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Abstract 

 
 
 

In this thesis I propose a LFSRs based stream cipher. To avoid brute-force attack a 

crypto system should use at least 90-bit key. Our cryptosystem uses 128-bit key. 

Crack resistance of cryptosystem is more than billions of years. 

 

To avoid other attacks I have conducted various randomness tests extensively. As far 

as encryption rate of cryptosystem is concerned it is comparable to modern 

cryptosystems like RC4. Reason behind using LFSRs is that they are well studied and 

they can be implemented efficiently in hardware as well as in software. 

 

Proposed cryptosystem will be very useful with suitable combination of public key 

cryptosystem and hashing algorithm in securing any digital information. 

Cryptosystem can be easily extended for large key length also. 

 

The software is written in C++/C for Windows and linux environment. For testing 

stream cipher NIST test suite on Linux Platform is being used. 
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CHAPTER 1 

Introduction 
Secret writing  for transmission of message has been , according to David Kahn, the 

great historian of cryptography, practiced since forty centuries, the first example 

being an altered message on a tomb in Egypt in 1900 B.C. From that time onwards, 

secret messages have been used by people of different walks of life-diplomats 

,military officers, bankers, scholars and citizens all over the world. The art and 

science of producing systems for secret writing –keeping the message secure – is 

cryptography. During the last twenty years, public and academic research in 

cryptography has explored new dimension. While classical cryptography could be 

used by ordinary citizens, computer cryptography has been the exclusive domain of 

the world’s militaries since World War II. Today state of the art computer 

cryptography is being practiced outside the secured walls of the military agencies 

also. 

Cryptography is the mathematics of making a system secure. The algorithm must be 

so strong that there is no better way to break it than with a brute force attack. This is 

not as easy as it might seem. Strong cryptosystems with a couple of minor changes 

can become weak. Good cryptosystems has nice property of making life harder for the 

attacker than the legitimate user. The designer of cryptosystem has to think of every 

possible means of attack and protect against all of them. 

The need for information security in today's digital systems is growing. For this 

reason cryptography has become one of these systems' critical component. 

Cryptographic services are now required across a variety of electronic platforms such 

as secure access to private networks, data banks, electronic commerce, cellular and 

PCS phones, all kinds of data communications and smart card technology.  

Cryptographic goals A well-defined and implemented cryptographic system should 

provide the following services: 

 

1)Confidentiality: Keeps the data involved in an electronic transaction private. 

Meaning that the transmitted information is accessible only for reading by authorized 

parties. Encryption provides confidentiality. 

2)Authentication: Ensures that the origin of a message or electronic document is 

correctly identified. In mutual authentication both the server and user or both parties 
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in general case authenticate each other. It is typically provided by verifying other 

parties digitally signed certificates. 

3)Data Integrity: It basically means that the information exchanged in an electronic 

data transfer is not alterable without detection. Modification types include writing, 

changing, deleting, etc. 

4)Nonrepudiation: This simply tells that the actions performed by the service user in 

an electronic transaction are no revocable so that they are legally binding. Therefore, 

neither the sender nor the receiver of a message should be able to deny the 

transaction. 

A fundamental goal of cryptography is to adequately address these four areas in both 

theory and practice. Cryptography is about the prevention and detection of cheating 

and other malicious activities. 

A good cryptosystem is one in which all the security is inherent in knowledge of the 

key and none is inherent  in knowledge of algorithm. If a cryptographically weak 

process is used to generate keys then the whole system is weak. This is why Key 

management is so important in cryptography. The art and science of breaking cipher-

text is cryptanalysis. The ranch of  science encompassing both cryptography and 

cryptanalysis is cryptology. 

1.1 A Short History of Cryptology from a Stream Ciphers Point of View 

Modern cryptology deals with confidentiality, integrity, authenticity, random-number 

generation, zero-knowledge proofs and various other topics in a mathematical way. 

However, most of these issues arose in the last decades. The propelling force in the 

centuries before was the human desire to transfer information secretly. Ancient 

approaches to transport information in a confidential way considered single letters and 

changed them according to various rules. Examples thereof are the Caesar cipher or 

simple substitution ciphers. The first approach which has much in common with 

today's stream ciphers is the cipher of Vignere [Kah67]. It can be 

formalized as: 

Ci = Pi +Ki mod 26 (1.1) 

Equation 1.1 can be interpreted as follows: each letter in the alphabet is under stood as 

a number ranging from 0 to 25. The keyletter K is added to the plaintext letter P in 

order to get the ciphertext letter C. The mod 26 operation makes sure that the resulting 

ciphertext is always inside the proper range. Keep in mind: in this scheme, the key is 

reused if the plaintext is longer than the key. The first cryptanalysis of this scheme 
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was published by Kasiski , which is based upon this fact. He came up with the 

following observation when encrypting two plaintexts Pa and Pb with the same secret 

key: 

Ca ⊕  Cb = Pa  P⊕ b (1.2) 

A ciphertext only attack reveals very much of the used plaintext, if the key K is 

reused. Even if the used plaintexts are not directly revealed, Pa ⊕  Pb contains much 

information about the plaintexts Pa and Pb. 

Later, in the early 20th century, Vernam introduced a scheme which made the key as 

long as the plaintext. This was a big difference to the polyalphabetic substitution 

ciphers used at this time. Later on, this system has been used with a random key - 

hence the one-time pad was born. In 1949 Shannon proved in his landmark paper that 

this approach is indeed unconditionally secure; that is, even an attacker with 

unbounded computing resources cannot break such a system, and no future advance in 

mathematics can provide a shortcut attack because of its entropy conditions. 

All of these approaches have two things in common: first, their security is based on a 

shared secret - they are all symmetrical ciphers. But even more important is that their 

working principle is based on single symbols, which is an important characteristic of 

stream ciphers. 

1.2 The Structure of Stream Ciphers 

Since it is very inconvenient and in many circumstances impractical to share and use 

keys which are the same size as the transmitted information (this effort is only made 

in exceptional circumstances) the goal was to reduce the key-size but maintain a 

reasonable level of security. The general approach to achieve this is to replace the key 

in the Vernam scheme by a pseudo-random sequence of bits or symbols which is the 

output of a generator that is initialized with a (shorter) key. Of course this scheme can 

no longer be unconditionally secure anymore because the entropy of the key is now 

smaller than the entropy of the message. In the context of generating random bits, 

several identifiers are used to refer to random number generators(RNG). 

Informally, they can be structured as follows. 

