

Design & Implementation of Stream Cipher based on Linear

Feedback Shift Registers

 A Dissertation

Submitted in Partial Fulfillment For the Award of The Degree of

 Master of Engineering in

Computer Technology and Application

By:

MANMOHAN
(27/CTA/03)

Under the guidance of

Prof. D. Roy Choudhury

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING
DELHI UNIVERSITY, DELHI-110042

2003-2005

 1

CERTIFICATE

This is to certify that the project entitled “ Design & Implementation of Stream

Cipher based on Linear feedback shift registers ” submitted by Manmohan, class

Roll No. 27/CTA/03 , university Roll No. 3019 in the partial fulfillment of the

requirement for the award of degree of Master of Engineering in Computer

Technology and Application, Delhi College of Engineering is an account of his

authentic work carried out under my guidance and supervision. He has not submitted

this work for the award of any other degree.

Project Guide: Head of Department:

Dr. D. Roy Choudhury Dr. D. Roy Choudhury

Professor Professor

Dept. of Computer Engg. Dept. of Computer Engg.

Delhi College of Engg., Delhi Delhi College of Engg., Delhi

 2

ACKNOWLEDGEMENTS

I am delighted to express my heartily and sincere gratitude and indebtedness to Prof.

D. Roy Choudhury, Head of Department, Computer Engineering, Delhi College of

Engineering, Delhi for his invaluable guidance and wholehearted cooperation. His

continuous inspiration only has made me complete this minor project.

I am thankful to many people whose feedback and suggestions proved to be

invaluable. I would like to thanks Shri S.P.Mishra(Scientist ‘E ‘DRDO) Shri Prabho

Singh(Statistical Analyst Indian Army) for their inspiring ideas and thoughts and

Mr.Deepak Mittal for his technical assistance.

I am also thankful to Dr. SHRI KANT (Scientist ‘F ‘DRDO) for evaluating my work

and providing me invaluable suggestions.

 Last but not least, I would like to thank my family and my friend Ms. Kumkum

Bagchi for their support and help throughout the years of study, without whom it

would have been difficult to accomplish this task.

 (MANMOHAN)

 DCE 2003-2005

 3

 DECLARATION BY THE CANDIDATE

I, hereby declare that the dissertation work entitled “Design & Implementation of

Stream Cipher based on Linear feedback Shift Registers” is an authentic work

carried out by me under the guidance of Prof. D.Roy Choudhury for the partial

fulfillment and award of the degree of M.E. in computer Technology and Application.

I have not submitted this work anywhere else for the award of any other degree.

 (MANMOHAN)

 M.E. (CTA) 27/CTA/03

 Department of Computer Engineering

 DCE, Delhi-1100042

 4

Abstract

In this thesis I propose a LFSRs based stream cipher. To avoid brute-force attack a

crypto system should use at least 90-bit key. Our cryptosystem uses 128-bit key.

Crack resistance of cryptosystem is more than billions of years.

To avoid other attacks I have conducted various randomness tests extensively. As far

as encryption rate of cryptosystem is concerned it is comparable to modern

cryptosystems like RC4. Reason behind using LFSRs is that they are well studied and

they can be implemented efficiently in hardware as well as in software.

Proposed cryptosystem will be very useful with suitable combination of public key

cryptosystem and hashing algorithm in securing any digital information.

Cryptosystem can be easily extended for large key length also.

The software is written in C++/C for Windows and linux environment. For testing

stream cipher NIST test suite on Linux Platform is being used.

 5

Contents

CHAPTER 1: Introduction 1

1.1 Cryptology from stream cipher point of view 2
1.2 Structure of stream cipher 3
1.3 Secret Key Vs. Public Key Cryptography 4
1.4 Stream Cipher Vs Block Cipher 10
 1.4.1Desirable Characteristics of stream and Block Ciphers 12
1.5 Analysis of stream cipher 13

CHAPTER 2: Stream Ciphers 14
 2.1 Introduction 14
 2.1.1 Classification of Stream Ciphers 14
 2.2 Basic Building-Blocks of Stream Ciphers 15
 2.3 Linear feedback shift registers 15
 2.4 Stream ciphers based on LFSRs 19
 2.5 Linear complexity 21
 2.6Golomb’s randomness postulates 24
 2.7Attacks on Stream Ciphers 25
 2.7.1 Correlation Attacks 26
 2.7.2 Other Attacks 26
 2.8 Specific Example of a Stream Cipher: RC4 27
 2.9 Practical Considerations 27

CHAPTER 3: Tests For Random and Pseudorandom Number Generators 29
 3.1 General Discussion 29
 3.1.1 Randomness 29
 3.1.2 Unpredictability 30
 3.1.3 Random Number Generators (RNGs) 30
 3.1.4 Pseudorandom Number Generators (PRNGs) 31
 3.1.5 Testing 32
 3.1.6 Considerations for Randomness, Unpredictability
 and Testing 33

CHAPTER 4: Random Number Generation Test 34
 4.1 Frequency (Monobit) Test 35
 4.2 Frequency Test within a Block 36
 4.3 Runs Test 37
 4.4 Test for the Longest Run of Ones in a Block 38
 4.5 Binary Matrix Rank Test 39
 4.6 Discrete Fourier Transform (Spectral) Test 40
 4.7 Non-overlapping Template Matching Test 41
 4.8 Overlapping Template Matching Test 43
 4.9 Maurer’s “Universal Statistical” Test 44
 4.10 Lempel-Ziv Compression Test 45
 4.11 Linear Complexity Test 46

 4.12 Serial Test 48

 6

 4.13 Approximate Entropy Test 49
 4.14 Cumulative Sums (Cusum) Test 50
 4.15 Random Excursions Test 51
 4.16 Random Excursions Variant Test 53

CHAPTER 5: New Proposed Algorithm 55

CHAPTER 6: Conclusion and Comparison 59

CHAPTER 7: Test Results 60
 7.1Test Results of Randomness using NIST test Suite 60
 7.2 Test Result of Randomness using Mulyankan Software of DRDO 66

8.Appendix –A Source Code 67

9. Appendix –B Snapshots 92

References and Bibliography 98

 7

CHAPTER 1

Introduction
Secret writing for transmission of message has been , according to David Kahn, the

great historian of cryptography, practiced since forty centuries, the first example

being an altered message on a tomb in Egypt in 1900 B.C. From that time onwards,

secret messages have been used by people of different walks of life-diplomats

,military officers, bankers, scholars and citizens all over the world. The art and

science of producing systems for secret writing –keeping the message secure – is

cryptography. During the last twenty years, public and academic research in

cryptography has explored new dimension. While classical cryptography could be

used by ordinary citizens, computer cryptography has been the exclusive domain of

the world’s militaries since World War II. Today state of the art computer

cryptography is being practiced outside the secured walls of the military agencies

also.

Cryptography is the mathematics of making a system secure. The algorithm must be

so strong that there is no better way to break it than with a brute force attack. This is

not as easy as it might seem. Strong cryptosystems with a couple of minor changes

can become weak. Good cryptosystems has nice property of making life harder for the

attacker than the legitimate user. The designer of cryptosystem has to think of every

possible means of attack and protect against all of them.

The need for information security in today's digital systems is growing. For this

reason cryptography has become one of these systems' critical component.

Cryptographic services are now required across a variety of electronic platforms such

as secure access to private networks, data banks, electronic commerce, cellular and

PCS phones, all kinds of data communications and smart card technology.

Cryptographic goals A well-defined and implemented cryptographic system should

provide the following services:

1)Confidentiality: Keeps the data involved in an electronic transaction private.

Meaning that the transmitted information is accessible only for reading by authorized

parties. Encryption provides confidentiality.

2)Authentication: Ensures that the origin of a message or electronic document is

correctly identified. In mutual authentication both the server and user or both parties

 8

in general case authenticate each other. It is typically provided by verifying other

parties digitally signed certificates.

3)Data Integrity: It basically means that the information exchanged in an electronic

data transfer is not alterable without detection. Modification types include writing,

changing, deleting, etc.

4)Nonrepudiation: This simply tells that the actions performed by the service user in

an electronic transaction are no revocable so that they are legally binding. Therefore,

neither the sender nor the receiver of a message should be able to deny the

transaction.

A fundamental goal of cryptography is to adequately address these four areas in both

theory and practice. Cryptography is about the prevention and detection of cheating

and other malicious activities.

A good cryptosystem is one in which all the security is inherent in knowledge of the

key and none is inherent in knowledge of algorithm. If a cryptographically weak

process is used to generate keys then the whole system is weak. This is why Key

management is so important in cryptography. The art and science of breaking cipher-

text is cryptanalysis. The ranch of science encompassing both cryptography and

cryptanalysis is cryptology.

1.1 A Short History of Cryptology from a Stream Ciphers Point of View

Modern cryptology deals with confidentiality, integrity, authenticity, random-number

generation, zero-knowledge proofs and various other topics in a mathematical way.

However, most of these issues arose in the last decades. The propelling force in the

centuries before was the human desire to transfer information secretly. Ancient

approaches to transport information in a confidential way considered single letters and

changed them according to various rules. Examples thereof are the Caesar cipher or

simple substitution ciphers. The first approach which has much in common with

today's stream ciphers is the cipher of Vignere [Kah67]. It can be

formalized as:

Ci = Pi +Ki mod 26 (1.1)

Equation 1.1 can be interpreted as follows: each letter in the alphabet is under stood as

a number ranging from 0 to 25. The keyletter K is added to the plaintext letter P in

order to get the ciphertext letter C. The mod 26 operation makes sure that the resulting

ciphertext is always inside the proper range. Keep in mind: in this scheme, the key is

reused if the plaintext is longer than the key. The first cryptanalysis of this scheme

 9

was published by Kasiski , which is based upon this fact. He came up with the

following observation when encrypting two plaintexts Pa and Pb with the same secret

key:

Ca ⊕ Cb = Pa P⊕ b (1.2)

A ciphertext only attack reveals very much of the used plaintext, if the key K is

reused. Even if the used plaintexts are not directly revealed, Pa ⊕ Pb contains much

information about the plaintexts Pa and Pb.

Later, in the early 20th century, Vernam introduced a scheme which made the key as

long as the plaintext. This was a big difference to the polyalphabetic substitution

ciphers used at this time. Later on, this system has been used with a random key -

hence the one-time pad was born. In 1949 Shannon proved in his landmark paper that

this approach is indeed unconditionally secure; that is, even an attacker with

unbounded computing resources cannot break such a system, and no future advance in

mathematics can provide a shortcut attack because of its entropy conditions.

All of these approaches have two things in common: first, their security is based on a

shared secret - they are all symmetrical ciphers. But even more important is that their

working principle is based on single symbols, which is an important characteristic of

stream ciphers.

1.2 The Structure of Stream Ciphers

Since it is very inconvenient and in many circumstances impractical to share and use

keys which are the same size as the transmitted information (this effort is only made

in exceptional circumstances) the goal was to reduce the key-size but maintain a

reasonable level of security. The general approach to achieve this is to replace the key

in the Vernam scheme by a pseudo-random sequence of bits or symbols which is the

output of a generator that is initialized with a (shorter) key. Of course this scheme can

no longer be unconditionally secure anymore because the entropy of the key is now

smaller than the entropy of the message. In the context of generating random bits,

several identifiers are used to refer to random number generators(RNG).

Informally, they can be structured as follows.

When talking about true random number generators (TRNG), some sort of physical

activity is used as a source for randomness. Examples thereof are thermal noise,

flipping a coin or radioactive decay. On the other hand, pseudo random number

generators (PRNG) are based on algorithms and are thus deterministic. Usually, they

are seeded by a TRNG. The randomness of a PRNG is verified by means of statistical

 10

tests. If used for cryptographic purposes, PRNG need to have additional properties: it

should be difficult to predict the future output from previous outputs and it should be

difficult to determine the internal state of the generator by examining the output. If

those properties are fulfilled, the PRNG is cryptographically secure (CSPRNG).

 Ki Pi

 Zi CiKey Stream Generator

Figure 1.1 shows the general structure of a stream cipher. The short key denoted as K

is used to seed the key-stream generator. The key-stream symbols Zi are combined

with the plaintext symbols Pi to produce a sequence of ciphertext symbols Ci. The

generated key-stream is combined with the plaintext on a bit-per-bit basis. This

combining step is most of the time an XOR function.

1.3 Secret Key vs. Public Key Cryptography

A major problem arises when a big number of devices/people want to exchange

messages using a cipher and a secret key. Since nobody else than the two involved

parties should be able to decrypt the exchanged message, pairwise secret keys need to

be distributed among the participants. There are two straightforward solutions to this

problem. One is the generation and pre-distribution of n*(n-1)/2 keys for n parties.

Another approach is to introduce a trusted party which generates needed keys on

demand. In this case, the number of pre-distributed keys is in the order of n, but the

trusted party is also a single point of failure.

Message Secret Key Decrypted Msg.

 Secure Channel

 --

 Unsecure Channel Decryption Encryption

 11

 Alice Bob

 Eve Adversary

Fig 1.2:Two parties engaged in symmetric cipher conversation with an adversary

listening in on unsecured channel

In the late 70s public key cryptography was introduced among others by Diffe and

Hellman and by Rivest, Shamir and Adleman in the open literature. Their methods

are based on hard number-theoretic problems and can be used to solve the key

distribution problem. Instead of sharing a secret key, each party has a pair of keys,

which consist of a private key only known to the owner and a public key. Despite this

big structural advantage, public key cryptography did not replace secret key

cryptography. Performance is one of the reasons, since public key cryptography is

much slower than secret key cryptography. In practice, a two-stage approach is used.

In a first step public key cryptography is used to derive a secret key. Subsequently,

this key is used to encrypt the actual message. This thesis solely deals with secret key

algorithms where stream ciphers are assigned to.

Asymmetric ciphers (also called public-key algorithms or generally public-key

cryptography) permit the encryption key to be public (it can even be published in a

newspaper), allowing anyone to encrypt with the key, whereas only the proper

recipient (who knows the decryption key) can decrypt the message. The encryption

key is also called the public key and the decryption key the private key or secret

key.

 Eve

 Message Decrypted Message

Adversary

 Unsecured Channel Encryption Decryption

 12

 Bob Alice

 Private Key

 Unsecured Channel Public Key

Fig 1.3:Two parties engaged in public key cipher conversation. The adversary

can see the both cipher text and the public key

Encryption using public key k is denoted by:

 Ek (P) = C

Even though the public key and private key are different , decryption with the

corresponding private key is denoted by:

 Dk (C) = P

Sometimes message will be encrypted with the private key and decrypted with the

public key , this is used in digital signatures. These operations are also denoted by,

 Ek (P) = C

 Dk (C) = P

• RSA (Rivest-Shamir-Adelman) is the most commonly used public key

algorithm. Can be used both for encryption and for digital signature. It is

generally considered to be secure when sufficiently long keys are used (512

bits is insecure, 768 bits is moderately secure, and 1024 bits is good and 2048

bit keys are likely to remain secure for decades.). The security of RSA relies

on the difficulty of factoring large integers. Dramatic advances in factoring

large integers would make RSA vulnerable. RSA is currently the most

important public key algorithm.

Let P and Q be the two large primes , each roughly of same size 10E100.

Compute N = P*Q and φ(N) = (P-1)(Q-1) . Select an integer E, 1 < E < φ(N) ,

such that (E, φ(N)) = 1 . The integer E is called the encryption key, used as

public key, and the integer N is called the modulus of the system. Let M, 1<M<N

 13

, be a numerical plane message , then the cryptogram C is obtained in the

following way:-

 C ≡ ME mod N

Let D be a +ve integer such that ED ≡ 1 mod φ(N) then the plane message M is

obtained back from the cryptogram C in the following way :

 M ≡ CD mod N

The integer D is called the decryption key of the system and used as the private key.

These encryption and decryption keys E and D can be generated easily using the

inverse generating algorithm (IGA) .

• Diffie-Hellman, DSS (Digital Signature Standard), LUC are others public key

algorithms.

Modern cryptographic algorithms cannot really be executed by humans. Strong

cryptographic algorithms are designed to be executed by computers or specialized

hardware devices. In most applications, cryptography is done in computer software,

and numerous cryptographic software packages are available.

Generally, symmetric algorithms are much faster to execute on a computer than

asymmetric ones. In practice they are often used together, so that a public-key

algorithm is used to encrypt a randomly generated encryption key, and the random

key is used to encrypt the actual message using a symmetric algorithm.

Advantages and disadvantages Symmetric-key vs. public-key cryptography

Symmetric-key and public-key encryption schemes have various advantages and

disadvantages, some of which are common to both. This section highlights a number

of these and summarizes features pointed out in previous sections.

(i) Advantages of symmetric-key cryptography

1. Symmetric-key ciphers can be designed to have high rates of data throughput.

Some hardware implementations achieve encrypt rates of hundreds of megabytes per

second, while software implementations may attain throughput rates in the megabytes

per second range.

2. Keys for symmetric-key ciphers are relatively short.

 14

3 .Symmetric-key ciphers can be employed as primitives to construct various

cryptographic mechanisms including pseudorandom number generators hash

functions and computationally efficient digital signature schemes, to name just a few.

4. Symmetric-key ciphers can be composed to produce stronger ciphers. Simple

transformations which are easy to analyze, but on their own weak, can be used to

construct strong product ciphers.

5. Symmetric-key encryption is perceived to have an extensive history, although it

must be acknowledged that, notwithstanding the invention of rotor machines earlier,

much of the knowledge in this area has been acquired subsequent to the invention of

the digital computer, and, in particular, the design of the Data Encryption Standard in

the early 1970s.

