in accordance with the perceptrons error-

correction rule as discussed above. Specifically, the actual response of the network is subtracted 

from a desired (target) response to produce an error signal. This error signal is then propagated 

backward through the network, against direction of synaptic connections - hence the name “error 

back-propagation”. The synaptic weights are adjusted so as to make the actual response of the 

network move closer the desired response. 
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Figure 3.14: A Feed-forward network with back propagation learning [25] 

 

The feed-forward back-propagation neural network is shown in Figure 3.14. It is fully connected, 

which means that a neuron in any layer is connected to all neurons in the previous layer. Input 

data owes the direction from left to right side (Feed Forward Data arrow) and learning process 

goes on left-to-right direction to adjust nodes weights to improve next trial (Back Propagating 

Learning arrow). Signal flow through the network progresses in a forward direction, from left to 

right and on a layer-by layer basis. 

3.3.5 Multi-class pattern classification using neural networks 

Multi-class pattern recognition is a problem of building a system that accurately maps an input 

feature space to an output space of more than two pattern classes. While two class classification 

problem is well understood, multi-class classification is relatively less investigated. Many pattern 

classification systems were developed for two-class classification problems and theoretical 

studies of learning have focused almost entirely on learning binary functions [26] including 

artificial neural network algorithms such as the perceptron and the error back propagation (BP) 

algorithm[27][28][29].  
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3.3.5.1 An overview of neural network systems for multi-class pattern classification 

A K-class pattern classification problem can be implemented in either one of the two neural 

network architectures, a single neural network system with M outputs, where M>1 (see Fig. 

3.15(a)) or a system of multiple neural networks (see Fig. 3.15(b) and (c)).  

 

 

Figure 3.15: Different neural network architectures for implementing K-class pattern classification  

 

Fig. 3.15(a) shows a single neural network for pattern classification of K-classes. The number of 

the output nodes M, is determined by the encoding scheme for pattern classes, and is not 

necessary equal to K. Fig. 3.15(b) illustrates a system of M binary neural networks used to 

classify K object classes with a decision module that integrates the results from the M binary 

neural networks, and Fig. 3.15(c) illustrates a system of multiple neural networks for multi-class 

pattern classification each with multiple output nodes. Note the feature vectors in different neural 

networks in Fig. 3.15(b) and (c) can be different from each other. 
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Hence, the complete analysis of Brain MRI Image classification can be explained in term of 

following schematic diagram shown below. 

 

 
 

Figure 3.16:  Schematic Diagram of Brain MRI classification overview [30] 
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CHAPTER 4 

SIMULATION RESULTS 

Following sets of MRI data are taken for training & testing purpose. 

TRAINING DATA 

CLASS 1: 

   

                                 (a).                                                                    (b). 

 

                                  (c). 
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CLASS 2: 

 

   

                                 (d).                                                                  (e). 

 

                                        

                                                                           (f). 

 

 



54 

 

 

CLASS 3: 

 

   

                                 (g).                                                                  (h). 

 

 

(i). 
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CLASS 4: 

 

   

                                (j).                                                                        (k). 

 

 

                                   (l). 
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CLASS 5: 

 

           

                                (m).                                                                   (n).                         

 

 

(o). 

Figure: 4.1 Training data set 
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TEST DATA 

    

                                 (a).                                                                    (b).         

 

     

                                  (c).                                                                     (d). 
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                                 (e).                                                                     (f). 

 

   

                                (g).                                                                     (h). 
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                                 (i).                                                                   (j).              

 

   

                                (k).                                                                   (l). 
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                                (m).                                                                   (n).            

 

 

(o). 

      Figure 4.2: Testing data set 
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Five sets of Training data is taken. Each set contains three Images .One set contains normal MRI 

Images & rest four sets contain abnormal or brain tumor infected MRI images. The abnormal 

MRI images in four sets contain tumor location in different part of brain. Testing is done on 

fifteen MRI images. The classification is done using artificial neural network & is implemented 

on MATLAB. The results are obtained in the form of confusion matrix as shown below.   

 

 

Figure 4.3: Confusion Matrix 

Matrix shows that classification using artificial neural network gives 86.7% accurate results 

which are very good results as here number of training data sets taken are very less. If large 

training data is taken then results would be having excellent accuracy.  
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

This work proposed the development of an automated brain MRI diagnostic system, which can 

classify whether the MR image belongs to a normal brain or to a person suffering from brain 

tumor & also find out the location of  tumor in the brain . For this purpose, five classes of 

training data have been taken. The scheme employs a three -stage algorithm. Firstly, discrete 

wavelet transform using Haar wavelet is used for extracting features vectors. Vectors computed 

here are wavelets coefficients matrices of M.R.I Images of different training data sets. Then 

Principal component analysis is applied to get dominant features vectors & thus reducing the 

number of features vectors. Finally, for classification artificial neural network is used. Here, 

firstly neural network is trained using training data. Once, the neural network is trained 

classification is done on test data. Confusion matrix obtained by classification give 86.7% 

accuracy which are very good results as here training data is very less. Higher accuracy can be 

obtained using very large training data set. 

5.2 Future Scope 

Here, discrete wavelet transform is used as feature extraction technique. Although, latest 

research on brain MRI analysis state that DWT gives best features vectors but due to various 

others transforms techniques available for extracting image features DWT can be replaced by 

other method. So future scope of current work is adopting different method of feature extraction 

so that higher classification rates can be obtained. 
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