When talking about true random number generators (TRNG), some sort of physical 

activity is used as a source for randomness. Examples thereof are thermal noise, 

flipping a coin or radioactive decay. On the other hand, pseudo random number 

generators (PRNG) are based on algorithms and are thus deterministic. Usually, they 

are seeded by a TRNG. The randomness of a PRNG is verified by means of statistical 
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tests. If used for cryptographic purposes, PRNG need to have additional properties: it 

should be difficult to predict the future output from previous outputs and it should be 

difficult to determine the internal state of the generator by examining the output. If 

those properties are fulfilled, the PRNG is cryptographically secure (CSPRNG). 

 

               Ki     Pi 

 

     Zi  CiKey Stream Generator 

 
Figure 1.1 shows the general structure of a stream cipher. The short key denoted as K 

is used to seed the key-stream generator. The key-stream symbols Zi are combined 

with the plaintext symbols Pi to produce a sequence of ciphertext symbols Ci. The 

generated key-stream is combined with the plaintext on a bit-per-bit basis. This 

combining step is most of the time an XOR function. 

1.3 Secret Key vs. Public Key Cryptography 

A major problem arises when a big number of devices/people want to exchange 

messages using a cipher and a secret key. Since nobody else than the two involved 

parties should be able to decrypt the exchanged message, pairwise secret keys need to 

be distributed among the participants. There are two straightforward solutions to this 

problem. One is the generation and pre-distribution of n*(n-1)/2 keys for n parties. 

Another approach is to introduce a trusted party which generates needed keys on 

demand. In this case, the number of pre-distributed keys is in the order of n, but the 

trusted party is also a single point of failure. 

 

 

 

 

 

Message         Secret Key          Decrypted Msg. 

           Secure Channel     

  

                           --------------------------------------------------------------------         

          Unsecure Channel Decryption Encryption 
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            Alice         Bob 

 

           Eve Adversary 

 

Fig 1.2:Two parties engaged in symmetric cipher conversation with an adversary 

listening in  on unsecured channel 

              

      

In the late 70s public key cryptography was introduced among others by Diffe and  

Hellman and by Rivest, Shamir and Adleman  in the open literature. Their methods 

are based on hard number-theoretic problems and can be used to solve the key 

distribution problem. Instead of sharing a secret key, each party has a pair of keys, 

which consist of a private key only known to the owner and a public key. Despite this 

big structural advantage, public key cryptography did not replace secret key 

cryptography. Performance is one of the reasons, since public key cryptography is 

much slower than secret key cryptography. In practice, a two-stage approach is used. 

In a first step public key cryptography is used to derive a secret key. Subsequently, 

this key is used to encrypt the actual message. This thesis solely deals with secret key 

algorithms where stream ciphers are assigned to. 

 

Asymmetric ciphers (also called public-key algorithms or generally public-key 

cryptography) permit the encryption key to be public (it can even be published in a 

newspaper), allowing anyone to encrypt with the key, whereas only the proper 

recipient (who knows the decryption key) can decrypt the message. The encryption 

key is also called the public key and the decryption key the private key or secret 

key. 

 

                                                                                            Eve 

     Message                 Decrypted Message

  

Adversary 

     

 

 

     Unsecured Channel                        Encryption Decryption 
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                Bob           Alice 

         Private Key 

                                                  Unsecured Channel  Public Key 

 

Fig 1.3:Two parties engaged in public key cipher conversation. The adversary 

can see the both cipher text and the public key 

 

Encryption using public key k is denoted by: 

 

                                                    Ek (P) = C 

 

Even though the public key and private key are different , decryption with the 

corresponding private key is denoted by: 

                                                    Dk  (C) =  P 

 

Sometimes message will be encrypted with the private key and decrypted with the 

public key , this is used in digital signatures. These operations are also denoted  by, 

 

                                             Ek (P) = C 

                                              Dk  (C) =  P 

 

• RSA (Rivest-Shamir-Adelman) is the most commonly used public key 

algorithm. Can be used both for encryption and for digital signature. It is 

generally considered to be secure when sufficiently long keys are used (512 

bits is insecure, 768 bits is moderately secure, and 1024 bits is good and 2048 

bit keys are likely to remain secure for decades. ). The security of RSA relies 

on the difficulty of factoring large integers. Dramatic advances in factoring 

large integers would make RSA vulnerable. RSA is currently the most 

important public key algorithm. 

Let  P and Q be the two large primes , each roughly of same size 10E100. 

Compute N = P*Q  and φ(N) = (P-1)(Q-1) . Select an integer E, 1 < E <  φ(N) , 

such that           (E, φ(N)) = 1 . The integer E is called the encryption key, used as 

public key, and the integer N is called the modulus of the system. Let M, 1<M<N 
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, be a numerical plane message , then the cryptogram C is obtained in the 

following way:- 

                                      C ≡ ME mod N 

Let D be a  +ve integer such that ED ≡ 1 mod φ(N)  then the plane message M is 

obtained back from the cryptogram C in the following way : 

                                            M ≡ CD mod N 

The integer D is called the decryption key of the system and used as the private key. 

These encryption and decryption keys E and D can be generated easily using the 

inverse generating algorithm (IGA) . 

• Diffie-Hellman, DSS (Digital Signature Standard), LUC are others public key 

algorithms. 

Modern cryptographic algorithms cannot really be executed by humans. Strong 

cryptographic algorithms are designed to be executed by computers or specialized 

hardware devices. In most applications, cryptography is done in computer software, 

and numerous cryptographic software packages are available. 

Generally, symmetric algorithms are much faster to execute on a computer than 

asymmetric ones. In practice they are often used together, so that a public-key 

algorithm is used to encrypt a randomly generated encryption key, and the random 

key is used to encrypt the actual message using a symmetric algorithm. 

Advantages and disadvantages Symmetric-key vs. public-key cryptography 

Symmetric-key and public-key encryption schemes have various advantages and 

disadvantages, some of which are common to both. This section highlights a number 

of these and summarizes features pointed out in previous sections. 

(i) Advantages of symmetric-key cryptography 

1. Symmetric-key ciphers can be designed to have high rates of data throughput. 

Some hardware implementations achieve encrypt rates of hundreds of megabytes per 

second, while software implementations may attain throughput rates in the megabytes 

per second range. 

2.  Keys for symmetric-key ciphers are relatively short. 
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3 .Symmetric-key ciphers can be employed as primitives to construct various 

cryptographic mechanisms including pseudorandom number generators hash 

functions and computationally efficient digital signature schemes, to name just a few. 

4. Symmetric-key ciphers can be composed to produce stronger ciphers. Simple 

transformations which are easy to analyze, but on their own weak, can be used to 

construct strong product ciphers. 

5. Symmetric-key encryption is perceived to have an extensive history, although it 

must be acknowledged that, notwithstanding the invention of rotor machines earlier, 

much of the knowledge in this area has been acquired subsequent to the invention of 

the digital computer, and, in particular, the design of the Data Encryption Standard in 

the early 1970s. 