(ii) Disadvantages of symmetric-key cryptography

1. In a two-party communication, the key must remain secret at both ends.

2. In a large network, there are many key pairs to be managed. Consequently,

effective key management requires the use of an unconditionally trusted TTP .

3. In a two-party communication between entities A and B, sound cryptographic

practice dictates that the key be changed frequently, and perhaps for each

communication session.

4. Digital signature mechanisms arising from symmetric-key encryption typically

require either large keys for the public verification function or the use of a TTP.

(iii) Advantages of public-key cryptography

1. Only the private key must be kept secret (authenticity of public keys must,

however, be guaranteed).

2. The administration of keys on a network requires the presence of only a

functionally trusted TTP (Definition 1.66) as opposed to an unconditionally trusted

TTP. Depending on the mode of usage, the TTP might only be required in an “off-

line” manner, as opposed to in real time.

3. Depending on the mode of usage, a private key/public key pair may remain

unchanged for considerable periods of time, e.g., many sessions (even several years).

4. Many public-key schemes yield relatively efficient digital signature mechanisms.

The key used to describe the public verification function is typically much smaller

than for the symmetric-key counterpart.

5. In a large network, the number of keys necessary may be considerably smaller than

in the symmetric-key scenario.

 15

(iv) Disadvantages of public-key encryption

1. Throughput rates for the most popular public-key encryption methods are several

orders of magnitude slower than the best known symmetric-key schemes.

2. Key sizes are typically much larger than those required for symmetric-key

encryption, and the size of public-key signatures is larger than that of tags providing

data origin authentication from symmetric-key techniques.

3. No public-key scheme has been proven to be secure (the same can be said for block

ciphers). The most effective public-key encryption schemes found to date have their

security based on the presumed difficulty of a small set of number-theoretic problems.

4. Public-key cryptography does not have as extensive a history as symmetric-key

encryption, being discovered only in the mid 1970s.

Summary of comparison Symmetric-key and public-key encryption have a number

of complementary advantages. Current cryptographic systems exploit the strengths of

each. An example will serve to illustrate.

Public-key encryption techniques may be used to establish a key for a symmetric-key

system being used by communicating entities A and B. In this scenario A and B can

take advantage of the long term nature of the public/private keys of the public-key

scheme and

the performance efficiencies of the symmetric-key scheme. Since data encryption is

frequently the most time consuming part of the encryption process, the public-key

scheme for key establishment is a small fraction of the total encryption process

between A and B. To date, the computational performance of public-key encryption is

inferior to that of symmetric-key encryption. There is, however, no proof that this

must be the case. The important points in practice are:

1. public-key cryptography facilitates efficient signatures (particularly non-

repudiation) and key management ; and

2. symmetric-key cryptography is efficient for encryption and some data integrity

applications.

Remark (key sizes: symmetric key vs. private key) Private keys in public-key

systems must be larger (e.g., 1024 bits for RSA) than secret keys in symmetric-key

systems (e.g.,64or 128 bits) because whereas (for secure algorithms) the most

efficient attack on symmetric key systems is an exhaustive key search, all known

public-key systems are subject to “shortcut” attacks (e.g., factoring) more efficient

than exhaustive search. Consequently, for equivalent security, symmetric keys have

 16

bit lengths considerably smaller than that of private keys in public-key systems, e.g.,

by a factor of 10 or more.

1.4 Stream Ciphers vs. Block Ciphers

Stream ciphers apply a simple, always changing transformation to one symbol at a

time whereas block ciphers apply a more complex, but static transformation to a

group of symbols at once. Stream ciphers can be faster than block ciphers, especially

if they are based on LFSRs and implemented in hardware. However, the distinction

between both types of ciphers is not clear. If a block cipher is used in cipher block

chaining (CBC) mode, one can consider this as a stream cipher which operates on

large symbols (i. e. symbols of the size of one block). This could lead to the

conclusion that stream- and block ciphers work at different levels of abstraction.

Whereas stream ciphers work in a particular mode of operation, block ciphers are just

building blocks to construct a mode of operation.

Additionally, there are some modes of operation for block ciphers whose intention is

to provide stream cipher like properties. These are the cipher feedback (CFB) mode,

the output feedback (OFB) mode, the key feedback (KFB) mode and the

counter(CTR) mode. There, the block cipher is used to generate a key-stream which is

then XORed with the plaintext. On the other hand, turning a stream cipher into a block

cipher is also possible, but less efficient though. Simplified, what is required is to put

the stream cipher into the round function of a Feistel based block cipher. There is

much theoretical knowledge and there are many tools available to analyze various

properties of the building blocks of stream ciphers. Until recently nothing comparable

was available for block ciphers. Till the mid 90s all used block ciphers were based on

a Feistel structure [Fei73] which arose in the early 70s. The Data Encryption Standard

(DES), which held a predominant position in the area of block ciphers for more than

two decades, uses this structure as well. The design criteria for the DES, especially for

its S-boxes, are kept secret and DES proved to be highly resistant against

cryptanalytic shortcut attacks. Later Substitution Permutation Networks (SPNs) have

been used to design new block ciphers. Together with the “Wide trail design strategy"

, these efforts led to the ability of giving block ciphers valuable properties such as

provable resistance against linear or differential cryptanalysis.

Stream ciphers on the other hand have never been standardized but tend to be

proprietary and even classified. The AES is the current standard for general purpose

 17

block ciphers, but there is no comparable standard for stream ciphers. This is reflected

by the fact that the widely used RC4, perceived as the de facto standard for stream

ciphers, is proprietary. Even though the number of new stream cipher proposals is

growing and the state of affair for both seems to converge a little bit there is still

much do be done: none of the stream ciphers submitted to the NESSIE project have

been recommended because all suffered at least from slight weaknesses.

1.4.1Desirable Characteristics of stream and Block Ciphers

Stream Ciphers:

Large Period: For every key the sequence should have a very large period so that no

part of enciphering sequence should have a very large period so that no part of

enciphering sequence is used repeatedly within a reasonable time.

Complexity: Given a segment of sequence, it should not be possible to predict the

preceding or following segment.

Sound Statistical Properties: In bit stream the ones and zeroes should be evenly

distributed in the sequence and also poses good autocorrelation properties.

Variability: variability should be high to ensure that a brute force attack become

infeasible.

Correlation Immunity: Functions used should be non linear and correlation immune.

Block Ciphers:

Avalanche Effect: A 1-bit change of the key or plain text should produce a radical

change in the cipher text. If f(p,k) = C , where p stand for plain text , k for the key

transformation and C for cipher text. One bit change either in p or k produces radical

change in the cipher text C.

2) The algorithm should contain a non commutative combination of substitution and

permutation.

3. The algorithm should include substitution and permutations under the control of

both the input data and the key.

4. The length of cipher text should be same as length of the plaintext.

5.There should be no simple relationship between any possible keys and cipher text

bits.

6.All possible keys should produce a strong cipher that does not have any statistical or

language oriented weakness that can be exploited by the cryptanalyst.

7. The length of the key and the text should be adjusted to meet application

requirements and security strength requirements.

 18

8. Block length should be large.

9. The algorithms should be easily and efficiently implement able on main frames,

minicomputers and microcomputers(IN fact the functions used in the algorithm are

limited to Xor and bit Shifting).

1.5 Analysis of Stream Ciphers

Various stream ciphers are used in today's applications. They range from software

based applications like web browsers to wireless communication hardware like

mobile phones and WLAN equipment. The used stream ciphers range from the de

facto standard RC4 to designs specially targeted for a particular use. Even those

specially designed for a particular purpose rely on a number of well known structures.

When designing stream ciphers, there are however more structures available than in

the case of block ciphers.

The security of cryptographic algorithms can be evaluated by means of crypt-analysis.

Mathematical relations between plaintext, ciphertext and key are used to find

weaknesses.

 19

Chapter 2

2.1 Introduction
Stream ciphers are an important class of encryption algorithms. They encrypt

individual characters (usually binary digits) of a plaintext message one at a time,

using an encryption transformation, which varies with time. By contrast, block ciphers

tend to simultaneously encrypt groups of characters of a plaintext message using a

fixed encryption transformation. Stream ciphers are generally faster than block

ciphers in hardware, and have less complex hardware circuitry. They are also more

appropriate, and in some cases mandatory (e.g., in some telecommunications

applications), when buffering is limited or when characters must be individually

processed as they are received. Because they have limited or no error propagation,

stream ciphers may also be advantageous in situations where transmission errors are

highly probable.

There is a vast body of theoretical knowledge on stream ciphers, and various design

principles for stream ciphers have been proposed and extensively analyzed. However,

there are relatively few fully specified stream cipher algorithms in the open literature.

This unfortunate state of affairs can partially be explained by the fact that most stream

ciphers used in practice tend to be proprietary and confidential. By contrast, numerous

concrete block cipher proposals have been published, some of which have been

standardized or placed in the public domain. Nevertheless, because of their significant

advantages, stream ciphers are widely used today, and one can expect increasingly

more concrete proposals in the coming years.

2.1.1 Classification of Stream Ciphers

As described in the introductory chapter, encryption schemes can be symmetric(using

the same secret key for both encryption and decryption) as well as asymmetric(en-

and decryption use different keys). Even for the special case of stream ciphers, there

is this distinction: there are symmetric as well as asymmetric stream ciphers. No

doubt, symmetric stream ciphers build the majority, but there is an example for the

latter: the Blum-Goldwasser probabilistic encryption scheme which is based on the

Blum-Blum-Shub pseudorandom number generator. This was a novel approach, since

the BBS-generator has a strong security proof, which relates the difficulty of

distinguishing output bits from random to the difficulty of integer factorization.

However, this scheme has no relevance for practical (fast) stream ciphers and

therefore, the remainder of this chapter will deal solely with symmetrical stream

 20

ciphers. Stream ciphers can also be synchronous or asynchronous. In a synchronous

stream cipher, the generated key-stream is independent from the processed plain text

or ciphertext. Hence it can be pre-generated as well. A bit-error in the plaintext (e. g. a

flipping bit) affects only the corresponding bit of the ciphertext. One drawback is that

both the sender and the receiver have to be synchronized. Insertion or deletion of bits

by an active attacker causes immediate loss of synchronization but is thus detected

immediately as well.

Asynchronous stream ciphers on the other hand use parts of the generated cipher-text

in the key-stream generation. Whereas a key-stream can be pre-generated with

synchronous stream ciphers because it is independent of the plaintext, this is not the

case for asynchronous stream ciphers. They can resynchronize after insertion- or

deletion of bits and are therefore sometimes called self-synchronized. Even if this can

be an important property, this type of stream cipher did not receive much interest; so

the remainder of this chapter will deal with synchronous stream ciphers. Menezes et

al. names the one-time pad as a separate type of stream cipher. In this case, the key-

stream is truly random and not generated in a deterministic way as it is done by the

other types.

Stream ciphers can be either symmetric-key or public-key. The focus of this chapter is

symmetric-key stream ciphers; the Blum-Goldwasser probabilistic public-key

encryption

2.2 Basic Building Blocks of Stream Ciphers

Block ciphers are round based; their basic building blocks are used in an iterative

manner to produce a set of output symbols. Stream ciphers use different building

blocks(though some are similar to block ciphers as well) and combine them in a

certain way using an internal state to produce single output symbols. Some of these

building blocks and combinations thereof are now considered.

2.3 Linear feedback shift registers

Linear feedback shift registers (LFSRs) are used in many of the keystream generators

that have been proposed in the literature. There are several reasons for this:

1. LFSRs are well suited to hardware implementation;

2. they can produce sequences of large period ;

3. they can produce sequences with good statistical properties , and

4. because of their structure, they can be readily analyzed using algebraic techniques.

 21

2.3.1Definition A linear feedback shift register (LFSR) of length L consists of L

stages (or delay elements) numbered 0; 1; : : : ; L - 1, each capable of storing one bit

and having one input and one output; and a clock which controls the movement of

data. During each unit of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;

(ii) the content of stage i is moved to stage i - 1 for each i, 1 ≤ i ≤ L - 1; and

(iii) the new content of stage L - 1 is the feedback bit sj which is calculated by adding

together modulo 2 the previous contents of a fixed subset of stages 0; 1; : : : ; L - 1.

 figure 2.1

Figure 2.1 above depicts an LFSR. Referring to the figure 2.1, each ci is either 0 or 1;

the closed semi-circles are AND gates; and the feedback bit sj is the modulo 2 sum of

the contents of those stages i, 0 ≤ i ≤ L - 1, for which cL-i = 1.

2.3.2 Definition The LFSR of Figure 2.1 is denoted [L;C(D)], where C(D) = 1+c1D

+c2D2 + _ _ _ + cLDL ∈ Z2[D] is the connection polynomial. The LFSR is said to be

nonsingular if the degree of C(D) is L (that is, cL = 1). If the initial content of stage i

is si ∈{0,1}; for each i, 0≤ i ≤ L - 1, then [sL-1; : : : ; s1; s0] is called the initial state of

the LFSR.

2.3.3 Fact If the initial state of the LFSR in above figure is [sL-1; : : : ; s1; s0], then the

output sequence s = s0; s1; s2; : : : is uniquely determined by the following recursion:

sj = (c1sj-1 + c2sj-2 + _ _ _ + cLsj-L) mod 2 for j ≥ L:

2.3.4 Example (output sequence of an LFSR) consider the LFSR (4;1 + D + D4)

depicted in Figure 2.2. If the initial state of the LFSR is [0; 0; 0; 0], the output

sequence is the zero sequence. The following tables show the contents of the stages

D3, D2, D1, D0 at the end of each unit of time t when the initial state is [0; 1; 1; 0].

 22

t

D3

D2

D1

D0

t D3 D2 D1 D0

0
1
2
3
4
5
6
7

0
0
1
0
0
0
1
1

1
0
0
1
0
0
0
1

1
1
0
0
1
0
0
0

0
1
1
0
0
1
0
0

8
9
10
11
12
13
14
15

1
1
0
1
0
1
1
0

1
1
1
0
1
0
1
1

1
1
1
1
0
1
0
1

0
1
1
1
1
0
1
0

The output sequence is s = 0; 1; 1; 0; 0; 1; 0; 0; 0; 1; 1; 1; 1; 0; 1; : : :, and is periodic

with period 15 .

Fact 2.3.5 explains the significance of an LFSR being non-singular.

Figure 2.2

2.3.5 Fact Every output sequence (i.e., for all possible initial states) of an LFSR

(L,C(D)) is periodic if and only if the connection polynomial C(D) has degree L.

If an LFSR (L,C(D)) is singular (i.e., C(D) has degree less than L), then not all output

sequences are periodic. However, the output sequences are ultimately periodic; that is,

the sequences obtained by ignoring a certain finite number of terms at the beginning

are periodic. For the remainder of this chapter, it will be assumed that all LFSRs are

nonsingular.

Fact 2.3.6 determines the periods of the output sequences of some special types of

non-singular LFSRs.

2.3.6 Fact (periods of LFSR output sequences) Let C(D)∈ Z2[D] be a connection

polynomial of degree L.

(i) If C(D) is irreducible over Z2 then each of the 2L - 1 nonzero initial states of the

non-singular LFSR (L,C(D)) produces an output sequence with period equal to the

 23

least positive integer N such that C(D) divides 1 + DN in Z2[D]. (Note: it is always the

case that this N is a divisor of 2L - 1.

(ii) If C(D) is a primitive polynomial then each of the 2L-1 nonzero initial states of the

non-singular LFSR (L,C(D)) produces an output sequence with maximum possible

period 2L - 1.

Fact 2.3.6(ii) motivates the following definition.

2.3.7 Definition If C(D) ∈ Z2[D] is a primitive polynomial of degree L, then (L,C(D))

is called a maximum-length LFSR. The output of a maximum-length LFSR with non-

zero initial state is called an m-sequence.

Fact 2.3.8 demonstrates that the output sequences of maximum-length LFSRs have

good statistical properties.

2.3.8 Fact (statistical properties of m-sequences) Let s be an m-sequence that is

generated by a maximum-length LFSR of length L.

(i) Let k be an integer, 1 ≤ k ≤ L, and let s be any subsequence of s of length 2L +k - 2.

Then each non-zero sequence of length k appears exactly 2L-k times as a subsequence

of s. Furthermore, the zero sequence of length k appears exactly 2L-k-1 times as a

subsequence of s. In other words, the distribution of patterns having fixed length of at

most L is almost uniform.

(ii) s satisfies Golomb’s randomness postulates. That is, every m-sequence is also a

pn-sequence .

2.3.9 Example (m-sequence) Since C(D) = 1+D + D4 is a primitive polynomial over

Z2, the LFSR (4,1+D+D4) is a maximum-length LFSR. Hence, the output sequence of

this LFSR is an m-sequence of maximum possible period N = 24-1 = 15 (Example

2.3.4).

2.4 Stream ciphers based on LFSRs

As mentioned in the beginning, linear feedback shift registers are widely used in

keystream generators because they are well-suited for hardware implementation,

produce sequences having large periods and good statistical properties, and are readily

analyzed using algebraic techniques. Unfortunately, the output sequences of LFSRs

are also easily predictable, as the following argument shows. Suppose that the output

sequences of an LFSR has linear complexity L. The connection polynomial C(D) of

an LFSR of length L which generates s can be efficiently determined using the

 24

Berlekamp-Massey algorithm from any (short) subsequence t of s having length at

least n = 2L. Having determined C(D), the LFSR (L,C(D)) can then be initialized with

any substring of t having length L, and used to generate the remainder of the

sequences.

An adversary may obtain the required subsequence t of s by mounting a known or

chosen plaintext attack on the stream cipher: if the adversary knows the plaintext

subsequence m1,m2,….mn corresponding to a ciphertext sequence c1; c2; : : : ; cn, the

corresponding keystream bits are obtained as mi ⊕ ci, 1 ≤ i ≤ n.

2.4.1Note (use of LFSRs in keystream generators) Since a well-designed system

should be secure against known-plaintext attacks, an LFSR should never be used by

itself as a keystream generator. Nevertheless, LFSRs are desirable because of their

very low implementation costs. Three general methodologies for destroying the

linearity properties of LFSRs are discussed in this section:

(i) using a nonlinear combining function on the outputs of several LFSRs ;

(ii) using a nonlinear filtering function on the contents of a single LFSR ; and

(iii) using the output of one (or more) LFSRs to control the clock of one (or more)

other LFSRs .

Desirable properties of LFSR-based keystream generators

For essentially all possible secret keys, the output sequence of an LFSR-based

keystream generator should have the following properties:

1. large period;

2. large linear complexity; and

3. good statistical properties .

It is emphasized that these properties are only necessary conditions for a keystream

generator to be considered cryptographically secure. Since mathematical proofs of

security of such generators are not known, such generators can only be deemed

computationally secure after having withstood sufficient public scrutiny.

 2.4.2 Note (connection polynomial) Since a desirable property of a keystream

generator is that its output sequences have large periods, component LFSRs should

always be chosen to be maximum-length LFSRs, i.e., the LFSRs should be of the

form (L,C(D)) where C(D)∈Z2[D] is a primitive polynomial of degree L (see

Definition 2.3.7 and Fact 2.3.6(ii)).

2.4.3 Note (known vs. secret connection polynomial) The LFSRs in an LFSR-based

keystream generator may have known or secret connection polynomials. For known

 25

connections, the secret key generally consists of the initial contents of the component

LFSRs. For secret connections, the secret key for the keystream generator generally

consists of both the initial contents and the connections.

For LFSRs of length L with secret connections, the connection polynomials should be

selected uniformly at random from the set of all primitive polynomials of degree L

over Z2.

Secret connections are generally recommended over known connections as the former

are more resistant to certain attacks, which use pre computation for analyzing the

particular connection, and because the former are more amenable to statistical

analysis. Secret connection LFSRs have the drawback of requiring extra circuitry to

implement in hardware. However, because of the extra security possible with secret

connections, choosing shorter LFSRs may sometimes compensate for this cost.

2.4.4 sparse vs. dense connection polynomial For implementation purposes, it is

advantageous to choose an LFSR that is sparse; i.e., only a few of the coefficients of

the connection polynomial are non-zero. Then only a small number of connections

must be made between the stages of the LFSR in order to compute the feedback bit.

For example, the connection polynomial might be chosen to be a primitive trinomial.

However, in some LFSR-based keystream generators, special attacks can be mounted

if sparse connection polynomials are used. Hence, it is generally recommended not to

use sparse connection polynomials in LFSR-based keystream generators.

2.5 Linear complexity

This subsection summarizes selected results about the linear complexity of sequences.

All sequences are assumed to be binary sequences. Notation: s denotes an infinite

sequence whose terms are s0, s1, s2,…. sn denotes a finite sequence of length n whose

terms are s0; s1; : : : ; sn-1.

2.5.1 Definition An LFSR is said to generate a sequence s if there is some initial state

for which the output sequence of the LFSR is s. Similarly, an LFSR is said to

generate a finite sequence sn if there is some initial state for which the output

sequence of the LFSR has sn as its first n terms.

2.5.2 Definition The linear complexity of an infinite binary sequence s, denoted L(s),

is defined as follows:

(i) if s is the zero sequence s = 0; 0; 0; : : : , then L(s) = 0;

(ii) if no LFSR generates s, then L(s) = 1;

 26

(iii) otherwise, L(s) is the length of the shortest LFSR that generates s.

2.5.3 Definition The linear complexity of a finite binary sequence sn, denoted L(sn), is

the length of the shortest LFSR that generates a sequence having sn as its first n terms.

Facts 2.5.4 – 2.5.7 summarize some basic results about linear complexity.

2.5.4 properties of linear complexity Let s and t be binary sequences.

(i) For any n ≥ 1, the linear complexity of the subsequence sn satisfies 0 ≤ L(sn) ≤ n.

(ii) L(sn) = 0 if and only if sn is the zero sequence of length n.

(iii) L(sn) = n if and only if sn = 0; 0; 0; : : : ; 0; 1.

(iv) If s is periodic with period N, then L(s) ≤ N.

(v) L(s ⊕ t) ≤ L(s) + L(t), where s ⊕ t denotes the bitwise XOR of s and t.

2.5.5 Fact If the polynomial C(D) ∈ Z2[D] is irreducible over Z2 and has degree L,

then each of the 2L-1 non-zero initial states of the non-singular LFSR (L;C(D))

produces an output sequence with linear complexity L.

2.5.6 Expectation and variance of the linear complexity of a random sequence

 Let sn be chosen uniformly at random from the set of all binary sequences of length n,

and let L(sn) be the linear complexity of sn. Let B(n) denote the parity function: B(n) =

0 if n is even;

B(n) = 1 if n is odd.

(i) The expected linear complexity of sn is

E(L(sn)) =n/2+(4 + B(n))/18-1/2n(n/3+2/9) Hence, for moderately large n, E(L(sn)) ≅

n/2+2/9 if n is even, and E(L(sn)) ≅ n/2 + 5 /18 if n is odd.

 (ii) The variance of the linear complexity of sn is Var(L(sn)) =

86/81-1/2n[(((14 - B(n))/27)n +(82 - 2B(n))/81] –1/22n(1/9n2 +4/27n +4/81)

Hence, Var(L(sn)) ≅ 86/81 for moderately large n.

2.5.7 Expectation of the linear complexity of a random periodic sequence Let sn

be chosen uniformly at random from the set of all binary sequences of length n, where

n = 2t for some fixed t ≥1, and let s be the n-periodic infinite sequence obtained by

repeating the sequence sn. Then the expected linear complexity of s is E(L(sn)) = n - 1

+ 2-n.

The linear complexity profile of a binary sequence is introduced next.

2.5.8 Definition Let s = s0; s1; : : : be a binary sequence, and let LN denote the linear

complexity of the subsequence sN = s0; s1; : : : ; sN-1, N ≥ 0. The sequence L1; L2;…is

called the linear complexity profile of s. Similarly, if sn = s0; s1; : : : ; sn-1 is a finite

 27

binary sequence, the sequence L1; L2; : : : ; Ln is called the linear complexity profile of

sn. The linear complexity profile of a sequence can be computed using the Berlekamp-

Massey algorithm. The following properties of the linear complexity profile can be

deduced .

2.5.9 Properties of linear complexity profile

Let L1; L2; : : : be the linear complexity profile of a sequence s = s0; s1; : : : .

(i) If j > i, then Lj ≥ Li.

(ii) LN+1 > LN is possible only if LN ≤N/2.

(iii) If LN+1 > LN, then LN+1 + LN = N + 1.

The linear complexity profile of a sequence s can be graphed by plotting the points

(N;LN), N ≥ 1, in the N × L plane and joining successive points by a horizontal line

followed by a vertical line, if necessary (see Figure 2.3). Fact 2.5.9 can then be

interpreted as saying that the graph of a linear complexity profile is non-decreasing.

Moreover, a (vertical) jump in the graph can only occur from below the line L = N=2;

if a jump occurs, then it is symmetric about this line. Fact 2.5.10 shows that the

expected linear complexity of a random sequence should closely follow the line L =

N=2.

2.5.10 Expected linear complexity profile of a random sequence Let s = s0; s1; be a

random sequence, and let LN be the linear complexity of the subsequence sN = s0; s1; ..

;sN-1 for each N ≥ 1. For any fixed index N ≥1, the expected smallest j for which LN+j

> LN is 2 if LN ≤ N/2, or 2 + 2LN - N if LN > N/2. Moreover, the expected increase in

linear complexity is 2 if LN ≥ N/2, or N - 2LN + 2 if LN < N/2.

2.5.11 Example (linear complexity profile) Consider the 20-periodic sequence s with

cycle

s20 = 1; 0; 0; 1; 0; 0; 1; 1; 1; 1; 0; 0; 0; 1; 0; 0; 1; 1; 1; 0:

The linear complexity profile of s is 1; 1; 1; 3; 3; 3; 3; 5; 5; 5; 6; 6; 6; 8; 8; 8; 9; 9; 10;
10; 11,11; 11; 11; 14; 14; 14; 14; 15; 15; 15; 17; 17; 17; 18; 18; 19; 19; 19; 19; : : :.
Figure 2.3 shows the graph of the linear complexity profile of s.

 28

Figure 2.3:Linear complexity profile of the 20-periodic sequence of Example 2.5.11.

As is the case with all statistical tests for randomness, the condition that a sequence

has a linear complexity profile that closely resembles that of a random sequence is

necessary but not sufficient for s to be considered random. This point is illustrated in

the following example.

2.5.12 Example (limitations of the linear complexity profile) The linear complexity

profile of the sequence s defined as

si = 1; if i = 2j - 1 for some j ≥ 0,

 0; otherwise; follows the line L = N/2 as closely as possible. That is, L(sN) = [(N

+ 1)]/2 for all N ≥1. However, the sequence s is clearly non-random.

2.6 Golomb’s randomness postulates

Golomb’s randomness postulates are presented here for historical reasons

– they were one of the first attempts to establish some necessary conditions for a

periodic pseudorandom sequence to look random. It is emphasized that these

conditions are far from being sufficient for such sequences to be considered random.

Unless otherwise stated, all sequences are binary sequences.

2.6.1 Definition Let s = s0, s1, s2, . . . be an infinite sequence. The subsequence

consisting of the first n terms of s is denoted by sn = s0, s1, . . . , sn-1.

2.6.2 Definition The sequence s = s0, s1, s2, . . . is said to be N-periodic if si = si+N for

all i ≥0. The sequence s is periodic if it is N-periodic for some positive integer N. The

period of a periodic sequence s is the smallest positive integer N for which s is N-

periodic.

 29

If s is a periodic sequence of period N, then the cycle of s is the subsequence sN.

2.6.3 Definition Let s be a sequence. A run of s is a subsequence of s consisting of

consecutive 0’s or consecutive 1’s which is neither preceded nor succeeded by the

same symbol. A run of 0’s is called a gap, while a run of 1’s is called a block.

2.6.4 Definition Let s = s0, s1, s2, . . . be a periodic sequence of period N. The

autocorrelation function of s is the integer-valued function C(t) defined as

C(t) = 1/N ((2s∑
−

=

1

0

N

i
i - 1) · (2si+t – 1) for 1 ≤ t ≤N-1

The autocorrelation function C(t) measures the amount of similarity between the

sequence s and a shift of s by t positions. If s is a random periodic sequence of period

N, then |N · C(t)| can be expected to be quite small for all values of t, 0 < t <N.

2.6.5 Definition Let s be a periodic sequence of period N. Golomb’s randomness

postulates are the following.

R1: In the cycle sN of s, the number of 1’s differs from the number of 0’s by at most 1.

R2: In the cycle sN, at least half the runs have length 1, at least one-fourth have length

2, at least one-eighth have length 3, etc., as long as the number of runs so indicated

exceeds 1. Moreover, for each of these lengths, there are (almost) equally many gaps

and blocks.6

R3: The autocorrelation function C(t) is two-valued. That is for some integer K,

N · C(t) = (2s∑
−

=

1

0

N

i
i - 1) · (2si+t - 1) = N, if t = 0,

K, if 1 ≤ t ≤N-1

Note: Postulate R2 implies postulate R1.

2.6.6 Definition A binary sequence which satisfies Golomb’s randomness postulates

is called a pseudo-noise sequence or a pn-sequence.

Pseudo-noise sequences arise in practice as output sequences of maximum-length

linear feedback shift registers (Fact 2.38).

2.6.7 Example (pn-sequence) Consider the periodic sequence s of period N = 15 with

cycle

s15 = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1.

The following shows that the sequence s satisfies Golomb’s randomness postulates.

R1: The number of 0’s in s15 is 7, while the number of 1’s is 8.

R2: s15 has 8 runs. There are 4 runs of length 1 (2 gaps and 2 blocks), 2 runs of length

2 (1 gap and 1 block), 1 run of length 3 (1 gap), and 1 run of length 4 (1 block).

 30

R3: The autocorrelation function C(t) takes on two values: C(0) = 1 and C(t) = -1/15

for 1 ≤ t ≤14. Hence, s is a pn-sequence.

2.7 Attacks on Stream Ciphers

The purpose of a good key-stream generator is to produce an output which can ideally

not be distinguished from a truly random source. This is however impossible, but the

goal is to make it as close to a truly random symbol stream as possible. The

cryptanalyst can refer to a multitude of statistical tools and theoretical knowledge to

attempt an attack. A way to classify attacks on stream ciphers is as follows:

Ciphertext-only attack: This is the hardest type of attack for the cryptanalyst since no

other information than the output of the cipher can be used. The goal is to recover the

used key.

Known-plaintext attack: Having a ciphertext, the corresponding plaintext is known. In

the case of a stream cipher, knowing the plaintext means knowing the key-stream

which has been applied to it. The goal is to determine the key which generated the

key-stream.

Distinguishing from a truly random sequence: This new security criterion was

proposed by Coppersmith et al. , but it doesn't lead to any knowledge about the

plaintext or the used key. Particular attacks often rely on the existence of certain

building blocks inside the stream cipher. However, some don't: e. g. there can be a

time/memory tradeoff:

the time effort of a brute force attack is separated into a smaller time effort and an

additional memory effort which could lead to a practical attack. An approach, which

can be better than brute force, is described subsequently.

2.7.1 Correlation Attacks

Correlation attacks on stream ciphers were introduced by Siegenthaler and try to

establish a link between the key-stream and one of the LFSRs inside the generator.

This is done via exploiting weaknesses in the combining function, which has several

LFSRs as input. Once one LFSR is analyzed, attention is given to another LFSR. This

approach is sometimes referred to as divide-and-conquer attack.

Further improvements have been made on the basic idea, and these are generally

called fast correlation attacks.

2.7.2 Other Attacks

 31

A short description and further references on other attacks such as linear consistency

attack; sub-key guessing attack, inversion attack etc. can be found. A fairly new type

of attack are algebraic attacks (or higher order correlation attack).

2.8 Specific Example of a Stream Cipher: RC4

RC4 was designed by Ron Rivest in 1987 in an attempt to make a stream cipher,

which is more suitable for software implementations. He did not use LFSRs at all, but

used a dynamic permutation instead. The design was a trade secret of RSA Inc. but

leaked 1994 when someone anonymously posted the source code to the Cypherpunks

mailing list. The security of RC4 was of course not affected as it is solely based on the

used key. Even though this alleged version was never officially confirmed to be

equivalent to the original version by RSA Inc., there is strong evidence to assume this.

Subsequently, the notation RC4 refers to the alleged version of the algorithm. RC4 is

one of the most popular stream ciphers, it is heavily used in SSL/TLS or IEEE 802.11

and is integrated into many widely used open-source libraries or applications of

Microsoft or Oracle. Hardware implementations have been considered as well.

2.8.1 The RC4 Algorithm

RC4 specifies a whole family of algorithms whose differences lie in the used word-

size n; typically the word-size is 8. Furthermore, key-sizes between n and 2048 bits

are possible, however practical values are between 40 and 256 bits.

The algorithm consists of two parts, which are executed sequentially:

 An initialization phase or KSA (Key Scheduling Algorithm)

 An output phase or PRGA (Pseudo Random Generation Algorithm)

Both parts access an internal table of size n × 2n bits, which can be viewed as an array

containing 2n words of size n. Let's look at the two parts of the algorithm in more

detail. Even if the internal table has a size of n × 2n bits, the total number of states is

not nn 22 × (which would be 22048 in the case of n = 8). Only permutations of 2n words

are possible, thus leading to a total number of (2n)! different table-states. Using a

word-size of 8, the number of different table-states is (28)! ≈ 21684.

2.9 Practical Considerations

Practical stream ciphers employ more than one of the above mentioned strategies to

remove linearity from the output of LFSRs. Examples thereof are SNOW or SOBER.

However, stream ciphers don't have to be based on LFSRs. Especially if software

 32

performance is important, LFSRs are not the best choice. Stream ciphers, which take a

complete different approach, are RC4, SEAL or SCREAM. The above description of

LFSRs is suitable for hardware implementations, but its implementation in software is

very inefficient. However, LFSRs do not have to use a binary representation, in fact

any finite field is possible. A finite field more suitable for software implementation

might be GF((2n)m) where n is the word size of the underlying processor and m is the

degree of the polynomial. One important property of synchronous stream ciphers is

that the key-stream is independent of the plaintext and can be pre-generated. This

strictly prohibits the reuse of the same key for different plaintexts. There are two

solutions to this problem.

To seed the key-stream generator, use initialization vectors and subsequently derive a

session key for it (e. g. using the output of a hash function with the concatenation of

IV and key as input).

Reuse of key-stream; in this case, for practical reasons the stream ciphers should have

the property to reach every point of the key-stream within sub linear amount of time.

Another feature has received considerable interest: the ability to add message integrity

protection or message authentication to the ciphertext of the stream ciphers. This is

especially important for the ciphertext of (synchronous) stream ciphers since bit

manipulations in the ciphertext can lead to predictable modifications of the

corresponding plaintext. Proposals like Helix , Multi-S01 from Hitachi, which has

been submitted to CRYPTREC - a Japanese e-Government initiative, or SOBER 128

from Qualcomm, which is the successor of the NESSIE submission SOBER-t32,

already include such a feature.