(ii) Disadvantages of symmetric-key cryptography 

1. In a two-party communication, the key must remain secret at both ends. 

2. In a large network, there are many key pairs to be managed. Consequently, 

effective key management requires the use of an unconditionally trusted TTP . 

3. In a two-party communication between entities A and B, sound cryptographic 

practice dictates that the key be changed frequently, and perhaps for each 

communication session. 

4. Digital signature mechanisms arising from symmetric-key encryption typically 

require either large keys for the public verification function or the use of a TTP. 

(iii) Advantages of public-key cryptography 

1. Only the private key must be kept secret (authenticity of public keys must, 

however, be guaranteed). 

2. The administration of keys on a network requires the presence of only a 

functionally trusted TTP (Definition 1.66) as opposed to an unconditionally trusted 

TTP. Depending on the mode of usage, the TTP might only be required in an “off-

line” manner, as opposed to in real time. 

3. Depending on the mode of usage, a private key/public key pair may remain 

unchanged for considerable periods of time, e.g., many sessions (even several years). 

4. Many public-key schemes yield relatively efficient digital signature mechanisms. 

The key used to describe the public verification function is typically much smaller 

than for the symmetric-key counterpart. 

5. In a large network, the number of keys necessary may be considerably smaller than 

in the symmetric-key scenario. 
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(iv) Disadvantages of public-key encryption 

1. Throughput rates for the most popular public-key encryption methods are several 

orders of magnitude slower than the best known symmetric-key schemes. 

2. Key sizes are typically much larger than those required for symmetric-key 

encryption, and the size of public-key signatures is larger than that of tags providing 

data origin authentication from symmetric-key techniques. 

3. No public-key scheme has been proven to be secure (the same can be said for block 

ciphers). The most effective public-key encryption schemes found to date have their 

security based on the presumed difficulty of a small set of number-theoretic problems. 

4. Public-key cryptography does not have as extensive a history as symmetric-key 

encryption, being discovered only in the mid 1970s. 

Summary of comparison Symmetric-key and public-key encryption have a number 

of complementary advantages. Current cryptographic systems exploit the strengths of 

each. An example will serve to illustrate. 

Public-key encryption techniques may be used to establish a key for a symmetric-key 

system being used by communicating entities A and B. In this scenario A and B can 

take advantage of the long term nature of the public/private keys of the public-key 

scheme and 

the performance efficiencies of the symmetric-key scheme. Since data encryption is 

frequently the most time consuming part of the encryption process, the public-key 

scheme for key establishment is a small fraction of the total encryption process 

between A and B. To date, the computational performance of public-key encryption is 

inferior to that of symmetric-key encryption. There is, however, no proof that this 

must be the case. The important points in practice are: 

1. public-key cryptography facilitates efficient signatures (particularly non-

repudiation) and key management ; and  

2. symmetric-key cryptography is efficient for encryption and some data integrity 

applications. 

Remark (key sizes: symmetric key vs. private key) Private keys in public-key 

systems must be larger (e.g., 1024 bits for RSA) than secret keys in symmetric-key 

systems (e.g.,64or 128 bits) because whereas (for secure algorithms) the most 

efficient attack on symmetric key systems is an exhaustive key search, all known 

public-key systems are subject to “shortcut” attacks (e.g., factoring) more efficient 

than exhaustive search. Consequently, for equivalent security, symmetric keys have 
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bit lengths considerably smaller than that of private keys in public-key systems, e.g., 

by a factor of 10 or more. 

 

1.4 Stream Ciphers vs. Block Ciphers 

Stream ciphers apply a simple, always changing transformation to one symbol at a 

time whereas block ciphers apply a more complex, but static transformation to a 

group of symbols at once. Stream ciphers can be faster than block ciphers, especially 

if they are based on LFSRs and implemented in hardware. However, the distinction 

between both types of ciphers is not clear. If a block cipher is used in cipher block 

chaining (CBC) mode, one can consider this as a stream cipher which operates on 

large symbols (i. e. symbols of the size of one block). This could lead to the 

conclusion that stream- and block ciphers work at different levels of abstraction. 

Whereas stream ciphers work in a particular mode of operation, block ciphers are just 

building blocks to construct a mode of operation. 

Additionally, there are some modes of operation for block ciphers whose intention is 

to provide stream cipher like properties. These are the cipher feedback (CFB) mode, 

the output feedback (OFB) mode, the key feedback (KFB) mode and the 

counter(CTR) mode. There, the block cipher is used to generate a key-stream which is 

then XORed with the plaintext. On the other hand, turning a stream cipher into a block 

cipher is also possible, but less efficient though. Simplified, what is required is to put 

the stream cipher into the round function of a Feistel based block cipher. There is 

much theoretical knowledge and there are many tools available to analyze various 

properties of the building blocks of stream ciphers. Until recently nothing comparable 

was available for block ciphers. Till the mid 90s all used block ciphers were based on 

a Feistel structure [Fei73] which arose in the early 70s. The Data Encryption Standard 

(DES), which held a predominant position in the area of block ciphers for more than 

two decades, uses this structure as well. The design criteria for the DES, especially for 

its S-boxes, are kept secret and DES proved to be highly resistant against 

cryptanalytic shortcut attacks. Later Substitution Permutation Networks (SPNs) have 

been used to design new block ciphers. Together with the “Wide trail design strategy" 

, these efforts led to the ability of giving block ciphers valuable properties such as 

provable resistance against linear or differential cryptanalysis. 

Stream ciphers on the other hand have never been standardized but tend to be 

proprietary and even classified. The AES  is the current standard for general purpose 
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block ciphers, but there is no comparable standard for stream ciphers. This is reflected 

by the fact that the widely used RC4, perceived as the de facto standard for stream 

ciphers, is proprietary. Even though the number of new stream cipher proposals is 

growing and the state of affair for both seems to converge a little bit there is still 

much do be done: none of the stream ciphers submitted to the NESSIE project have 

been recommended because all suffered at least from slight weaknesses. 

1.4.1Desirable Characteristics of stream and Block Ciphers 

Stream Ciphers: 

Large Period: For every key the sequence should have a very large period so that no 

part of enciphering sequence should have a very large period so that no part of 

enciphering sequence is used repeatedly within a reasonable time. 

Complexity: Given a segment of sequence, it should not be possible to predict the 

preceding or following segment. 

Sound Statistical Properties: In bit stream the ones and zeroes should be evenly 

distributed in the sequence and also poses good autocorrelation properties. 

Variability: variability should be high to ensure that a brute force attack become 

infeasible. 

Correlation Immunity: Functions used should be non linear and correlation immune. 

Block Ciphers:  

Avalanche Effect: A 1-bit change of the key or plain text should produce a radical 

change in the cipher text. If f(p,k) = C , where p stand for plain text , k for the key 

transformation and C for cipher text. One bit change either in p or k produces radical 

change in the cipher text C. 

2) The algorithm should contain a non commutative combination of substitution and 

permutation. 

3. The algorithm should include substitution and permutations under the control of 

both the input data and the key. 

4. The length of cipher text should be same as length of the plaintext. 

5.There should be no simple relationship between any possible keys and cipher text 

bits. 

6.All possible keys should produce a strong cipher that does not have any statistical or 

language oriented weakness that can be exploited by the cryptanalyst. 

7. The length of the key and the text should be adjusted to meet application 

requirements and security strength requirements. 
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8. Block length should be large. 

9. The algorithms should be easily and efficiently implement able on main frames, 

minicomputers and microcomputers(IN fact the functions used in the algorithm are 

limited to Xor and bit Shifting). 

1.5 Analysis of Stream Ciphers 

Various stream ciphers are used in today's applications. They range from software 

based applications like web browsers to wireless communication hardware like 

mobile phones and WLAN equipment. The used stream ciphers range from the de 

facto standard RC4 to designs specially targeted for a particular use. Even those 

specially designed for a particular purpose rely on a number of well known structures. 

When designing stream ciphers, there are however more structures available than in 

the case of block ciphers.  

The security of cryptographic algorithms can be evaluated by means of crypt-analysis. 

Mathematical relations between plaintext, ciphertext and key are used to find 

weaknesses.  
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Chapter 2 

2.1 Introduction 
Stream ciphers are an important class of encryption algorithms. They encrypt 

individual characters (usually binary digits) of a plaintext message one at a time, 

using an encryption transformation, which varies with time. By contrast, block ciphers 

tend to simultaneously encrypt groups of characters of a plaintext message using a 

fixed encryption transformation. Stream ciphers are generally faster than block 

ciphers in hardware, and have less complex hardware circuitry. They are also more 

appropriate, and in some cases mandatory (e.g., in some telecommunications 

applications), when buffering is limited or when characters must be individually 

processed as they are received. Because they have limited or no error propagation, 

stream ciphers may also be advantageous in situations where transmission errors are 

highly probable. 

There is a vast body of theoretical knowledge on stream ciphers, and various design 

principles for stream ciphers have been proposed and extensively analyzed. However, 

there are relatively few fully specified stream cipher algorithms in the open literature. 

This unfortunate state of affairs can partially be explained by the fact that most stream 

ciphers used in practice tend to be proprietary and confidential. By contrast, numerous 

concrete block cipher proposals have been published, some of which have been 

standardized or placed in the public domain. Nevertheless, because of their significant 

advantages, stream ciphers are widely used today, and one can expect increasingly 

more concrete proposals in the coming years. 

2.1.1 Classification of Stream Ciphers 

As described in the introductory chapter, encryption schemes can be symmetric(using 

the same secret key for both encryption and decryption) as well as asymmetric(en- 

and decryption use different keys). Even for the special case of stream ciphers, there 

is this distinction: there are symmetric as well as asymmetric stream ciphers. No 

doubt, symmetric stream ciphers build the majority, but there is an example for the 

latter: the Blum-Goldwasser probabilistic encryption scheme which is based on the 

Blum-Blum-Shub pseudorandom number generator. This was a novel approach, since 

the BBS-generator has a strong security proof, which relates the difficulty of 

distinguishing output bits from random to the difficulty of integer factorization. 

However, this scheme has no relevance for practical (fast) stream ciphers and 

therefore, the remainder of this chapter will deal solely with symmetrical stream 
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ciphers. Stream ciphers can also be synchronous or asynchronous. In a synchronous 

stream cipher, the generated key-stream is independent from the processed plain text 

or ciphertext. Hence it can be pre-generated as well. A bit-error in the plaintext (e. g. a 

flipping bit) affects only the corresponding bit of the ciphertext. One drawback is that 

both the sender and the receiver have to be synchronized. Insertion or deletion of bits 

by an active attacker causes immediate loss of synchronization but is thus detected 

immediately as well. 

Asynchronous stream ciphers on the other hand use parts of the generated cipher-text 

in the key-stream generation. Whereas a key-stream can be pre-generated with 

synchronous stream ciphers because it is independent of the plaintext, this is not the 

case for asynchronous stream ciphers. They can resynchronize after insertion- or 

deletion of bits and are therefore sometimes called self-synchronized. Even if this can 

be an important property, this type of stream cipher did not receive much interest; so 

the remainder of this chapter will deal with synchronous stream ciphers. Menezes et 

al. names the one-time pad as a separate type of stream cipher. In this case, the key-

stream is truly random and not generated in a deterministic way as it is done by the 

other types. 

Stream ciphers can be either symmetric-key or public-key. The focus of this chapter is 

symmetric-key stream ciphers; the Blum-Goldwasser probabilistic public-key 

encryption 

2.2 Basic Building Blocks of Stream Ciphers 

Block ciphers are round based; their basic building blocks are used in an iterative 

manner to produce a set of output symbols. Stream ciphers use different building 

blocks(though some are similar to block ciphers as well) and combine them in a 

certain way using an internal state to produce single output symbols. Some of these 

building blocks and combinations thereof are now considered. 

2.3 Linear feedback shift registers 

Linear feedback shift registers (LFSRs) are used in many of the keystream generators 

that have been proposed in the literature. There are several reasons for this: 

1. LFSRs are well suited to hardware implementation; 

2. they can produce sequences of large period ; 

3. they can produce sequences with good statistical properties , and 

4. because of their structure, they can be readily analyzed using algebraic techniques. 
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2.3.1Definition A linear feedback shift register (LFSR) of length L consists of L 

stages (or delay elements) numbered 0; 1; : : : ; L - 1, each capable of storing one bit 

and having one input and one output; and a clock which controls the movement of 

data. During each unit of time the following operations are performed: 

(i) the content of stage 0 is output and forms part of the output sequence; 

(ii) the content of stage i is moved to stage i - 1 for each i, 1 ≤ i ≤ L - 1; and 

(iii) the new content of stage L - 1 is the feedback bit sj which is calculated by adding 

together modulo 2 the previous contents of a fixed subset of stages 0; 1; : : : ; L - 1. 
 
 
 

 
    figure 2.1 

 

Figure 2.1 above depicts an LFSR. Referring to the figure 2.1, each ci is either 0 or 1; 

the closed semi-circles are AND gates; and the feedback bit sj is the modulo 2 sum of 

the contents of those stages i, 0 ≤ i ≤ L - 1, for which cL-i = 1. 