 33

Chapter 3

Introduction to Random Number Testing
The need for random and pseudorandom numbers arises in many cryptographic

applications. For example, common cryptosystems employ keys that must be

generated in a random fashion.

Many cryptographic protocols also require random or pseudorandom inputs at various

points, e.g., for auxiliary quantities used in generating digital signatures, or for

generating challenges in authentication protocols.

This chapter discusses the randomness testing of random number and pseudorandom

number generators that may be used for many purposes including cryptographic,

modeling and simulation applications. The focus of this document is on those

applications where randomness is required for cryptographic purposes. A set of

statistical tests for randomness is described in this document. The National Institute of

Standards and Technology (NIST) believes that these procedures are useful in

detecting deviations of a binary sequence from randomness. However, a tester should

note that apparent deviations from randomness may be due to either a poorly designed

generator or to anomalies that appear in the binary sequence that is tested (i.e., a

certain number of failures is expected in random sequences produced by a particular

generator).

3.1 General Discussion

There are two basic types of generators used to produce random sequences: random

number generators (RNGs) and pseudorandom number generators (PRNGs). For

cryptographic applications, both of these generator types produce a stream of zeros

and ones that may be divided into substreams or blocks of random numbers.

3.1.1 Randomness

A random bit sequence could be interpreted as the result of the flips of an unbiased

“fair” coin with sides that are labeled “0” and “1,” with each flip having a probability

of exactly ½ of producing a “0” or “1.” Furthermore, the flips are independent of each

other: the result of any previous coin flip does not affect future coin flips. The

unbiased “fair” coin is thus the perfect random bit stream generator, since the “0” and

“1” values will be randomly distributed (and[0,1] uniformly distributed). All elements

of the sequence are generated independently of each other, and the value of the next

element in the sequence cannot be predicted, regardless of how many elements have

already been produced.

 34

Obviously, the use of unbiased coins for cryptographic purposes is impractical.

Nonetheless, the hypothetical output of such an idealized generator of a true random

sequence serves as a benchmark for the evaluation of random and pseudorandom

number generators.

3.1.2 Unpredictability

Random and pseudorandom numbers generated for cryptographic applications should

be unpredictable. In the case of PRNGs, if the seed is unknown, the next output

number in the sequence should be unpredictable in spite of any knowledge of

previous random numbers in the sequence. This property is known as forward

unpredictability. It should also not be feasible to determine the seed from knowledge

of any generated values (i.e., backward unpredictability is also required). No

correlation between a seed and any value generated from that seed should be evident;

each element of the sequence should appear to be the outcome of an independent

random event whose probability is 1/2.

To ensure forward unpredictability, care must be exercised in obtaining seeds. The

values produced by a PRNG are completely predictable if the seed and generation

algorithm are known. Since in many cases the generation algorithm is publicly

available, the seed must be kept secret and should not be derivable from the

pseudorandom sequence that it produces. In addition, the seed itself must be

unpredictable.

3.1.3 Random Number Generators (RNGs)

The first type of sequence generator is a random number generator (RNG). An RNG

uses a nondeterministic source (i.e., the entropy source), along with some processing

function (i.e., the entropy distillation process) to produce randomness. The use of a

distillation process is needed to overcome any weakness in the entropy source that

results in the production of non-random numbers (e.g., the occurrence of long strings

of zeros or ones). The entropy source typically consists of some physical quantity,

such as the noise in an electrical circuit, the timing of user processes (e.g., key strokes

or mouse movements), or the quantum effects in a semiconductor. Various

combinations of these inputs may be used.

The outputs of an RNG may be used directly as a random number or may be fed into a

pseudorandom number generator (PRNG). To be used directly (i.e., without further

processing), the output of any RNG needs to satisfy strict randomness criteria as

 35

measured by statistical tests in order to determine that the physical sources of the

RNG inputs appear random.

For example,

a physical source such as electronic noise may contain a superposition of regular

structures, such as waves or other periodic phenomena, which may appear to be

random, yet are determined to be non-random using statistical tests.

For cryptographic purposes, the output of RNGs needs to be unpredictable. However,

some physical sources (e.g., date/time vectors) are quite predictable. These problems

may be mitigated by combining outputs from different types of sources to use as the

inputs for an RNG.

However, the resulting outputs from the RNG may still be deficient when evaluated

by statistical tests. In addition, the production of high-quality random numbers may be

too time consuming, making such production undesirable when a large quantity of

random numbers is needed. To produce large quantities of random numbers,

pseudorandom number generators may be preferable.

3.1.4 Pseudorandom Number Generators (PRNGs)

The second generator type is a pseudorandom number generator (PRNG). A PRNG

uses one or more inputs and generates multiple “pseudorandom” numbers. Inputs to

PRNGs are called seeds. In contexts in which unpredictability is needed, the seed

itself must be random and unpredictable. Hence, by default, a PRNG should obtain its

seeds from the outputs of an RNG,i.e., a PRNG requires a RNG as a companion.

The outputs of a PRNG are typically deterministic functions of the seed; i.e., all true

randomness is confined to seed generation. The deterministic nature of the process

leads to the term “pseudorandom.” Since each element of a pseudorandom sequence

is reproducible from its seed, only the seed needs to be saved if reproduction or

validation of the pseudorandom sequence is required.

Ironically, pseudorandom numbers often appear to be more random than random

numbers obtained from physical sources. If a pseudorandom sequence is properly

constructed, each value in the sequence is produced from the previous value via

transformations which appear to introduce additional randomness. A series of such

transformations can eliminate statistical autocorrelations between input and output.

Thus, the outputs of a PRNG may have better statistical properties and be produced

faster than an RNG.

3.1.5 Testing

 36

Various statistical tests can be applied to a sequence to attempt to compare and

evaluate the sequence to a truly random sequence. Randomness is a probabilistic

property; that is, the properties of a random sequence can be characterized and

described in terms of probability. The likely outcome of statistical tests, when applied

to a truly random sequence, is known a priori and can be described in probabilistic

terms. There are an infinite number of possible statistical tests, each assessing the

presence or absence of a “pattern” which, if detected, would indicate that the

sequence is nonrandom. Because there are so many tests for judging whether a

sequence is random or not, no specific finite set of tests is deemed “complete.” In

addition, the results of statistical testing must be interpreted with some care and

caution to avoid incorrect conclusions about a specific generator.

A statistical test is formulated to test a specific null hypothesis (H0). For the purpose

of this document, the null hypothesis under test is that the sequence being tested is

random. Associated with this null hypothesis is the alternative hypothesis (Ha) which,

for this document, is that the sequence is not random. For each applied test, a decision

or conclusion is derived that accepts or rejects the null hypothesis, i.e., whether the

generator is (or is not) producing random values, based on the sequence that was

produced.

For each test, a relevant randomness statistic must be chosen and used to determine

the acceptance or rejection of the null hypothesis. Under an assumption of

randomness, such a statistic has a distribution of possible values. A theoretical

reference distribution of this statistic under the null hypothesis is determined by

mathematical methods. From this reference distribution, a critical value is determined

(typically, this value is "far out" in the tails of the distribution, say out at the 99 %

point). During a test, a test statistic value is computed on the data (the sequence being

tested). This test statistic value is compared to the critical value. If the test statistic

value exceeds the critical value, the null hypothesis for randomness is rejected.

Otherwise, the null hypothesis (the randomness hypothesis) is not rejected (i.e., the

hypothesis is accepted).

3.1.6 Considerations for Randomness, Unpredictability and Testing

The following assumptions are made with respect to random binary sequences to be

tested:

1. Uniformity: At any point in the generation of a sequence of random or

pseudorandom bits, the occurrence of a zero or one is equally likely, i.e., the

 37

probability of each is exactly 1/2. The expected number of zeros (or ones) is n/2,

where n = the sequence length.

2. Scalability: Any test applicable to a sequence can also be applied to subsequences

extracted at random. If a sequence is random, then any such extracted subsequence

should also be random. Hence, any extracted subsequence should pass any test for

randomness.

3. Consistency: The behavior of a generator must be consistent across starting values

(seeds). It is inadequate to test a PRNG based on the output from a single seed, or an

RNG on the basis of an output produced from a single physical output.

 38

CHAPTER 4

 RANDOM NUMBER GENERATION TESTS

The NIST Test Suite is a statistical package consisting of 16 tests that were developed

to test the randomness of (arbitrarily long) binary sequences produced by either

hardware or software based cryptographic random or pseudorandom number

generators. These tests focus on a variety of different types of non-randomness that

could exist in a sequence. Some tests are decomposable into a variety of subtests. The

16 tests are:

1. The Frequency (Monobit) Test,

2. Frequency Test within a Block,

3. The Runs Test,

4. Test for the Longest-Run-of-Ones in a Block,

5. The Binary Matrix Rank Test,

6. The Discrete Fourier Transform (Spectral) Test,

7. The Non-overlapping Template Matching Test,

8. The Overlapping Template Matching Test,

9. Maurer's "Universal Statistical" Test,

10. The Lempel-Ziv Compression Test,

11. The Linear Complexity Test,

12. The Serial Test,

13. The Approximate Entropy Test,

14.The Cumulative Sums (Cusums) Test,

15. The Random Excursions Test, and

16. The Random Excursions Variant Test.

The order of the application of the tests in the test suite is arbitrary. However, it is

recommended that the Frequency test be run first, since this supplies the most basic

evidence for the existence of non-randomness in a sequence, specifically, non-

uniformity. If this test fails, the likelihood of other tests failing is high. (Note: The

most time-consuming statistical test is the Linear Complexity test).

A number of tests in the test suite have the standard normal and the chi-square (χ2)

as reference distributions. If the sequence under test is in fact non-random, the

calculated test statistic will fall in extreme regions of the reference distribution. The

 39

standard normal distribution (i.e., the bell-shaped curve) is used to compare the value

of the test statistic obtained from the RNG with the expected value of the statistic

under the assumption of randomness. The test statistic for the standard normal

distribution is of the form z = (x - μ)/σ, where x is the sample test statistic value, and

μ and σ2 are the expected value and the variance of the test statistic. The χ2

distribution (i.e., a left skewed curve) is used to compare the goodness-of-fit of the

observed frequencies of a sample measure to the corresponding expected frequencies

of the hypothesized distribution. The test statistic is of the form χ2 = ∑((oi-ei)2/ei),

where oi and ei are the observed and expected frequencies of occurrence of the

measure, respectively.

For many of the tests in this test suite, the assumption has been made that the size of

the sequence length, n, is large (of the order 103 to 107). For such large sample sizes

of n, asymptotic reference distributions have been derived and applied to carry out the

tests. Most of the tests are applicable for smaller values of n. However, if used for

smaller values of n, the asymptotic reference distributions would be inappropriate and

would need to be replaced by exact distributions that would commonly be difficult to

compute.

4.1 Frequency (Monobit) Test

4.1.1 Test Purpose

The focus of the test is the proportion of zeroes and ones for the entire sequence. The

purpose of this test is to determine whether the number of ones and zeros in a

sequence are approximately the same as would be expected for a truly random

sequence. The test assesses the closeness of the fraction of ones to ½, that is, the

number of ones and zeroes in a sequence should be about the same. All subsequent

tests depend on the passing of this test; there is no evidence to indicate that the tested

sequence is non-random.

4.1.2 Test Description

(1) Conversion to ±1: The zeros and ones of the input sequence (∈) are converted to

values of –1 and +1 and are added together to produce Sn = X1 + X2+ …X3 , where

Xi= 2∈i –1.

For example, if ∈ = 1011010101, then n=10 and Sn = 1 + (-1) + 1 + 1 + (-1) + 1 + (-

1)+ 1 + (-1) + 1 = 2.

(2) Compute the test statistic sobs =|Sn| / n1/2

For the example in this section, sobs =|2| /101/2=.632455532.

 40

(3) Compute P-value = erfc (sobs/ 2
1/2) , where erfc is the complementary error

function .

For the example in this section, P-value = erfc (0.632455532/21/2 =0.527089.

4.1.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.1.4 Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of 100 bits

(i.e., n ≥ 100).

4.2 Frequency Test within a Block

4.2.1 Test Purpose

The focus of the test is the proportion of ones within M-bit blocks. The purpose of

this test is to determine whether the frequency of ones in an M-bit block is

approximately M/2, as would be expected under an assumption of randomness. For

block size M=1, this test degenerates to test1, the Frequency (Monobit) test.

4.2.2 Test Description

(1) Partition the input sequence into N = |n/M| non overlapping blocks. Discard any

unused bits.

For example, if n = 10, M = 3 and ∈ = 0110011010, 3 blocks (N = 3) would be

created, consisting of 011, 001 and 101. The final 0 would be discarded.

(2) Determine the proportion πI of ones in each M-bit block using the equation

∏i =
M

M

j
jMi∑

=
+−∈

1
)1(

 For 1 ≤ i ≤ N.

For the example in this section, ∏1 = 2/3, ∏2 = 1/3, and ∏3 = 2/3.

(3) Compute the χ2 statistic: χ2 (obs) = 4 M (∏∑
=

N

i 1
i – ½)2

(4) Compute P-value = igamc (N/2, χ2(obs)/2) , where igamc is the incomplete

gamma function for Q(a,x) .

Note: that Q(a,x) = 1-P(a,x).

4.2.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

 41

4.2.4 Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of 100 bits

(i.e., n ≥ 100). Note that n ≥ MN. The block size M should be selected such that M ≥

20, M > .01n and N < 100.

4.3 Runs Test

4.3.1 Test Purpose

The focus of this test is the total number of runs in the sequence, where a run is an

uninterrupted sequence of identical bits. A run of length k consists of exactly k

identical bits and is bounded before and after with a bit of the opposite value. The

purpose of the runs test is to determine whether the number of runs of ones and zeros

of various lengths is as expected for a random sequence . In particular, this test

determines whether the oscillation between such zeros and ones is too fast or too

slow.

4.3.2 Test Description

Note: The Runs test carries out a Frequency test as a prerequisite.

(1)Compute the pre-test proportion ∏ of ones in the input sequence: ∏ = /n j
j

∈∑

For example, if ∈ = 1001101011, then n=10 and ∏ = 6/10 = 3/5.

(2) Determine if the prerequisite Frequency test is passed: If it can be shown that |∏ -

1/2|≥ τ , then the Runs test need not be performed (i.e., the test should not have been

run because of a failure to pass test 1, the Frequency (Monobit) test). If the test is not

applicable, then the P-value is set to 0.0000. Note that for this test, τ = 2/n1/2 has been

pre-defined in the test code.

(3) Compute the test statistic Vn(obs) = r(k)+1 , where r(k)=0 if ∈∑
−

=

in

ik
k=∈k+1, and

r(k)=1 otherwise.

(4) Compute P-value = erfc [(
∏ ∏

∏ ∏
−

−−

)1(22

)1(2)(|

n

nobsVn
]

4.3.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.3.4 Input Size Recommendations

 42

It is recommended that each sequence to be tested consist of a minimum of 100 bits

(i.e., n ≥ 100).

4.4 Test for the Longest Run of Ones in a Block

4.4.1 Test Purpose

The focus of the test is the longest run of ones within M-bit blocks. The purpose of
this test is to determine whether the length of the longest run of ones within the tested
sequence is consistent with the length of the longest run of ones that would be
expected in a random sequence.
 Note that an irregularity in the expected length of the longest run of ones implies that

there is also an irregularity in the expected length of the longest run of zeroes.

Therefore, only a test for ones is necessary.

4.4.2 Test Description

(1) Divide the sequence into M-bit blocks.

(2) Tabulate the frequencies vi of the longest runs of ones in each block into

categories, where each cell contains the number of runs of ones of a given length.

For the values of M supported by the test code, the vi cells will hold the following

counts:

Vi M=8 M=128 M=104

V0 ≤1 ≤4 ≤10

V1 2 5 11

V2 3 6 12

V3 ≥4 7 13

V4 8 14

V5 ≥9 15

V6 ≥16

(3) Compute χ2 (obs) = ∑ ∏
∏

=

−k

i i

ii
N

Nv

0

2)(
 = 4.882605

(4) Compute P-value = igamc (k/2, χ2 (obs)/2)

4.4.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

 43

4.4.4 Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of bits as

specified in the table .

Minimum n M

128 8

6272 128

750,000 104

4.5 Binary Matrix Rank Test

4.5.1 Test Purpose

The focus of the test is the rank of disjoint sub-matrices of the entire sequence. The

purpose of this test is to check for linear dependence among fixed length substrings of

the original sequence.

4.5.2 Test Description

(1)Sequentially divide the sequence into M·Q-bit disjoint blocks; there will exist

N=[n/MQ] such blocks. Discarded bits will be reported as not being used in the

computation within each block. Collect the M·Q bit segments into M by Q matrices.

Each row of the matrix is filled with successive Q-bit blocks of the original sequence

∈.

For example, if n = 20, M = Q = 3, and ∈ = 01011001001010101101, then partition

the stream into N = [n/3.3]=2 matrices of cardinality M·Q (3·3 = 9). Note that the last

two bits (0 and 1) will be discarded. The two matrices are

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010
110
010

 and
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
101
010

 Note that the first matrix consists of the first three bits in row 1, the second set of

three bits in row 2, and the third set of three bits in row 3. The second matrix is

similarly constructed using the next nine bits in the sequence.

(2) Determine the binary rank (Rl) of each matrix, where l = l….,N . The rank of the

first matrix is 2 (R1 = 2), and the rank of the second matrix is 3 (R2 = 3).

(3) Let FM = the number of matrices with Rl= M (full rank),

FM-1 = the number of matrices with R l= M-1 (full rank - 1),

 44

N – FM - FM-1 = the number of matrices remaining. For the example in this section, FM

= F3 = 1 (R2 has the full rank of 3), FM-1 = F2 = 1 (R1 has rank 2), and no matrix has

any lower rank.