2.3.2 Definition The LFSR of Figure 2.1 is denoted [L;C(D)], where C(D) = 1+c1D 

+c2D2 + _ _ _ + cLDL ∈ Z2[D] is the connection polynomial. The LFSR is said to be 

nonsingular if the degree of C(D) is L (that is, cL = 1). If the initial content of stage i 

is si ∈{0,1};  for each i, 0≤ i ≤ L - 1, then [sL-1; : : : ; s1; s0] is called the initial state of 

the LFSR. 

2.3.3 Fact If the initial state of the LFSR in above figure is [sL-1; : : : ; s1; s0], then the 

output sequence s = s0; s1; s2; : : : is uniquely determined by the following recursion: 

sj = (c1sj-1 + c2sj-2 + _ _ _ + cLsj-L) mod 2 for j ≥ L: 

2.3.4 Example (output sequence of an LFSR) consider the LFSR (4;1 + D + D4) 

depicted in Figure 2.2. If the initial state of the LFSR is [0; 0; 0; 0], the output 

sequence is the zero sequence. The following tables show the contents of the stages 

D3, D2, D1, D0 at the end of each unit of time t when the initial state is [0; 1; 1; 0]. 
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t 
 

D3
 

D2
 

D1
 

D0
 

t D3 D2 D1 D0

0 
1 
2 
3 
4 
5 
6 
7 
 
 
 

0 
0 
1 
0 
0 
0 
1 
1 
 
 
 

1 
0 
0 
1 
0 
0 
0 
1 
 
 
 

1 
1 
0 
0 
1 
0 
0 
0 
 
 
 

0 
1 
1 
0 
0 
1 
0 
0 
 
 
 

 

8 
9 
10 
11 
12 
13 
14 
15 

1 
1 
0 
1 
0 
1 
1 
0 

1 
1 
1 
0 
1 
0 
1 
1 

1 
1 
1 
1 
0 
1 
0 
1 

0 
1 
1 
1 
1 
0 
1 
0 

 
 
 

The output sequence is s = 0; 1; 1; 0; 0; 1; 0; 0; 0; 1; 1; 1; 1; 0; 1; : : :, and is periodic 

with period 15 . 

Fact 2.3.5 explains the significance of an LFSR being non-singular. 

 

 
Figure 2.2 

2.3.5 Fact Every output sequence (i.e., for all possible initial states) of an LFSR 

(L,C(D)) is periodic if and only if the connection polynomial C(D) has degree L. 

If an LFSR (L,C(D)) is singular (i.e., C(D) has degree less than L), then not all output 

sequences are periodic. However, the output sequences are ultimately periodic; that is, 

the sequences obtained by ignoring a certain finite number of terms at the beginning 

are periodic. For the remainder of this chapter, it will be assumed that all LFSRs are 

nonsingular. 

Fact 2.3.6 determines the periods of the output sequences of some special types of 

non-singular LFSRs. 

2.3.6 Fact (periods of LFSR output sequences) Let C(D)∈ Z2[D] be a connection 

polynomial of degree L. 

(i) If C(D) is irreducible over Z2 then each of the 2L - 1 nonzero initial states of the 

non-singular LFSR (L,C(D)) produces an output sequence with period equal to the 
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least positive integer N such that C(D) divides 1 + DN in Z2[D]. (Note: it is always the 

case that this N is a divisor of 2L - 1. 

(ii) If C(D) is a primitive polynomial then each of the 2L-1 nonzero initial states of the 

non-singular LFSR (L,C(D)) produces an output sequence with maximum possible 

period 2L - 1. 

Fact 2.3.6(ii) motivates the following definition. 

2.3.7 Definition If C(D) ∈ Z2[D] is a primitive polynomial of degree L, then (L,C(D)) 

is called a maximum-length LFSR. The output of a maximum-length LFSR with non-

zero initial state is called an m-sequence. 

Fact 2.3.8 demonstrates that the output sequences of maximum-length LFSRs have 

good statistical properties. 

2.3.8 Fact (statistical properties of m-sequences) Let s be an m-sequence that is 

generated by a maximum-length LFSR of length L. 

(i) Let k be an integer, 1 ≤ k ≤ L, and let s be any subsequence of s of length 2L +k - 2. 

Then each non-zero sequence of length k appears exactly 2L-k times as a subsequence 

of s. Furthermore, the zero sequence of length k appears exactly 2L-k-1 times as a 

subsequence of s. In other words, the distribution of patterns having fixed length of at 

most L is almost uniform. 

(ii) s satisfies Golomb’s randomness postulates. That is, every m-sequence is also a 

pn-sequence . 

2.3.9 Example (m-sequence) Since C(D) = 1+D + D4 is a primitive polynomial over 

Z2, the LFSR (4,1+D+D4) is a maximum-length LFSR. Hence, the output sequence of 

this LFSR is an m-sequence of maximum possible period N = 24-1 = 15 ( Example 

2.3.4 ). 

 

 

2.4 Stream ciphers based on LFSRs 

As mentioned in the beginning, linear feedback shift registers are widely used in 

keystream generators because they are well-suited for hardware implementation, 

produce sequences having large periods and good statistical properties, and are readily 

analyzed using algebraic techniques. Unfortunately, the output sequences of LFSRs 

are also easily predictable, as the following argument shows. Suppose that the output 

sequences of an LFSR has linear complexity L. The connection polynomial C(D) of 

an LFSR of length L which generates s can be efficiently determined using the 
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Berlekamp-Massey algorithm from any (short) subsequence t of s having length at 

least n = 2L. Having determined C(D), the LFSR (L,C(D)) can then be initialized with 

any substring of t having length L, and used to generate the remainder of the 

sequences. 

An adversary may obtain the required subsequence t of s by mounting a known or 

chosen plaintext attack on the stream cipher: if the adversary knows the plaintext 

subsequence m1,m2,….mn corresponding to a ciphertext sequence c1; c2; : : : ; cn, the 

corresponding keystream bits are obtained as mi ⊕ ci, 1 ≤ i ≤ n. 

2.4.1Note (use of LFSRs in keystream generators) Since a well-designed system 

should be secure against known-plaintext attacks, an LFSR should never be used by 

itself as a keystream generator. Nevertheless, LFSRs are desirable because of their 

very low implementation costs. Three general methodologies for destroying the 

linearity properties of LFSRs are discussed in this section: 

(i) using a nonlinear combining function on the outputs of several LFSRs ; 

(ii) using a nonlinear filtering function on the contents of a single LFSR ; and 

(iii) using the output of one (or more) LFSRs to control the clock of one (or more) 

other LFSRs . 