(4) Compute χ2(obs) .

(5) Compute P -value = e-χ2(obs) /2. = 0.741948(for this section)

4.5.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.5.4 Input Size Recommendations

The probabilities for M = Q = 32 have been calculated and inserted into the test code.

Other choices of M and Q may be selected, but the probabilities would need to be

calculated. The minimum number of bits to be tested must be such that n ≥38MQ (i.e.,

at least 38 matrices are created). For M = Q = 32, each sequence to be tested should

consist of a minimum of 38,912.

4.6 Discrete Fourier Transform (Spectral) Test

4.6.1 Test Purpose

The focus of this test is the peak heights in the Discrete Fourier Transform of the

sequence. The purpose of this test is to detect periodic features (i.e., repetitive patterns

that are near each other) in the tested sequence that would indicate a deviation from

the assumption of randomness. The intention is to detect whether the number of peaks

exceeding the 95 % threshold is significantly different than 5 %.

4.6.2 Test Description

(1) The zeros and ones of the input sequence (∈) are converted to values of –1 and +1

to create the sequence X = x1, x2, …, xn, where xi = 2∈i – 1.

For example, if n = 10 and e = 1001010011, then X = 1, -1, -1, 1, -1, 1, -1, -1, 1, 1.

(2) Apply a Discrete Fourier transform (DFT) on X to produce: S = DFT(X). A

sequence of complex variables is produced which represents periodic components of

the sequence of bits at different frequencies

(3) Calculate M = modulus(S´) ≡ |S'|, where S´ is the substring consisting of the first

n/2 elements in S, and the modulus function produces a sequence of peak heights.

(4) Compute T = n1/ 3 = the 95 % peak height threshold value. Under an assumption of

randomness, 95 % of the values obtained from the test should not exceed T.

(5) Compute N0 = .95n/2. N0 is the expected theoretical (95 %) number of peaks

(under the assumption of randomness) that are less than T.

 45

(6) Compute N1 = the actual observed number of peaks in M that are less than T. For

the example in this section, N1 = 4.

(7) Compute d =
2/)05.0)(95.0(

)N-N(01
n

(8) Compute P-value = erfc ()2/|| d .

4.6.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.6.4 Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of 1000 bits

(i.e., n ≥ 1000).

4.7 Non-overlapping Template Matching Test

4.7.1 Test Purpose

The focus of this test is the number of occurrences of pre-specified target strings. The

purpose of this test is to detect generators that produce too many occurrences of a

given non-periodic (aperiodic) pattern. For this test and for the Overlapping Template

Matching test of Section 2.8, an m-bit window is used to search for a specific m-bit

pattern. If the pattern is not found, the window slides one bit position. If the pattern is

found, the window is reset to the bit after the found pattern, and the search resumes.

4.7.2 Test Description

(1) Partition the sequence into N independent blocks of length M.

For example, if e = 10100100101110010110, then n = 20. If N = 2 and M = 10, then

the two blocks would be 1010010010 and 1110010110.

(2) Let Wj (j = 1, …, N) be the number of times that B (the template) occurs within the

block j. Note that j = 1,…,N. The search for matches proceeds by creating an m-bit

window on the sequence, comparing the bits within that window against the template.

If there is no match, the window slides over one bit , e.g., if m = 3 and the current

window contains bits 3 to 5, then the next window will contain bits 4 to 6. If there is a

match, the window slides over m bits, e.g., if the current (successful) window contains

bits 3 to 5, then the next window will contain bits 6 to 8.

(3) Under an assumption of randomness, compute the theoretical mean μ and variance

σ2

μ = (M-m+1)/2m , σ2 = M(1/2m- 2m-1/22m)

 46

(4) Compute χ2(obs.) = ∑
=

−N

j

jW

1 2

2)(

σ

μ

(5) Compute P-value = igamc (N/2, χ2(obs.)/2). Note that multiple P-values will be

computed, i.e., one P-value will be computed for each template. For m = 9, up to 148

P-values may be computed; for m = 10, up to 284 P-values may be computed.

4.7.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.7.4 Input Size Recommendations

The test code has been written to provide templates for m = 2, 3,…,10. It is

recommended that m = 9 or m = 10 be specified to obtain meaningful results.

Although N = 8 has been specified in the test code, the code may be altered to other

sizes. However, N should be chosen such that N ≤ 100 to be assured that the P-values

are valid. The test code has been written to assume a sequence length of n = 106

(entered via a calling parameter) and M = 131072 (hard coded). If values other than

these are desired, be sure that M > 0.01 . n and N = ⎣ ⎦Mn / .

4.8 Overlapping Template Matching Test

4.8.1 Test Purpose

The focus of the Overlapping Template Matching test is the number of occurrences of

pre specified target strings. Both this test and the Non-overlapping Template

Matching test of Previous test use an m-bit window to search for a specific m-bit

pattern. As with the test in Previous test, if the pattern is not found, the window slides

one bit position. The difference between this test and the test in Previous test is that

when the pattern is found, the window slides only one bit before resuming the search.

4.8.2 Test Description

(1) Partition the sequence into N independent blocks of length M.

For example, if ∈ = 10111011110010110100011100101110111110000101101001,

then n = 50. If K = 2, M = 10 and N = 5, then the five blocks are 1011101111,

0010110100, 0111001011, 1011111000, and 0101101001 .

(2) Calculate the number of occurrences of B in each of the N blocks. The search for

matches proceeds by creating an m-bit window on the sequence, comparing the bits

within that window against B and incrementing a counter when there is a match. The

 47

window slides over one bit after each examination, e.g., if m = 4 and the first window

contains bits 42 to 45, the next window consists of bits 43 to 46. Record the number

of occurrences of B in each block by incrementing an array vi (where i = 0,…5), such

that v0 is incremented when there are no occurrences of B in a substring, v1 is

incremented for one occurrence of B,…and v5 is incremented for 5 or more

occurrences of B.

(3) Compute values for l and h that will be used to compute the theoretical

probabilities πI corresponding to the classes of v0:

μ = (M-m+1)/2m η = λ/2

(4) Compute χ2(obs) = ∑ (vi-Nπi)2
 /Nπi , where π0 = 0.367879, π1 = 0.183940, π2 =

0.137955, π3 = 0.099634, π4 = 0.069935 and π5 = 0.140657 after computation.

(5) Compute P-value = igamc(5/2, χ2(obs)/2)

4.8.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.8.4 Input Size Recommendations

The values of K, M and N have been chosen such that each sequence to be tested

consists of a minimum of 106 bits (i.e., n ³ 106). Various values of m may be selected,

but for the time being, NIST recommends m = 9 or m = 10. If other values are

desired, please choose these values as follows:

• n ≥ MN.

• N should be chosen so that N · (min πi) > 5.

• l = (M-m+1)/2m ≈ 2

• m should be chosen so that m ≈ log2 M

• Choose K so that K ≈ 2l. Note that the πi values would need to be

• recalculated for values of K other than 5.

4.9 Maurer’s “Universal Statistical” Test

4.9.1 Test Purpose

The focus of this test is the number of bits between matching patterns (a measure that

is related to the length of a compressed sequence). The purpose of the test is to detect

whether or not the sequence can be significantly compressed without loss of

information. A significantly compressible sequence is considered to be non-random.

4.9.2 Test Description

 48

(1)The n-bit sequence (e) is partitioned into two segments: an initialization segment

consisting of Q L-bit non-overlapping blocks, and a test segment consisting of K L-bit

non-overlapping blocks. Bits remaining at the end of the sequence that do not form a

complete L-bit block are discarded.

 Initialization Segment Test Segment

 QΧL bits KΧL Discard

| L-bits |L-bits|…..|L-bits|L-bits|L-bits|L-bits|….|L-bits|L-bits|L-bits|

 n bits

 Q blocks K Blocks

The first Q blocks are used to initialize the test. The remaining K blocks are the test

blocks (K = - Q). ⎣ Ln / ⎦
(2) Using the initialization segment, a table is created for each possible L-bit value

(i.e., the L-bit value is used as an index into the table). The block number of the last

occurrence of each L-bit block is noted in the table (i.e., For i from 1 to Q, Tj= i,

where j is the decimal representation of the contents of the ith L-bit block).

(3) Examine each of the K blocks in the test segment and determine the number of

blocks since the last occurrence of the same L-bit block (i.e., i – Tj). Replace the value

in the table with the location of the current block (i.e., Tj= i). Add the calculated

distance between re-occurrences of the same L-bit block to an accumulating log2 sum

of all the differences detected in the K blocks (i.e., sum = sum + log2(i – Tj)).

(4) Compute the test statistic: fn = 1/k , where T∑
+

+=
−

KQ

Qi
jTi

1
2)(log j is the table entry

corresponding to the decimal representation of the contents of the ith L-bit block.

(5) Compute P-value = erfc ⎟
⎠

⎞
⎜
⎝

⎛ − |
2

)(|
σ

LueepectedValfn ,where erfc is error function.

and expectedValue(L) and σ are taken from a table of precomputed values. Under an

assumption of randomness, the sample mean, expectedValue(L), is the theoretical

expected value of the computed statistic for the given L-bit length. The theoretical

standard deviation is given by σ = c
K

Liance)(var ,

where c = 0.7 – 0.8/L +(4 +32/L) K –3/L/15

4.9.3 Decision Rule (at the 1 % Level)

 49

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.9.4 Input Size Recommendations

This test requires a long sequence of bits [n ≥ (Q + K)L] which are divided into two

segments of L-bit blocks, where L should be chosen so that 6 ≤ L ≤ 16. The first

segment consists of Q initialization blocks, where Q should be chosen so that Q = 10⋅

2L . The second segment consists of K test blocks, where K = ⎡ ⎤Ln / - Q ≈ 1000 ⋅ 2L.

The values of L, Q and n should be chosen from the table.

4.10 Lempel-Ziv Compression Test

4.10.1 Test Purpose

The focus of this test is the number of cumulatively distinct patterns (words) in the

sequence. The purpose of the test is to determine how far the tested sequence can be

compressed. The sequence is considered to be non-random if it can be significantly

compressed. A random sequence will have a characteristic number of distinct

patterns.

4.10.3 Test Description

(1) Parse the sequence into consecutive, disjoint and distinct words that will form a

"dictionary" of words in the sequence. This is accomplished by creating substrings

from consecutive bits of the sequence until a substring is created that has not been

found previously in the sequence. The resulting substring is a new word in the

dictionary.

Let Wobs = the number of cumulatively distinct words.

(2) Compute P-value = ½ erfc
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
22σ

μ Wobs where μ = 69586.25 and σ

=(70.448718)1/2 when n = 106. For other values of n, the values of m and s would

need to be calculated. Note that since no known theory is available to determine the

exact values of μ and σ, these values were computed (under an assumption of

randomness) using SHA-1. The Blum-Blum-Shub generator will give similar results

for μ and σ2.

4.10.4 Decision Rule (at the 1 % Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.10.5 Input Size Recommendations

 50

It is recommended that each sequence to be tested consist of a minimum of 1,000,000

bits (i.e., n ≥ 106).

4.11 Linear Complexity Test

4.11.1 Test Purpose

The focus of this test is the length of a linear feedback shift register (LFSR). The

purpose of this test is to determine whether or not the sequence is complex enough to

be considered random. Random sequences are characterized by longer LFSRs. An

LFSR that is too short implies non-randomness.

4.11.2 Test Description

(1) Partition the n-bit sequence into N independent blocks of M bits, where n = MN.

(2) Using the Berlekamp-Massey algorithm5, determine the linear complexity Li of

each of the N blocks (i = 1,…,N). Li is the length of the shortest linear feedback shift

register sequence that generates all bits in the block i. Within any Li-bit sequence,

some combination of the bits, when added together modulo 2, produces the next bit in

the sequence (bit Li + 1).

For example, if M = 13 and the block to be tested is 1101011110001, then Li = 4, and

the sequence is produced by adding the 1st and 2nd bits within a 4-bit subsequence to

produce the next bit (the 5th bit). The examination proceeded as follows:

The first 4 bits and the resulting 5th bit:

Bit
1

Bit
2

Bit
3

Bit
4

Bit
5

1 1 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 1 1
0 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 1

Bits 2-5 and the resulting 6th bit:

Bits 3-6 and the resulting 7th bit:

…….

Bits 9-12 and the resulting 13th bit:

For this block, the trial feedback algorithm works. If this were not the case, other

feedback algorithms would be attempted for the block (e.g., adding bits 1 and 3 to

produce bit 5, or adding bits 1, 2 and 3 to produce bit 6, etc.).

 51

(3) Under an assumption of randomness, calculate the theoretical mean μ:

μ = M/2 + ()
36

1)1(9 +−+ M - ⎟
⎠
⎞

⎜
⎝
⎛ +

2M
9/23/M

here μ = 6.777222.

(4) For each substring, calculate a value of Ti, where Ti
 = (-1)M•(Li - μ) +2/9.

Here T I =2.999444.

(5) Record the Ti values in v0,…, v6 as follows:

If: Ti ≤ -2.5 Increment vo by one

-2.5 < Ti ≤ -1.5 Increment v1 by one

-1.5 < Ti ≤ -0.5 Increment v2 by one

-0.5 < Ti ≤ 0.5 Increment v3 by one

0.5 < Ti ≤ 1.5 Increment v4 by one

1.5 < Ti ≤ 2.5 Increment v5 by one

Ti > 2.5 Increment v6 by one

(6) Compute χ2(obs) = ∑
= Π

Π−k

i i

ii
N

nv

0

2)(
 , where π0 = 0.01047, π1 = 0.03125, π2 =

0.125, π3 = 0.5, π4 = 0.25, π5 = 0.0625, π6 = 0.02078 are the probabilities computed

by the equations in Section 3.11.

(7) Compute P-value = igamc (K/2, χ2(obs)/2)

4.11.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.11.4 Input Size recommendations

Choose n ≥ 106. The value of M must be in the range 500 ≤ M ≤ 5000, and N ≥ 200

for the χ2 result to be valid .

4.11.5 Example

(input) ∈ = “the first 1,000,000 binary digits in the expansion of e”

(input) n = 1000000 = 106, M = 1000

(processing) v0 = 11; v1 = 31; v2 = 116; v3 = 501; v4 = 258; v5 = 57; v6 = 26

(processing) χ2 (obs) = 2.700348

(output) P-value = 0.845406

(conclusion) Since the P-value ≥ 0.01, accept the sequence as random.

4.12 Serial Test

 52

4.12.1 Test Purpose

The focus of this test is the frequency of all possible overlapping m-bit patterns across

the entire sequence. The purpose of this test is to determine whether the number of

occurrences of the 2m m-bit overlapping patterns is approximately the same as would

be expected for a random sequence. Random sequences have uniformity; that is, every

m-bit pattern has the same chance of appearing as every other m-bit pattern. Note that

for m = 1, the Serial test is equivalent to the Frequency test .

4.12.2 Test Description

(1) Form an augmented sequence ∈‘: Extend the sequence by appending the first m-1

bits to the end of the sequence for distinct values of n.

For example, given n = 10 and ∈ = 0011011101. If m = 3, then ∈´ = 001101110100.

If m = 2, then ∈´ = 00110111010. If m = 1, then ∈´ = the original sequence

0011011101.

(2) Determine the frequency of all possible overlapping m-bit blocks, all possible

overlapping (m-1)-bit blocks and all possible overlapping (m-2)-bit blocks. Let v i ... i

m denote the frequency of the m bit pattern i1…im; let vi ...v m-1 denote the frequency of

the (m-1)-bit pattern i1…im-1; and let v i ... im-2 denote the frequency of the (m-2)-bit

pattern i1…im-2.

(3) Compute: Ψm
2 = 2m/n (v∑

mii1
i1….im – n/2m) 2 = 2m/n ∑

mii1

vi1….im-1
2 – n

similarly for Ψm-1
2 and Ψm-2

2.

(4) Compute ∇2Ψm
2 = Ψm

2 - Ψm-1
2

∇2Ψm
2 = Ψm

2 - 2Ψm-1
2 + Ψm-2

2

(5) Compute: P-value1 = igamc (2m-2 - ∇Ψm
2)

 P-value2 = igamc (2m-3 - ∇2Ψm
2)

4.12.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.12.4 Input Size Recommendations

Choose m and n such that m < -2. ⎣ ⎦nlog2

4.13 Approximate Entropy Test

4.13.1 Test Purpose

As with the Serial test of Section 2.12, the focus of this test is the frequency of all

possible overlapping m-bit patterns across the entire sequence. The purpose of the test

 53

is to compare the frequency of overlapping blocks of two consecutive/adjacent

lengths (m and m+1) against the expected result for a random sequence.

4.13.2 Test Description

(1) Augment the n-bit sequence to create n overlapping m-bit sequences by appending

m-1 bits from the beginning of the sequence to the end of the sequence.

For example, if ∈ = 0100110101 and m = 3, then n = 10. Append the 0 and 1 at the

beginning of the sequence to the end of the sequence. The sequence to be tested

becomes 010011010101. (Note: This is done for each value of m.)

(2) A frequency count is made of the n overlapping blocks (e.g., if a block containing

∈j to ∈j+m-1 is examined at time j, then the block containing ∈j+1 to ∈j +m is examined

at time j+1). Let the count of the possible m-bit ((m+1)-bit) values be represented as

Ci
m ,where i is the m-bit value.

(3) Compute Ci
m =# i/n for each value of i.

(4) Compute ϕm = where π = C∑
−

=
ΠΠ

12

0
log

m

i
ii

3
j , and j=log2 i.

 (5) Repeat steps 1-4, replacing m by m+1.

 (6) Compute the test statistic: χ2 = 2n[log 2 – ApEn(m)] , where ApEn(m) = φ(m) -

φ(m+1)

 (7) Compute P-value = igamc(2m-1,χ2/2).

4.13.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.13.4 Input Size Recommendations

Choose m and n such that m < -2. ⎣ ⎦n2log

4.14 Cumulative Sums (Cusum) Test

4.14.1 Test Purpose

The focus of this test is the maximal excursion (from zero) of the random walk

defined by the cumulative sum of adjusted (-1, +1) digits in the sequence. The

purpose of the test is to determine whether the cumulative sum of the partial

sequences occurring in the tested sequence is too large or too small relative to the

expected behavior of that cumulative sum for random sequences. This cumulative

sum may be considered as a random walk. For a random sequence, the excursions of

 54

the random walk should be near zero. For certain types of non-random sequences, the

excursions of this random walk from zero will be large.

4.14.2 Test Description

(1) Form a normalized sequence: The zeros and ones of the input sequence (∈) are

converted to values Xi of –1 and +1 using Xi = 2∈ i – 1.

For example, if ∈ = 1011010111, then X = 1, (-1), 1, 1, (-1), 1, (-1), 1, 1, 1.

(2) Compute partial sums Si of successively larger subsequences, each starting with X1

(if mode = 0) or Xn (if mode = 1).

(3) Compute the test statistic z =max1≤k≤ n|Sk|, where max1≤k≤n|Sk| is the largest of the

absolute values of the partial sums Sk.

(4) Compute P-value = 1- ∑
−

+−
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Φ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
Φ

4/)1/(

)1/(

)14()14(zn

zn n
zk

n
zk +

 ∑
−

−−
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Φ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
Φ

4/)1/(

)3/(

)14()34(zn

zn n
zk

n
zk

where φ is the Standard Normal Cumulative Probability Distribution Function .

4.14.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.14.4 Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of 100 bits

(i.e., n ≥ 100).

4.15 Random Excursions Test

4.15.1 Test Purpose

The focus of this test is the number of cycles having exactly K visits in a cumulative

sum random walk. The cumulative sum random walk is derived from partial sums

after the (0,1) sequence is transferred to the appropriate (-1, +1) sequence. A cycle of

a random walk consists of a sequence of steps of unit length taken at random that

begin at and return to the origin. The purpose of this test is to determine if the number

of visits to a particular state within a cycle deviates from what one would expect for a

random sequence. This test is actually a series of eight tests (and conclusions), one

test and conclusion for each of the states: -4, -3, -2, -1 and +1, +2, +3, +4.

4.15.2 Test Description

 55

(1) Form a normalized (-1, +1) sequence X: The zeros and ones of the input sequence

(∈) are changed to values of –1 and +1 via Xi = 2∈i – 1.

For example, if ∈ = 0110110101, then n = 10 and X = -1, 1, 1, -1, 1, 1, -1, 1, -1, 1.

(2) Compute the partial sums Si of successively larger subsequences, each starting

with X1.

Form the set S = {Si}.

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

Sk = X1 + X2 + X3+…+Xk

.

.

Sn = X1 + X2 + X3+….+Xk+…+Xn

(3) Form a new sequence S' by attaching zeros before and after the set S. That is, S' =

0, s1,s2, … , sn, 0.

(4) Let J = the total number of zero crossings in S', where a zero crossing is a value of

zero in that occurs in S’ after the starting zero. J is also the number of cycles in S’,

where a cycle of S’is a subsequence of S’ consisting of an occurrence of zero,

followed by no zero values, and ending with another zero. The ending zero in one

cycle may be the beginning zero in another cycle. The number of cycles in S ' is the

number of zero crossings. If J < 500, discontinue the test.

 (5) For each cycle and for each non-zero state value x having values –4 ≤x ≤ -1 and 1

≤ x ≤4, compute the frequency of each x within each cycle.

(6) For each of the eight states of x, compute vk(x) = the total number of cycles in

which state x occurs exactly k times among all cycles, for k = 0, 1, …, 5 (for k = 5, all

frequencies ≥ 5 are stored in v5(x)). Note that . jxv
k

k =∑
=

)(
5

0

(7) For each of the eight states of x, compute the test statistic χ2 =

∑
= Π

Π−5

0

2

)(
))()((

k k

kk
xj

xjxv
 , where πk(x) is the probability that the state x occurs k times

in a random distribution .

(8) For each state of x, compute P-value = igamc(5/2,χ2 (obs)/ 2 . Eight P-values will

be produced.

 56

4.15.3 Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.15.4 Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of 1,000,000

bits (i.e., n ≥ 106).

4.16 Random Excursions Variant Test

4.16.1 Test Purpose

The focus of this test is the total number of times that a particular state is visited (i.e.,

occurs) in a cumulative sum random walk. The purpose of this test is to detect

deviations from the expected number of visits to various states in the random walk.

This test is actually a series of eighteen tests (and conclusions), one test and

conclusion for each of the states: -9, -8, …, -1 and +1, +2, …, +9.

(1) Form a normalized (-1, +1) sequence X: The zeros and ones of the input sequence

(∈) are changed to values of –1 and +1 via Xi = 2∈i – 1.

For example, if ∈ = 0110110101, then n = 10 and X = -1, 1, 1, -1, 1, 1, -1, 1, -1, 1.

(2) Compute the partial sums Si of successively larger subsequences, each starting

with X1.

Form the set S = {Si}.

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

Sk = X1 + X2 + X3+…+Xk

.

.

Sn = X1 + X2 + X3+….+Xk+…+Xn

(3) Form a new sequence S' by attaching zeros before and after the set S. That is, S' =

0, s1,s2, … , sn, 0.

 (4) For each of the eighteen non-zero states of x, compute ξ(x) = the total number of

times that state x occurred across all J cycles.

(5) For each ξ(x), compute P-value = erfc ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

)2||4(2
|)(|

xJ
Jxξ . Eighteen P-values are

computed.

4.16.2 Decision Rule (at the 1 % Level)

 57

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.

4.16.3 Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of 1,000,000

bits (i.e., n ≥ 106).

 58

CHAPTER 5

Algorithm

Suppose in a system there are 4 Linear feedback shift registers and a 4Χ1 MUX. Each

shift register will generate a PN sequence. The length of sequence will depend on the

size of shift register and the total period of the system will be the LCM of the periods

of the 4 shift registers. The output stream bits produced by LFSRs is passed in the

4Χ1 MUX . We convert these bits into decimal which will vary from 0 to15.

In MUX modulo 4 operation is performed, in which if the mod 4 of the sum is 1 then

first stream is taken as final keystream, if mod4 of sum is 2 then second stream is

taken as keystream, if mod4 of sum is 3 then third stream is taken as keystream, if

mod4 of sum is 4 then fourth stream is taken as keystream.

This keystream is mixed with the input data bits(plain text) using the XOR operation.

This will be the output sequence bit (ciphertext).

 P

 K

 ⊕ C

Mathematically if X1,X2,X3,X4 are the output sequence bit of the 4 shift registers

R1, R2, R3 and R4 and P is the plain text(in ASCII) form . Then we can say

LFSR4

LFSR3

LFSR2

MUX

4Χ1

LFSR1

 59

 P ⊕ K = C

Where value of Keystream(K) is calculated by using the function

 Sum modulo 4 = K

Assuming 4 Linear Feed back shift registers of length 31,29,27 and 41 respectively .

The primitive polynomials for each shift registers will be:

1) x31+x3+1 = 0

2) x29+x2+1 = 0

3) x27+x5+x2+x+1 = 0

4) x41+x3+1 = 0

These sequences will be used as the tapping point ie for 31 stage shift register the

tapping point will be 31 and 3rd . For 29 bit shift register tapping point will be 29

and 2nd and so on.

These potions are XOR ie for 31 stage shift register 31 and 3rd bit is XORed . In

this way these are XOR and right shifted.

Same operation is applied for each shift register.

Suppose we get output bit X1 from LFSR R1, X2 from shift Register R2, X3 from

shift Register R3 and X4 from Shift register R4 .

These output stream bits are passed through the 4Χ1 MUX to decide the control

bit. For deciding that we have applied Sum modulo 4 = K operation as described

above. The output generated from 4Χ1 MUX will be the final keystream K

This keystream K is XOR with the input text P(this is converted into ASCII code)

to get the cipher text.

At the receiving end the system is again activated so that the 4 shift registers in the

system will gain generate the sequence and the crypt bit will be XOR to get back

the initial input.

For Encryption of plain text the function used is P ⊕ K=C

Where P is plain input text, C is the Cipher text and K is the Key stream given by

Keystream K = Sum modulo 4

i) if sum is 0 then consider first stream as keystream.

 60

ii) if sum is 1 then take second stream as keystream.

iii) If sum is 2 then take third stream as keystream.

iv) If sum is 3 then take fourth stream as keystream.

Similarly for Decryption the function used is C ⊕ K=P

Using NIST test suite most randomness tests were passed by the keystream K. Report

of which is shown further.

While designing the stream cipher many more options are also consider and tested

few of them are listed below :

i) K = (X1&X2) X3 X4 ⊕ ⊕

ii) K = (X1&X2) (X2&X3)⊕ ⊕ (X3&X4) ⊕ (X4&X1)

iii) K = (X1&X2&X3) ⊕ (X2&X3&X4) ⊕ (X4&X1&X2)

iv) K= X1 ⊕ X2 ⊕ X3 X4 ⊕

Where X1,X2,X3,X4 are the output bits generated from the LFSRs without MUX.

These ciphers fails many tests of NIST so have been ruled out.

Period of Key Sequence: For the LFSR1 , Time period(T1) will be 231 -1

For LFSR2 , time period (T2) = 229 –1

For LFSR3 , time period (T3) = 227
 –1

For LFSR4 , time period (T4) = 241
 –1

Using Knuth algorithm

GCD(2p –1 , 2q –1) = 2GCD(p,q) –1

The GCD of above LFSRs is

GCD(T1,T2,T3,T4) = 2GCD(31,29,27,41) –1

 =21 –1

 = 2 –1 = 1

Feeding of shift register(Key generation) : User is asked to enter 16 character

password so that 128 bits can be generated. Out of this each shift register is feeded

with bits sequentially i,e first 31st bits for first shift register, next 29 bits for second

shift register , next 27 bits for 3rd shift register, and next 41 bits for 4th shift register.

Same operation is applied at the receiving end too for decryption of bits to get the

original plain text.

 61

CHAPTER 6.

Conclusion and Comparison

Machine Configuration:

Number
of clients

Machine/CPU # of
CPUs

Memory Disk Software

1 Intel Pentium
IV 2.4GHz

1 256MB 40 GB Red Hat Linux 9.

Performance Test Results: The method that was tested encrypts the data first and

then decrypts the encrypted bytes.

We performed the tests with a data size of 20MB, 40MB, 60MB, 80MB, and 100MB

to see how the size of data impacts performance. As we increases the size of the test

data, the rate of encryption become constant. So we conclude that :

• For our algorithm the rate of encryption is 400 Mbits per sec.

• For RC4 Algorithm the rate of encryption is 300 Mbits per sec.