Desirable properties of LFSR-based keystream generators 

For essentially all possible secret keys, the output sequence of an LFSR-based 

keystream generator should have the following properties: 

1. large period; 

2. large linear complexity; and 

3. good statistical properties . 

It is emphasized that these properties are only necessary conditions for a keystream 

generator to be considered cryptographically secure. Since mathematical proofs of 

security of such generators are not known, such generators can only be deemed 

computationally secure after having withstood sufficient public scrutiny. 

 2.4.2 Note (connection polynomial) Since a desirable property of a keystream 

generator is that its output sequences have large periods, component LFSRs should 

always be chosen to be maximum-length LFSRs, i.e., the LFSRs should be of the 

form (L,C(D)) where C(D)∈Z2[D] is a primitive polynomial of degree L (see 

Definition 2.3.7 and Fact 2.3.6(ii)).  

2.4.3 Note (known vs. secret connection polynomial) The LFSRs in an LFSR-based 

keystream generator may have known or secret connection polynomials. For known 
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connections, the secret key generally consists of the initial contents of the component 

LFSRs. For secret connections, the secret key for the keystream generator generally 

consists of both the initial contents and the connections. 

For LFSRs of length L with secret connections, the connection polynomials should be 

selected uniformly at random from the set of all primitive polynomials of degree L 

over Z2. 

Secret connections are generally recommended over known connections as the former 

are more resistant to certain attacks, which use pre computation for analyzing the 

particular connection, and because the former are more amenable to statistical 

analysis. Secret connection LFSRs have the drawback of requiring extra circuitry to 

implement in hardware. However, because of the extra security possible with secret 

connections, choosing shorter LFSRs may sometimes compensate for this cost. 

2.4.4 sparse vs. dense connection polynomial For implementation purposes, it is 

advantageous to choose an LFSR that is sparse; i.e., only a few of the coefficients of 

the connection polynomial are non-zero. Then only a small number of connections 

must be made between the stages of the LFSR in order to compute the feedback bit. 

For example, the connection polynomial might be chosen to be a primitive trinomial. 

However, in some LFSR-based keystream generators, special attacks can be mounted 

if sparse connection polynomials are used. Hence, it is generally recommended not to 

use sparse connection polynomials in LFSR-based keystream generators. 

 

2.5 Linear complexity 

This subsection summarizes selected results about the linear complexity of sequences. 

All sequences are assumed to be binary sequences. Notation: s denotes an infinite 

sequence whose terms are s0, s1, s2,…. sn denotes a finite sequence of length n whose 

terms are s0; s1; : : : ; sn-1. 

2.5.1 Definition An LFSR is said to generate a sequence s if there is some initial state 

for which the output sequence of the LFSR is s. Similarly, an LFSR is said to 

generate a finite sequence sn if there is some initial state for which the output 

sequence of the LFSR has sn as its first n terms. 

2.5.2 Definition The linear complexity of an infinite binary sequence s, denoted L(s), 

is defined as follows: 

(i) if s is the zero sequence s = 0; 0; 0; : : : , then L(s) = 0; 

(ii) if no LFSR generates s, then L(s) = 1; 
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(iii) otherwise, L(s) is the length of the shortest LFSR that generates s. 

2.5.3 Definition The linear complexity of a finite binary sequence sn, denoted L(sn), is 

the length of the shortest LFSR that generates a sequence having sn as its first n terms. 

Facts 2.5.4 – 2.5.7 summarize some basic results about linear complexity. 

2.5.4 properties of linear complexity Let s and t be binary sequences. 

(i) For any n ≥ 1, the linear complexity of the subsequence sn satisfies 0 ≤ L(sn) ≤ n. 

(ii) L(sn) = 0 if and only if sn is the zero sequence of length n. 

(iii) L(sn) = n if and only if sn = 0; 0; 0; : : : ; 0; 1. 

(iv) If s is periodic with period N, then L(s) ≤ N. 

(v) L(s ⊕ t) ≤  L(s) + L(t), where s ⊕ t denotes the bitwise XOR of s and t. 

2.5.5 Fact If the polynomial C(D) ∈ Z2[D] is irreducible over Z2 and has degree L, 

then each of the 2L-1 non-zero initial states of the non-singular LFSR (L;C(D)) 

produces an output sequence with linear complexity L. 

2.5.6 Expectation and variance of the linear complexity of a random sequence 

 Let sn be chosen uniformly at random from the set of all binary sequences of length n, 

and let L(sn) be the linear complexity of sn. Let B(n) denote the parity function: B(n) = 

0 if n is even; 

B(n) = 1 if n is odd. 

(i) The expected linear complexity of sn is 

E(L(sn)) =n/2+(4 + B(n))/18-1/2n(n/3+2/9) Hence, for moderately large n, E(L(sn)) ≅ 

n/2+2/9 if n is even, and E(L(sn)) ≅ n/2 + 5 /18 if n is odd. 

 (ii) The variance of the linear complexity of sn is Var(L(sn)) = 

86/81-1/2n[(((14 - B(n))/27)n +(82 - 2B(n))/81 ] –1/22n(1/9n2 +4/27n +4/81) 

Hence, Var(L(sn)) ≅ 86/81 for moderately large n. 

2.5.7 Expectation of the linear complexity of a random periodic sequence Let sn 

be chosen uniformly at random from the set of all binary sequences of length n, where 

n = 2t for some fixed t ≥1, and let s be the n-periodic infinite sequence obtained by 

repeating the sequence sn. Then the expected linear complexity of s is E(L(sn)) = n - 1 

+ 2-n. 

The linear complexity profile of a binary sequence is introduced next. 

2.5.8 Definition Let s = s0; s1; : : : be a binary sequence, and let LN denote the linear 

complexity of the subsequence sN = s0; s1; : : : ; sN-1, N ≥ 0. The sequence L1; L2;…is 

called the linear complexity profile of s. Similarly, if sn = s0; s1; : : : ; sn-1 is a finite 
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binary sequence, the sequence L1; L2; : : : ; Ln is called the linear complexity profile of 

sn. The linear complexity profile of a sequence can be computed using the Berlekamp- 

Massey algorithm. The following properties of the linear complexity profile can be 

deduced . 

2.5.9 Properties of linear complexity profile  

Let L1; L2; : : : be the linear complexity profile of a sequence s = s0; s1; : : : . 

(i) If j > i, then Lj ≥ Li. 

(ii) LN+1 > LN is possible only if LN ≤N/2. 

(iii) If LN+1 > LN, then LN+1 + LN = N + 1. 

The linear complexity profile of a sequence s can be graphed by plotting the points 

(N;LN), N ≥ 1, in the N × L plane and joining successive points by a horizontal line 

followed by a vertical line, if necessary (see Figure 2.3). Fact 2.5.9 can then be 

interpreted as saying that the graph of a linear complexity profile is non-decreasing. 

Moreover, a (vertical) jump in the graph can only occur from below the line L = N=2; 

if a jump occurs, then it is symmetric about this line. Fact 2.5.10 shows that the 

expected linear complexity of a random sequence should closely follow the line L = 

N=2. 

2.5.10 Expected linear complexity profile of a random sequence Let s = s0; s1; be a 

random sequence, and let LN be the linear complexity of the subsequence sN = s0; s1; .. 

;sN-1 for each N ≥ 1. For any fixed index N ≥1, the expected smallest j for which LN+j 

> LN is 2 if LN ≤ N/2, or 2 + 2LN - N if LN > N/2. Moreover, the expected increase in 

linear complexity is 2 if LN ≥  N/2, or N - 2LN + 2 if LN < N/2. 

2.5.11 Example (linear complexity profile) Consider the 20-periodic sequence s with 

cycle 

s20 = 1; 0; 0; 1; 0; 0; 1; 1; 1; 1; 0; 0; 0; 1; 0; 0; 1; 1; 1; 0: 

The linear complexity profile of s is 1; 1; 1; 3; 3; 3; 3; 5; 5; 5; 6; 6; 6; 8; 8; 8; 9; 9; 10; 
10; 11,11; 11; 11; 14; 14; 14; 14; 15; 15; 15; 17; 17; 17; 18; 18; 19; 19; 19; 19; : : :.  
Figure 2.3 shows the graph of the linear complexity profile of s.  
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Figure 2.3:Linear complexity profile of the 20-periodic sequence of Example 2.5.11. 

 

As is the case with all statistical tests for randomness, the condition that a sequence 

has a linear complexity profile that closely resembles that of a random sequence is 

necessary but not sufficient for s to be considered random. This point is illustrated in 

the following example. 

2.5.12 Example (limitations of the linear complexity profile) The linear complexity 

profile of the sequence s defined as 

si = 1; if i = 2j - 1 for some j ≥ 0, 

       0; otherwise; follows the line L = N/2 as closely as possible. That is, L(sN) = [(N 

+ 1)]/2 for all N ≥1. However, the sequence s is clearly non-random.  

2.6 Golomb’s randomness postulates 

Golomb’s randomness postulates  are presented here for historical reasons 

– they were one of the first attempts to establish some necessary conditions for a 

periodic pseudorandom sequence to look random. It is emphasized that these 

conditions are far from being sufficient for such sequences to be considered random. 

Unless otherwise stated, all sequences are binary sequences. 

2.6.1 Definition Let s = s0, s1, s2, . . . be an infinite sequence. The subsequence 

consisting of the first n terms of s is denoted by sn = s0, s1, . . . , sn-1. 

2.6.2 Definition The sequence s = s0, s1, s2, . . . is said to be N-periodic if si = si+N for 

all i ≥0. The sequence s is periodic if it is N-periodic for some positive integer N. The 

period of a periodic sequence s is the smallest positive integer N for which s is N-

periodic. 

 29



If s is a periodic sequence of period N, then the cycle of s is the subsequence sN. 

2.6.3 Definition Let s be a sequence. A run of s is a subsequence of s consisting of 

consecutive 0’s or consecutive 1’s which is neither preceded nor succeeded by the 

same symbol. A run of 0’s is called a gap, while a run of 1’s is called a block. 

2.6.4 Definition Let s = s0, s1, s2, . . . be a periodic sequence of period N. The 

autocorrelation function of s is the integer-valued function C(t) defined as 

C(t) = 1/N ( (2s∑
−

=

1

0

N

i
i - 1) · (2si+t – 1) for 1 ≤ t ≤N-1 

The autocorrelation function C(t) measures the amount of similarity between the 

sequence s and a shift of s by t positions. If s is a random periodic sequence of period 

N, then |N · C(t)| can be expected to be quite small for all values of t, 0 < t <N. 

2.6.5 Definition Let s be a periodic sequence of period N. Golomb’s randomness 

postulates are the following. 

R1: In the cycle sN of s, the number of 1’s differs from the number of 0’s by at most 1. 

R2: In the cycle sN, at least half the runs have length 1, at least one-fourth have length 

2, at least one-eighth have length 3, etc., as long as the number of runs so indicated 

exceeds 1. Moreover, for each of these lengths, there are (almost) equally many gaps 

and blocks.6 

R3: The autocorrelation function C(t) is two-valued. That is for some integer K, 

N · C(t) = (2s∑
−

=

1

0

N

i
i - 1) · (2si+t - 1) =  N, if t = 0, 

K, if 1 ≤ t ≤N-1 

Note: Postulate R2 implies postulate R1. 

2.6.6 Definition A binary sequence which satisfies Golomb’s randomness postulates 

is called a pseudo-noise sequence or a pn-sequence. 

Pseudo-noise sequences arise in practice as output sequences of maximum-length 

linear feedback shift registers (Fact 2.38). 

2.6.7 Example (pn-sequence) Consider the periodic sequence s of period N = 15 with 

cycle 

s15 = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1. 

The following shows that the sequence s satisfies Golomb’s randomness postulates. 

R1: The number of 0’s in s15 is 7, while the number of 1’s is 8. 

R2: s15 has 8 runs. There are 4 runs of length 1 (2 gaps and 2 blocks), 2 runs of length 

2 (1 gap and 1 block), 1 run of length 3 (1 gap), and 1 run of length 4 (1 block). 
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R3: The autocorrelation function C(t) takes on two values: C(0) = 1 and C(t) = -1/15 

for 1 ≤ t ≤14. Hence, s is a pn-sequence. 

2.7 Attacks on Stream Ciphers 

The purpose of a good key-stream generator is to produce an output which can ideally 

not be distinguished from a truly random source. This is however impossible, but the 

goal is to make it as close to a truly random symbol stream as possible. The 

cryptanalyst can refer to a multitude of statistical tools and theoretical knowledge to 

attempt an attack. A way to classify attacks on stream ciphers is as follows: 

Ciphertext-only attack: This is the hardest type of attack for the cryptanalyst since no 

other information than the output of the cipher can be used. The goal is to recover the 

used key. 

Known-plaintext attack: Having a ciphertext, the corresponding plaintext is known. In 

the case of a stream cipher, knowing the plaintext means knowing the key-stream 

which has been applied to it. The goal is to determine the key which generated the 

key-stream. 