 62

CHAPTER7

7.1Test Results using NIST test Suite

--

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

--

--

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--

 8 8 9 9 13 14 14 9 8 8 0.739918 1.0000 Frequency

 9 3 10 11 14 10 12 15 7 9 0.304126 0.9800 Block-Frequency

 11 8 10 13 8 9 13 12 8 8 0.911413 0.9900 Cusum

 11 9 7 8 10 10 10 12 15 8 0.851383 1.0000 Cusum

 13 9 4 10 16 12 11 10 8 7 0.350485 1.0000 Runs

 12 11 8 14 10 8 10 12 6 9 0.834308 0.9900 Long-Run

 9 9 17 10 8 9 5 13 13 7 0.289667 1.0000 Rank

 6 9 10 14 10 10 11 10 8 12 0.897763 1.0000 FFT

 16 13 13 6 7 11 4 8 13 9 0.162606 0.9900 Aperiodic-Template

 18 13 14 12 5 6 8 5 12 7 0.040108 1.0000 Aperiodic-Template

 10 8 13 12 4 13 12 6 12 10 0.474986 1.0000 Aperiodic-Template

 15 9 10 9 10 9 13 7 6 12 0.678686 0.9800 Aperiodic-Template

 10 11 11 6 14 12 13 6 10 7 0.616305 0.9700 Aperiodic-Template

 10 13 13 12 10 11 5 6 10 10 0.699313 0.9900 Aperiodic-Template

 11 6 13 7 7 11 16 11 4 14 0.145326 0.9900 Aperiodic-Template

 5 6 10 10 14 9 13 12 10 11 0.616305 0.9900 Aperiodic-Template

 11 9 8 11 9 11 5 11 13 12 0.851383 1.0000 Aperiodic-Template

 12 11 9 8 14 7 16 10 7 6 0.383827 0.9800 Aperiodic-Template

 8 7 7 10 12 12 12 8 8 16 0.554420 0.9800 Aperiodic-Template

 12 16 12 13 6 6 13 11 5 6 0.137282 0.9900 Aperiodic-Template

 8 8 10 9 11 11 14 7 11 11 0.924076 0.9800 Aperiodic-Template

 9 5 8 14 15 10 11 13 6 9 0.366918 1.0000 Aperiodic-Template

 10 11 14 10 10 10 4 11 9 11 0.779188 0.9900 Aperiodic-Template

 15 8 9 7 11 7 13 9 7 14 0.494392 1.0000 Aperiodic-Template

 10 9 8 5 9 10 15 14 8 12 0.534146 0.9800 Aperiodic-Template

 12 16 16 10 5 6 9 6 9 11 0.137282 0.9800 Aperiodic-Template

 10 7 13 13 11 7 7 8 14 10 0.678686 0.9900 Aperiodic-Template

 63

 14 7 10 14 6 13 8 10 8 10 0.595549 1.0000 Aperiodic-Template

 6 12 10 8 14 11 11 7 11 10 0.816537 1.0000 Aperiodic-Template

 9 11 10 10 13 7 8 13 12 7 0.867692 1.0000 Aperiodic-Template

 9 14 10 8 10 5 12 11 14 7 0.574903 1.0000 Aperiodic-Template

 8 14 6 12 6 7 11 10 14 12 0.474986 0.9800 Aperiodic-Template

 12 10 12 12 9 12 7 10 6 10 0.897763 0.9900 Aperiodic-Template

 12 14 7 10 5 11 10 8 10 13 0.657933 1.0000 Aperiodic-Template

 3 6 7 11 9 14 13 13 18 6 0.025193 1.0000 Aperiodic-Template

 10 6 11 15 11 5 15 9 9 9 0.383827 0.9800 Aperiodic-Template

 5 10 12 7 15 13 8 13 6 11 0.334538 0.9800 Aperiodic-Template

 12 6 15 8 9 7 11 8 12 12 0.616305 0.9900 Aperiodic-Template

 11 5 13 12 13 9 11 6 8 12 0.595549 0.9600 Aperiodic-Template

 11 7 11 10 8 9 14 13 7 10 0.834308 0.9900 Aperiodic-Template

 6 6 8 13 15 13 13 11 9 6 0.304126 1.0000 Aperiodic-Template

 11 10 8 15 7 13 13 5 10 8 0.474986 1.0000 Aperiodic-Template

 10 6 7 13 9 12 12 12 9 10 0.851383 0.9800 Aperiodic-Template

 10 12 13 16 5 9 10 7 10 8 0.455937 1.0000 Aperiodic-Template

 9 8 8 11 7 14 7 13 13 10 0.719747 1.0000 Aperiodic-Template

 10 8 12 9 6 11 11 13 9 11 0.924076 1.0000 Aperiodic-Template

 14 8 8 4 13 11 8 9 12 13 0.455937 0.9900 Aperiodic-Template

 6 19 6 7 12 8 14 7 6 15 0.020548 0.9900 Aperiodic-Template

 5 11 8 12 11 9 12 8 14 10 0.739918 1.0000 Aperiodic-Template

 8 11 14 10 9 9 12 9 6 12 0.851383 1.0000 Aperiodic-Template

 10 12 11 12 8 6 7 5 10 19 0.108791 0.9900 Aperiodic-Template

 9 8 14 10 14 14 6 3 9 13 0.171867 0.9900 Aperiodic-Template

 14 8 14 14 10 7 7 7 5 14 0.213309 0.9800 Aperiodic-Template

 11 10 12 15 8 11 7 10 5 11 0.637119 0.9900 Aperiodic-Template

 12 16 13 7 7 8 14 10 7 6 0.262249 0.9900 Aperiodic-Template

 10 11 12 4 16 5 11 11 9 11 0.304126 1.0000 Aperiodic-Template

 11 9 15 10 10 7 9 10 10 9 0.924076 0.9800 Aperiodic-Template

 14 11 12 13 11 7 10 9 5 8 0.637119 0.9600 Aperiodic-Template

 11 9 15 11 12 6 11 7 5 13 0.419021 1.0000 Aperiodic-Template

 6 13 14 13 14 7 7 9 5 12 0.249284 1.0000 Aperiodic-Template

 9 11 9 11 8 9 6 10 15 12 0.798139 0.9900 Aperiodic-Template

 10 15 12 8 12 8 5 11 9 10 0.657933 1.0000 Aperiodic-Template

 6 9 12 9 17 8 13 8 8 10 0.419021 1.0000 Aperiodic-Template

 8 14 8 11 11 13 9 5 14 7 0.474986 0.9900 Aperiodic-Template

 64

 14 10 4 10 9 12 8 8 13 12 0.554420 1.0000 Aperiodic-Template

 12 10 15 3 7 16 7 12 11 7 0.102526 1.0000 Aperiodic-Template

 13 14 12 7 8 10 5 9 11 11 0.637119 0.9900 Aperiodic-Template

 7 10 12 11 9 9 14 9 11 8 0.924076 0.9800 Aperiodic-Template

 7 13 12 14 9 15 7 8 8 7 0.437274 0.9800 Aperiodic-Template

 13 12 9 10 10 9 10 12 11 4 0.779188 0.9800 Aperiodic-Template

 8 7 9 7 11 11 12 15 13 7 0.616305 1.0000 Aperiodic-Template

 10 10 10 7 10 8 11 10 6 18 0.401199 0.9900 Aperiodic-Template

 8 12 9 11 10 10 7 14 10 9 0.935716 0.9800 Aperiodic-Template

 11 10 11 9 11 10 11 6 10 11 0.987896 1.0000 Aperiodic-Template

 10 17 7 9 6 14 12 11 4 10 0.153763 0.9800 Aperiodic-Template

 10 6 8 8 12 14 13 11 10 8 0.759756 0.9900 Aperiodic-Template

 11 11 8 7 8 13 10 7 17 8 0.437274 0.9900 Aperiodic-Template

 7 9 13 13 4 13 7 10 12 12 0.437274 0.9900 Aperiodic-Template

 10 10 11 10 12 8 6 9 14 10 0.897763 0.9900 Aperiodic-Template

 10 9 11 6 12 4 8 12 12 16 0.304126 1.0000 Aperiodic-Template

 13 9 9 14 7 12 9 7 11 9 0.816537 0.9900 Aperiodic-Template

 13 11 13 10 6 10 10 14 8 5 0.534146 0.9900 Aperiodic-Template

 16 13 13 6 7 11 4 9 12 9 0.202268 0.9900 Aperiodic-Template

 12 9 11 6 9 12 12 11 8 10 0.935716 1.0000 Aperiodic-Template

 11 10 13 9 10 5 6 11 15 10 0.554420 0.9900 Aperiodic-Template

 9 12 11 10 4 12 11 11 11 9 0.834308 0.9900 Aperiodic-Template

 5 9 7 13 17 12 11 8 10 8 0.304126 0.9700 Aperiodic-Template

 8 14 10 8 11 9 17 10 8 5 0.319084 0.9900 Aperiodic-Template

 5 10 14 9 9 11 11 12 9 10 0.834308 0.9900 Aperiodic-Template

 11 9 5 17 7 9 10 9 13 10 0.383827 1.0000 Aperiodic-Template

 9 8 7 7 10 10 9 9 18 13 0.366918 0.9700 Aperiodic-Template

 8 12 8 14 8 11 10 12 10 7 0.867692 0.9800 Aperiodic-Template

 10 9 10 12 12 13 8 8 9 9 0.971699 0.9800 Aperiodic-Template

 12 10 8 9 10 13 5 8 12 13 0.739918 0.9900 Aperiodic-Template

 13 6 12 11 12 6 8 12 8 12 0.678686 0.9900 Aperiodic-Template

 8 11 16 9 6 15 10 7 8 10 0.383827 0.9900 Aperiodic-Template

 10 9 12 8 8 11 8 12 9 13 0.955835 0.9900 Aperiodic-Template

 14 6 14 10 7 9 11 13 10 6 0.494392 0.9600 Aperiodic-Template

 7 8 9 15 10 17 8 7 8 11 0.304126 1.0000 Aperiodic-Template

 8 10 11 10 13 11 11 10 7 9 0.978072 1.0000 Aperiodic-Template

 13 11 9 10 9 6 13 10 14 5 0.554420 0.9900 Aperiodic-Template

 65

 13 7 10 9 6 7 11 18 8 11 0.249284 0.9800 Aperiodic-Template

 12 8 12 9 10 8 7 11 11 12 0.955835 0.9700 Aperiodic-Template

 10 9 9 8 12 12 6 14 11 9 0.851383 1.0000 Aperiodic-Template

 15 6 9 9 9 10 11 8 13 10 0.759756 1.0000 Aperiodic-Template

 7 11 11 14 9 7 7 10 14 10 0.719747 0.9900 Aperiodic-Template

 7 9 13 14 9 11 16 8 7 6 0.334538 1.0000 Aperiodic-Template

 7 9 8 10 9 10 10 12 9 16 0.779188 1.0000 Aperiodic-Template

 12 11 9 6 6 7 12 18 10 9 0.236810 0.9900 Aperiodic-Template

 8 11 9 17 10 8 17 5 5 10 0.071177 0.9800 Aperiodic-Template

 10 10 12 7 12 10 10 8 13 8 0.946308 0.9800 Aperiodic-Template

 7 12 13 10 11 9 7 11 8 12 0.897763 1.0000 Aperiodic-Template

 10 12 12 13 15 6 5 5 12 10 0.262249 0.9900 Aperiodic-Template

 13 8 9 14 11 10 5 9 10 11 0.759756 0.9700 Aperiodic-Template

 11 9 4 9 12 17 10 9 9 10 0.401199 1.0000 Aperiodic-Template

 10 12 14 7 12 12 9 7 8 9 0.816537 1.0000 Aperiodic-Template

 9 10 9 11 12 10 9 7 15 8 0.867692 0.9900 Aperiodic-Template

 13 7 6 17 9 10 7 8 13 10 0.304126 0.9700 Aperiodic-Template

 12 4 14 13 12 5 6 13 15 6 0.066882 0.9900 Aperiodic-Template

 6 14 11 10 14 9 9 7 9 11 0.719747 1.0000 Aperiodic-Template

 13 12 10 11 8 7 12 9 7 11 0.897763 0.9700 Aperiodic-Template

 5 11 8 11 9 11 11 12 9 13 0.851383 1.0000 Aperiodic-Template

 8 16 3 6 14 12 10 10 7 14 0.090936 0.9900 Aperiodic-Template

 12 9 7 12 12 7 12 11 9 9 0.924076 0.9800 Aperiodic-Template

 9 15 5 10 10 8 10 14 10 9 0.616305 1.0000 Aperiodic-Template

 13 11 11 9 15 9 9 7 9 7 0.759756 1.0000 Aperiodic-Template

 13 13 5 9 9 10 6 8 13 14 0.437274 0.9900 Aperiodic-Template

 4 13 10 13 7 12 10 8 14 9 0.455937 1.0000 Aperiodic-Template

 10 3 12 4 12 12 9 16 10 12 0.129620 0.9800 Aperiodic-Template

 9 9 8 18 7 9 13 10 10 7 0.366918 0.9900 Aperiodic-Template

 12 8 13 9 9 7 11 11 6 14 0.719747 0.9900 Aperiodic-Template

 10 13 9 8 8 14 10 10 8 10 0.924076 1.0000 Aperiodic-Template

 9 8 12 15 12 6 13 8 9 8 0.616305 0.9700 Aperiodic-Template

 10 16 8 6 7 11 6 9 15 12 0.262249 1.0000 Aperiodic-Template

 14 11 10 9 8 12 13 2 12 9 0.319084 1.0000 Aperiodic-Template

 13 8 15 10 10 8 12 6 7 11 0.616305 0.9800 Aperiodic-Template

 7 5 6 10 19 11 9 7 16 10 0.037566 0.9700 Aperiodic-Template

 8 18 6 10 10 8 6 12 9 13 0.224821 0.9800 Aperiodic-Template

 66

 7 10 10 10 4 18 11 13 14 3 0.030806 0.9900 Aperiodic-Template

 9 16 14 16 6 10 11 5 7 6 0.075719 0.9900 Aperiodic-Template

 11 11 12 5 15 11 9 12 10 4 0.366918 0.9900 Aperiodic-Template

 10 11 8 17 12 7 7 8 10 10 0.534146 0.9900 Aperiodic-Template

 8 10 10 5 9 11 12 10 14 11 0.816537 0.9700 Aperiodic-Template

 12 9 7 8 7 11 7 13 11 15 0.616305 0.9900 Aperiodic-Template

 11 17 8 5 11 6 11 10 12 9 0.334538 1.0000 Aperiodic-Template

 10 10 4 13 12 8 12 16 6 9 0.275709 1.0000 Aperiodic-Template

 14 5 14 11 7 9 12 6 13 9 0.366918 0.9900 Aperiodic-Template

 13 9 14 7 14 9 9 8 8 9 0.719747 1.0000 Aperiodic-Template

 15 11 8 11 7 12 14 8 5 9 0.437274 0.9900 Aperiodic-Template

 6 13 9 12 7 14 8 10 11 10 0.739918 1.0000 Aperiodic-Template

 14 8 9 4 12 14 8 10 10 11 0.514124 0.9800 Aperiodic-Template

 13 10 6 5 9 18 10 12 5 12 0.096578 0.9900 Aperiodic-Template

 9 4 18 8 13 9 10 10 12 7 0.171867 0.9900 Aperiodic-Template

 11 9 11 10 9 13 11 7 11 8 0.971699 0.9900 Aperiodic-Template

 10 6 11 10 8 8 17 10 8 12 0.514124 1.0000 Aperiodic-Template

 13 11 13 10 6 10 10 14 8 5 0.534146 0.9900 Aperiodic-Template

 11 8 10 14 13 6 12 8 6 12 0.595549 0.9900 Periodic-Template

 12 9 7 13 12 7 9 14 11 6 0.637119 0.9800 Universal

 34 14 8 7 12 14 3 5 2 1 0.000000 * 0.9300 * Apen

 5 6 3 2 6 7 7 6 6 11 0.202268 0.9831 Random-Excursion

 5 1 7 7 8 6 6 4 6 9 0.304126 0.9831 Random-Excursion

 5 7 7 7 6 4 5 7 5 6 0.924076 0.9492 * Random-Excursion

 5 5 8 2 8 5 7 11 2 6 0.080519 1.0000 Random-Excursion

 10 5 3 6 2 5 7 10 7 4 0.102526 0.9831 Random-Excursion

 6 7 7 6 8 7 4 3 7 4 0.678686 1.0000 Random-Excursion

 10 4 2 3 3 5 8 4 10 10 0.014550 1.0000 Random-Excursion

 8 8 7 5 3 2 9 3 9 5 0.115387 1.0000 Random-Excursion

 5 9 7 8 7 4 6 5 5 3 0.554420 1.0000 Random-Excursion-V

 5 6 10 10 7 2 5 4 6 4 0.145326 1.0000 Random-Excursion-V

 5 7 6 11 7 5 3 5 3 7 0.249284 0.9831 Random-Excursion-V

 6 4 6 6 10 6 9 6 4 2 0.249284 0.9831 Random-Excursion-V

 3 8 6 4 8 7 9 0 6 8 0.071177 1.0000 Random-Excursion-V

 5 4 8 4 6 6 6 5 7 8 0.798139 0.9831 Random-Excursion-V

 6 7 5 5 7 4 6 5 9 5 0.798139 0.9831 Random-Excursion-V

 8 7 7 4 6 6 6 4 5 6 0.867692 0.9831 Random-Excursion-V

 67

 11 6 7 6 5 5 6 1 7 5 0.181557 0.9831 Random-Excursion-V

 6 11 3 4 8 5 11 4 5 2 0.021999 0.9831 Random-Excursion-V

 5 7 5 8 4 8 9 6 4 3 0.437274 0.9831 Random-Excursion-V

 7 2 2 10 9 10 6 4 5 4 0.032923 0.9661 Random-Excursion-V

 5 2 8 8 4 8 6 3 8 7 0.275709 0.9661 Random-Excursion-V

 5 2 9 6 6 4 6 8 7 6 0.474986 0.9831 Random-Excursion-V

 6 3 6 7 3 13 3 5 6 7 0.042808 0.9831 Random-Excursion-V

 4 10 2 6 5 5 10 3 4 10 0.032923 0.9831 Random-Excursion-V

 5 6 7 3 4 9 7 5 8 5 0.554420 0.9831 Random-Excursion-V

 6 5 7 6 5 6 6 11 4 3 0.366918 0.9831 Random-Excursion-V

 12 11 10 12 8 5 18 7 10 7 0.213309 1.0000 Serial

 11 9 11 11 16 11 7 7 11 6 0.574903 1.0000 Serial

 13 7 17 10 9 12 10 7 6 9 0.366918 0.9800 Lempel-Ziv

 13 11 10 11 5 8 10 13 11 8 0.798139 0.9800 Linear-Complexity

- -- - - - - - - - - - - - -

The minimum pass rate for each statistical test with the exception of the random

excursion (variant) test is approximately = 0.960150 for a sample size = 100

binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately

0.951139 for a sample size = 59 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

- -- - - - - - - - - - - - -

7.2 RESULT of Randomness Testing for Keystream on Mulyankan Software of

DRDO

RESULT FOR keystream

Total Length of Sequence=100000000

BLOCK size =10000000

Level of significance : 0.05

 Name of Test # Blocks Passed Failed

 68

 ------------ -------- ------ ------

 Frequency 10 10 0

 Serial 10 9 1

 Poker5 10 10 0

 Poker7 10 10 0

 Runs 10 9 1

 Atcr-1 10 9 1

 Atcr-n/4 10 10 0

 K-S 10 10 0

Appendix –A Source Code :

Encryption

#include<stdio.h>

#include<string.h>

#include <curses.h>

#include<stdlib.h>

#define max1 100000000

//max1 is the number of characters in the file

struct abc

{

 69

unsigned int bin:8;

};

struct b

{

unsigned int a:4;

unsigned int t:4;

};

int R1[31],R2[29],R3[27],R4[41];

int z[max1]={0};

unsigned char data[max1];

//The Register are of length 31,29,27 and 41 respectively

//THE PRIMITIVE POLYNOMIALS ARE STORED IN THESED REGISTERS

int key[16];

int cipher[6];

char infile[20];

char input[16];

//For the XOR Operations I have assumed that if the total No. of 1 is odd then the

//result will be 1 ELSE 0.

void fillTheShiftRegisters(void);

void sshiftTheRegisterR1(void);

void sshiftTheRegisterR2(void);

void sshiftTheRegisterR3(void);

void sshiftTheRegisterR4(void);

void eencrypt(void);

void decrypt(void);

void fun(char num[])

{

//Feeding of shift registers

struct b b1;

int i=0,j,k;

struct abc x[16];

 70

for(i=0;i<16;i++)

x[i].bin=0;

for(i=0;i<16;i++)

{

int s=num[i];

b1.a=s%16;

s=s/16;

b1.t=s;

x[i].bin=b1.t;

x[i].bin=x[i].bin<<4|b1.a;

}

j=30;

for(k=0;k<3;k++)

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R1[j--]=1;

else

R1[j--]=0;

}

}

for(i=7;i>0;i--)

{

if((x[3].bin)&(1<<i))

R1[j--]=1;

else

R1[j--]=0;

}

R2[28]=x[3].bin&1?1:0;

j=27;

for(k=4;k<=6;k++)

 71

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R2[j--]=1;

else

R2[j--]=0;

}

}

for(i=7;i>=3;i--)

{

if((x[7].bin)&(1<<i))

R2[j--]=1;

else

R2[j--]=0;

}

j=26;

for(i=3;i>=0;i--)

{

if((x[7].bin)&(1<<i))

R3[j--]=1;

else

R3[j--]=0;

}

for(k=8;k<=9;k++)

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R3[j--]=1;

else

R3[j--]=0;

}

}

 72

for(i=7;i>0;i--)

{

if((x[10].bin)&(1<<i))

R3[j--]=1;

else

R3[j--]=0;

}

R4[40]=x[10].bin& 0x01?1:0;

j=39;

for(k=11;k<=15;k++)

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R4[j--]=1;

else

R4[j--]=0;

}

}

}

int main(){

 int i=0;

 int count=0;

 // fillTheShiftRegisters();

 FILE *fp;

 char ch;

 printf("PLEASE ENTER THE INPUT TEXT OF ONLY 16 CHARACTERS

):-\n");

 scanf("%s",input);

 fun(input);

 73

 printf("\nEnter the input plain text file name:");

 scanf("%s",infile);

 fp=fopen(infile,"rb");

 i=0;

 printf("\nContent of the plain text file is: ");

 printf("\n---\n");

 while(!feof(fp))

 {

 ch='\0';

 fread(&ch,sizeof(ch),sizeof(ch),fp);

 printf("%c",ch);

 data[i++]=ch;

 }

 printf("\nThe number of character in the file is%d",i-1);

 eencrypt();printf("\n");

 return 0;

}

void eencrypt()

{

int i,p[8]={0},j=0,k=0,n=0;

struct abc a,aa;

int sum =0;

int count=0;

unsigned char ch,che;

FILE *fp1,*fp3;

printf("\n--------you are going to encrypt the file now-----------\n");

printf("\nEnter the encrypt file name:");

scanf("%s",infile);

fp1=fopen(infile,"wb");

a.bin=0;

aa.bin=0;

fp3=fopen("keystream","w");

for(i=0;i<100000000;i++)

 74

{

// Calculation of Keystream

if(k==8)

k=0;

if (R1[30]==1)

sum+=1;

if (R2[28]==1)

sum+=2;

if (R3[26]==1)

sum+=4;

if (R4[40]==1)

sum+=8;

sum= sum/4;

if(sum==0)

z[i]=R4[40];

if(sum==1)

z[i]=R3[26];

if(sum==2)

z[i]=R2[28];

if(sum==3)

z[i]=R1[30];

sum=0;

fprintf(fp3,"%d",z[i]);

sshiftTheRegisterR1();

sshiftTheRegisterR2();

sshiftTheRegisterR3();

sshiftTheRegisterR4();

ch=data[i/8];

a.bin=ch;

n=((a.bin)&(0x01<<k))?1:0;

p[j]=(z[i]^n)?1:0;

k++;

j++;

 75

if(k==8)

{

aa.bin=0;

for(n=7;n>=0;n--)

{

aa.bin=aa.bin|p[n];

if(n==0)

break;

aa.bin=aa.bin<<1;

}

che=aa.bin;

aa.bin=0;

j=0;

}

}

//end of the for loop

fclose(fp1);

fp1=fopen(infile,"rb");

printf("This is the content of the file outfile \n");

printf("--\n");

while(!feof(fp1))

 {

 ch='\0';

 fread(&ch,sizeof(ch),sizeof(ch),fp1);

 count++;

 printf("%c",ch);

 }

printf("\nThe number of charactre in the file is %d",count-1);

fclose(fp1);

}

 76

void decrypt()

{

 FILE *fp, *fp1;

 char str[max1];

 unsigned char ch,che;

 int j=0,k=0,n=0,i = 0;

 int p[8]={0};

 int length;

 struct abc a,aa;

 //time_t ltime1, ltime2;

 printf("\nYou are going to decrypt the file now\n");

 printf("\nEnter name of file to be decrypted: ");

 scanf("%s", infile);

 fp = fopen(infile,"rb");

 if(fp == NULL)

 {

 printf("\nInput file is not present in the current directory");

 exit(0);

 }

 printf("\nContent of the file to be decrypted is : ");

 printf("\n---\n");

 while(!feof(fp))

 {

 ch = '\0';

 fread(&ch, sizeof(ch), sizeof(ch), fp);

 printf("%c", ch);

 str[i++]=ch;

 }

 printf("\n---");

 77

 length=i-1;

 fclose(fp);

 printf("\nNumber of characters in the cipher text is: %d\n", length);

 printf("\nEnter name of output plain text file: ");

 scanf("%s", infile);

 fp1 = fopen(infile,"wb");

 if (fp == NULL)

 {

 printf("\nOutput file can not open");

 exit(0);

 }

 printf("\n\nDecrypted text is: ");

 printf("\n---\n");

 a.bin=0;

 aa.bin=0;

for(i=0;i<(8*strlen(str));i++)

{

if(k==8)

k=0;

ch=str[i/8];

a.bin=ch;

n=((a.bin)&(0x01<<k))?1:0;

p[j]=(z[i]^n)?1:0;

k++;

j++;

if(k==8)

{

aa.bin=0;

for(n=7;n>=0;n--)

{

 78

aa.bin=aa.bin | p[n];

if(n==0)

break;

aa.bin=aa.bin<<1;

}

che=aa.bin;

fwrite(&che, sizeof(che), sizeof(che), fp1);

aa.bin=0;

j=0;

}//end of if

}//end of for loop

// printf("\nNumber of characters in plain text: %d",length);

fclose(fp1);

 // printf("\nTime taken for Decryption: %ld", ltime2 - ltime1);

 fp1=fopen(infile,"rb");

printf("This is the content of the new plain text file is \n");

printf("\n--\n");

while(!feof(fp1))

 {

 ch='\0';

 fread(&ch,sizeof(ch),sizeof(ch),fp1);

 printf("%c",ch);

// printf("\n%c %x\n",ch,ch);

 //data[i++]=ch;

 }

printf("\nnumber of characters in the file %d\n",strlen(str));

 fclose(fp1);

 //return 0;

} //end of decrypt

 79

// THIS FUNCTION CALCULATES THE XOR OF THE TAP POINTS AND THEN

//SHIFTS THE REGISTER

void sshiftTheRegisterR1(){

// I AM NOW CALCULATING THE DIGITS AT 31 13 7 6 3 AND 1 AND

//XORING THEM AND RETURNING THE RESULT AND SHIFTING THE

//DIGITS

 int x31,x13,x7,x6,x3;

 int x,i;

 x31=R1[30];

 x13=R1[12];

 x7=R1[6];

 x6=R1[5];

 x3=R1[2];

 x=(x31^x13^x7^x6^x3);

 //NOW RIGHT SHIFT THE REGISTER

 for(i=30;i>0;i--)

 R1[i]=R1[i-1];

 //STORE THE XOR IN MSB

 R1[0]=x;

}

void sshiftTheRegisterR2(){

 int x29,x2;

 int xor,i;

 x29=R2[28];

 x2=R2[1];

 xor=(x29^x2);

 //NOW RIGHT SHIFT THE REGISTER

 for(i=28;i>0;i--)

 R2[i]=R2[i-1];

 R2[0]=xor;

 80

 }

void sshiftTheRegisterR3(){

 int x27,x5,x2,x1;

 int xor,i;

 x27=R3[26];

 x5=R3[4];

 x2=R3[1];

 x1=R3[0];

 xor=(x27^x5^x2^x1);

 //NOW RIGHT SHIFT THE REGISTER

 for(i=26;i>0;i--)

 R3[i]=R3[i-1];

 R3[0]=xor;

}

void sshiftTheRegisterR4(){

 int x41,x3;

 int xor,i;

 x41=R4[40];

 x3=R1[2];

 xor=(x41^x3);

 //for(i=40;i>=0;i--)

 //printf("%d",R4[i]);printf("\n");

 //NOW RIGHT SHIFT THE REGISTER

 for(i=40;i>0;i--)

 R4[i]=R4[i-1];

 //for(i=40;i>=0;i--)

 //printf("%d",R4[i]);printf("\n");

 81

 R4[0]=xor;

 //for(i=40;i>=0;i--)

 //printf("%d",R4[i]);printf("\n");

}

 82

Decryption
#include<stdio.h>

#include<string.h>

//#include<conio.h>

#include<stdlib.h>

#define max1 100000000

//max is the number of characters in the file

struct abc

{

unsigned int bin:8;

};

struct b

{

unsigned int a:4;

unsigned int b:4;

};

int R1[31],R2[29],R3[27],R4[41];

int z[8*max1]={0};

int c_num;

unsigned char data[max1];

//The register are of length 31,29,27 and 41 respectively.

//THE PRIMITIVE POLYNOMIALS ARE STORED IN THESED REGISTERS

char name[20];

//char input[16]="ABCDEFGHIJKLMNOP";

char input[16];

// FOR THE XOR OPERATIONS I HAVE ASSUMED THAT IF THE TOTAL NO. OF 1 IS ODD

THEN THE //RESULT WILL BE 1 ELSE 0.

void sshiftTheRegisterR1(void);

void sshiftTheRegisterR2(void);

 83

void sshiftTheRegisterR3(void);

void sshiftTheRegisterR4(void);

//void eencrypt(void);

void decrypt(void);

void fun(char num[])

{

//Feeding of shift registers

struct b b1;

int i=0,j,k;

struct abc x[16];

for(i=0;i<16;i++)

x[i].bin=0;

for(i=0;i<16;i++)

{

int s=num[i];

b1.a=s%16;

s=s/16;

b1.b=s;

x[i].bin=b1.b;

x[i].bin=x[i].bin<<4|b1.a;

}

j=30;

for(k=0;k<3;k++)

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R1[j--]=1;

else

R1[j--]=0;

}

}

for(i=7;i>0;i--)

 84

{

if((x[3].bin)&(1<<i))

R1[j--]=1;

else

R1[j--]=0;

}

R2[28]=x[3].bin&1?1:0;

j=27;

for(k=4;k<=6;k++)

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R2[j--]=1;

else

R2[j--]=0;

}

}

for(i=7;i>=3;i--)

{

if((x[7].bin)&(1<<i))

R2[j--]=1;

else

R2[j--]=0;

}

j=26;

for(i=3;i>=0;i--)

{

if((x[7].bin)&(1<<i))

R3[j--]=1;

else

R3[j--]=0;

}

 85

for(k=8;k<=9;k++)

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R3[j--]=1;

else

R3[j--]=0;

}

}

for(i=7;i>0;i--)

{

if((x[10].bin)&(1<<i))

R3[j--]=1;

else

R3[j--]=0;

}

R4[40]=x[10].bin& 0x01?1:0;

j=39;

for(k=11;k<=15;k++)

{

for(i=7;i>=0;i--)

{

if((x[k].bin)&(1<<i))

R4[j--]=1;

else

R4[j--]=0;

}

}

}

void main(){

 86

 int i=0;

 //fillTheShiftRegisters();

 //printf("%s",input);

 FILE *fp;

 char ch;

 //clrscr();

 printf("PLEASE ENTER THE INPUT TEXT ONLY 16 CHARACTERS):-

\n");

 scanf("%s",input);

 fun(input);

 /* for(i=30;i>=0;i--)

 printf("%d",R1[i]);printf("\n");

 for(i=28;i>=0;i--)

 printf("%d",R2[i]); printf("\n");

 for(i=26;i>=0;i--)

 printf("%d",R3[i]); printf("\n");

 for(i=40;i>=0;i--)

 printf("%d",R4[i]); printf("\n");

 */

 printf("\nEnter the cipher text file name:");

 scanf("%s",name);

 fp=fopen(name,"rb");

 i=0;

 printf("\n Content of the cipher text file is: ");

 printf("\n---\n");

 //j=0;

 c_num=0;

 while(!feof(fp))

 {

 ch='\0';

 fread(&ch,sizeof(ch),sizeof(ch),fp);

 printf("%c",ch);

 data[c_num]=ch;

 87

 c_num++;

 }

 printf("\nThe number of character in the file is: %d\n",c_num-1);

 fclose(fp);

 printf("\nThe content of the data array \n");

 //for(i=0;i<c_num;i++)

 //{

 // printf("%c",data[i]);

 //}

 printf("\n\n");

 decrypt();

 getch();

 exit(0);

}

void decrypt()

{

int i,p[8]={0},j=0,k=0,n=0;

struct abc a,aa;

int count=0;

int sum=0;

unsigned char ch,che;

FILE *fp1;

printf("\nyou are going to decrypt the file now\n");

printf("\nEnter the decrypted file name:");

scanf("%s",name);

fp1=fopen(name,"wb");

a.bin=0;

aa.bin=0;

printf("\n Here there data file length %d",strlen(data));

for(i=0;i<(8*(c_num-1));i++)

{

if(k==8)

k=0;

 88

//z[i]=R1[30]^R2[28]^R3[26]^R4[40];

// Calculation of Keystream

if(R4[40]==1)

sum+=1;

if(R3[26]==1)

sum+=2;

if(R2[28]==1)

sum+=4;

if(R1[30]==1)

sum+=8;

sum=sum/4;

if(sum==0)

z[i]=R1[30];

if(sum==1)

z[i]=R2[28];

if(sum==2)

z[i]=R3[26];

if(sum==3)

z[i]=R4[40];

sum=0;

sshiftTheRegisterR1();

sshiftTheRegisterR2();

sshiftTheRegisterR3();

sshiftTheRegisterR4();

ch=data[i/8];

a.bin=ch;

n=((a.bin)&(0x01<<k))?1:0;

p[j]=(z[i]^n)?1:0;

//printf("n=%d z[%d]=%d p[%d]=%d \n",n,i,z[i],j,p[j]);

k++;

 89

j++;

if(k==8)

{

aa.bin=0;

for(n=7;n>=0;n--)

{

aa.bin=aa.bin|p[n];

//printf("hello %x %d\n",aa.bin,p[n]);

if(n==0)

break;

aa.bin=aa.bin<<1;

}

che=aa.bin;

//printf(" HI %x %x \n",che,aa.bin);

fwrite(&che, sizeof(che), sizeof(che), fp1);

aa.bin=0;

j=0;

}

}//end of the for loop

fclose(fp1);

fp1=fopen(name,"rb");

printf("This is the content of the file decrypted file \n");

printf("--\n");

while(!feof(fp1))

 {

 ch='\0';

 fread(&ch,sizeof(ch),sizeof(ch),fp1);

 count++;

 printf("%c",ch);

 }

 90

printf("\n The number of character in the file is %d",count-1);

fclose(fp1);

}

// THIS FUNCTION CALCULATES THE XOR OF THE TAP POINTS AND THEN

SHIFTS THE REGISTER

void sshiftTheRegisterR1()

{

// I AM NOW CALCULATING THE DIGITS AT 31 13 7 6 3 AND 1 AND

//XORING THEM AND RETURNING THE RESULT AND SHIFTING THE

//DIGITS

 int x31,x13,x7,x6,x3;

 int x,i;

 x31=R1[30];

 x13=R1[12];

 x7=R1[6];

 x6=R1[5];

 x3=R1[2];

 x=(x31^x13^x7^x6^x3);

 //NOW RIGHT SHIFT THE REGISTER

 for(i=30;i>0;i--)

 R1[i]=R1[i-1];

 R1[0]=x;

}

void sshiftTheRegisterR2(){

 int x29,x2;

 int xor,i;

 x29=R2[28];

 x2=R2[1];

 xor=(x29^x2);

 //NOW RIGHT SHIFT THE REGISTER

 for(i=28;i>0;i--)

 R2[i]=R2[i-1];

 91

 R2[0]=xor;

}

void sshiftTheRegisterR3(){

 int x27,x5,x2,x1;

 int xor,i;

 x27=R3[26];

 x5=R3[4];

 x2=R3[1];

 x1=R3[0];

 xor=(x27^x5^x2^x1);

 //NOW RIGHT SHIFT THE REGISTER

 for(i=26;i>0;i--)

 R3[i]=R3[i-1];

 R3[0]=xor;

}

void sshiftTheRegisterR4()

{

 int x41,x3;

 int xor,i;

 x41=R4[40];

 x3=R1[2];

 xor=(x41^x3);

 //NOW RIGHT SHIFT THE REGISTER

 for(i=40;i>0;i--)

 R4[i]=R4[i-1];

 R4[0]=xor;

}

 92

Appendix –B Snapshots

Screen for generating keys and Reading the input file to be Encrypted

 93

Content of Text file to be Encrypted

 94

Encrypted Message

Screen for generating keys and Reading the input file to be Decrypted

 95

Content of Encrypted file to be Decrypted

 96

Decrypted Message(original Plain text)

 97

REFERENCES AND BIBLIOGRAPHY

(1) Bruce Schneier , Applied Cryptography, Second Edition ,Protocols,

Algorithms, and Source Code in C, John Wiley & Sons, Inc. New York, 1996.

(2) Soloman W. Golomb, Shift Register Sequences, Holden-Day, Inc,

California,1967.

(3) Evangelos Kranakis, Primality and Cryptography John Wiley & Sons, Inc.

New York, 1986.

(4) A. Menezes, P. Van Oorschot and S. Vanstone, “Handbook of Applied

Cryptography” , CRC Press, 1996.

(5) “Advanced encrypton standard”, http://csrc.nist.gov.

(6) “A statistical Test Suite For Random and Pseudo Random Number Generators

for Cryptographic Applications”, NIST special Publication 800-22(with

revision dated May 15,2001).

(7) Bruce Schneier, Niels Ferguson, Practical Cryptography, Wiley Publishing

Inc. 2003.

(8) F.C. Piper, Stream Ciphers, Lecture Notes in Computer Science, Proceedings

of workshop on cryptography from 29th March to Aprila 2nd 1982, pp.179-216.

(9) Knuth, D.E, The Art of Computer Programming, Vol.2 : Semi Numerical

Algorithms, 3rd edition, Addision –Wesley ,2000.

(10) S. Lakshmivarahan , “Algorithms for Public key Cryptosystem: Theory and

application”, Advances in Computer Science Vol.22 pp.45-107.

(11) Mohamad Peyravian, Stephen M. Matyas, Allen Rokingsky and Nev Zunic,

“Generating User- Based Cryptographic keys and Random Numbers” Elsevier

Limited, Great Britain 1999,pp.619-626.

(12) T. D. Mitra, “An Algorithm for Generation of Keys For the RSA

Cryptosystem”, Proceedings of the National Seminar On Cryptology, July 9-

10, 1998,pp.G-1 SAG, DRDO, New Delhi.

(13) Horbert S.Bright, “Modern Computational Cryptography”, Advance in

Computer Security Management, Vol.2, 1983, pp173-201.

(14) George I. Davida, YVO Deshmedt, “Cryptography based data security”,

Advances in Computer Science, Vol. 30, pp.171-222.

(15) William Stallings, Cryptography and Network Security, Principles and

Practice, Third Edition, Pearson Education Inc.

 98

http://csrc.nist.gov/

(16) Cees J.A. Jansen, Stream cipher Design : Make your LFSRs Jump!, SASC

Workshop October 14-15, 2004.

(17) Patric Ekdahl, On LFSR based Stream Cipher, Anlysis and Design, LUND

university.

(18) J.L. Massey, Shift Register Synthesis and BCH decoding. IEEE transaction on

Information Theory, IT-15(1):122-127, January 1969.

(19) C.E. Shannon, Communication theory of secrecy systems, Bell System

Technical Journal, 27:651-715,1949.

(20) Greg Rose, Phil Hawkes, Turing: a fast software stream cipher, Fast Software

Encryption 2003, Lecture Notes in Computer Science. Springer-Verlag 2003.

 99

	
	
	
	
	
	 (MANMOHAN)
	 DCE 2003-2005
	 DECLARATION BY THE CANDIDATE
	
	
	
	
	
	
	
	
	
	CHAPTER 1

	
	 Zi Ci
	
	1.4.1Desirable Characteristics of stream and Block Ciphers
	Stream Ciphers:

	CHAPTER 4
	 RANDOM NUMBER GENERATION TESTS
	Similarly for Decryption the function used is C K=P
	 Decryption
	Screen for generating keys and Reading the input file to be Encrypted
	Content of Text file to be Encrypted
	Encrypted Message
	Screen for generating keys and Reading the input file to be Decrypted
	
	
	Content of Encrypted file to be Decrypted