Distinguishing from a truly random sequence: This new security criterion was 

proposed by Coppersmith et al. , but it doesn't lead to any knowledge about the 

plaintext or the used key. Particular attacks often rely on the existence of certain 

building blocks inside the stream cipher. However, some don't: e. g. there can be a 

time/memory tradeoff: 

the time effort of a brute force attack is separated into a smaller time effort and an 

additional memory effort which could lead to a practical attack. An approach, which 

can be better than brute force, is described subsequently. 

2.7.1 Correlation Attacks 

Correlation attacks on stream ciphers were introduced by Siegenthaler and try to 

establish a link between the key-stream and one of the LFSRs inside the generator. 

This is done via exploiting weaknesses in the combining function, which has several 

LFSRs as input. Once one LFSR is analyzed, attention is given to another LFSR. This 

approach is sometimes referred to as divide-and-conquer attack. 

Further improvements have been made on the basic idea, and these are generally 

called fast correlation attacks. 

2.7.2 Other Attacks 
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A short description and further references on other attacks such as linear consistency 

attack; sub-key guessing attack, inversion attack etc. can be found. A fairly new type 

of attack are algebraic attacks (or higher order correlation attack).  

2.8 Specific Example of a Stream Cipher: RC4 

RC4 was designed by Ron Rivest in 1987 in an attempt to make a stream cipher, 

which is more suitable for software implementations. He did not use LFSRs at all, but 

used a dynamic permutation instead. The design was a trade secret of RSA Inc. but 

leaked 1994 when someone anonymously posted the source code to the Cypherpunks 

mailing list. The security of RC4 was of course not affected as it is solely based on the 

used key. Even though this alleged version was never officially confirmed to be 

equivalent to the original version by RSA Inc., there is strong evidence to assume this. 

Subsequently, the notation RC4 refers to the alleged version of the algorithm. RC4 is 

one of the most popular stream ciphers, it is heavily used in SSL/TLS or IEEE 802.11 

and is integrated into many widely used open-source libraries or applications of 

Microsoft or Oracle. Hardware implementations have been considered as well. 

 

 

2.8.1 The RC4 Algorithm 

RC4 specifies a whole family of algorithms whose differences lie in the used word-

size n; typically the word-size is 8. Furthermore, key-sizes between n and 2048 bits 

are possible, however practical values are between 40 and 256 bits. 

The algorithm consists of two parts, which are executed sequentially: 

 An initialization phase or KSA (Key Scheduling Algorithm) 

 An output phase or PRGA (Pseudo Random Generation Algorithm) 

Both parts access an internal table of size n ×  2n bits, which can be viewed as an array 

containing 2n words of size n. Let's look at the two parts of the algorithm in more 

detail. Even if the internal table has a size of n ×   2n bits, the total number of states is 

not  nn 22 × (which would be 22048 in the case of n = 8). Only permutations of 2n words 

are possible, thus leading to a total number of (2n)! different table-states. Using a 

word-size of 8, the number of different table-states is (28)! ≈  21684.  

2.9 Practical Considerations 

Practical stream ciphers employ more than one of the above mentioned strategies to 

remove linearity from the output of LFSRs. Examples thereof are SNOW or SOBER. 

However, stream ciphers don't have to be based on LFSRs. Especially if software 
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performance is important, LFSRs are not the best choice. Stream ciphers, which take a 

complete different approach, are RC4, SEAL or SCREAM. The above description of 

LFSRs is suitable for hardware implementations, but its implementation in software is 

very inefficient. However, LFSRs do not have to use a binary representation, in fact 

any finite field is possible. A finite field more suitable for software implementation 

might be GF((2n)m) where n is the word size of the underlying processor and m is the 

degree of the polynomial. One important property of synchronous stream ciphers is 

that the key-stream is independent of the plaintext and can be pre-generated. This 

strictly prohibits the reuse of the same key for different plaintexts. There are two 

solutions to this problem. 

To seed the key-stream generator, use initialization vectors and subsequently derive a 

session key for it (e. g. using the output of a hash function with the concatenation of 

IV and key as input).  

Reuse of key-stream; in this case, for practical reasons the stream ciphers should have 

the property to reach every point of the key-stream within sub linear amount of time. 

Another feature has received considerable interest: the ability to add message integrity 

protection or message authentication to the ciphertext of the stream ciphers. This is 

especially important for the ciphertext of (synchronous) stream ciphers since bit 

manipulations in the ciphertext can lead to predictable modifications of the 

corresponding plaintext. Proposals like Helix , Multi-S01 from Hitachi, which has 

been submitted to CRYPTREC - a Japanese e-Government initiative, or SOBER 128  

from Qualcomm, which is the successor of the NESSIE submission SOBER-t32, 

already include such a feature.  
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Chapter 3 

Introduction to Random Number Testing  
The need for random and pseudorandom numbers arises in many cryptographic 

applications. For example, common cryptosystems employ keys that must be 

generated in a random fashion. 

Many cryptographic protocols also require random or pseudorandom inputs at various 

points, e.g., for auxiliary quantities used in generating digital signatures, or for 

generating challenges in authentication protocols. 

This chapter discusses the randomness testing of random number and pseudorandom 

number generators that may be used for many purposes including cryptographic, 

modeling and simulation applications. The focus of this document is on those 

applications where randomness is required for cryptographic purposes. A set of 

statistical tests for randomness is described in this document. The National Institute of 

Standards and Technology (NIST) believes that these procedures are useful in 

detecting deviations of a binary sequence from randomness. However, a tester should 

note that apparent deviations from randomness may be due to either a poorly designed 

generator or to anomalies that appear in the binary sequence that is tested (i.e., a 

certain number of failures is expected in random sequences produced by a particular 

generator). 

3.1 General Discussion 

There are two basic types of generators used to produce random sequences: random 

number generators (RNGs) and pseudorandom number generators (PRNGs). For 

cryptographic applications, both of these generator types produce a stream of zeros 

and ones that may be divided into substreams or blocks of random numbers. 

3.1.1 Randomness 

A random bit sequence could be interpreted as the result of the flips of an unbiased 

“fair” coin with sides that are labeled “0” and “1,” with each flip having a probability 

of exactly ½ of producing a “0” or “1.” Furthermore, the flips are independent of each 

other: the result of any previous coin flip does not affect future coin flips. The 

unbiased “fair” coin is thus the perfect random bit stream generator, since the “0” and 

“1” values will be randomly distributed (and[0,1] uniformly distributed). All elements 

of the sequence are generated independently of each other, and the value of the next 

element in the sequence cannot be predicted, regardless of how many elements have 

already been produced. 
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Obviously, the use of unbiased coins for cryptographic purposes is impractical. 

Nonetheless, the hypothetical output of such an idealized generator of a true random 

sequence serves as a benchmark for the evaluation of random and pseudorandom 

number generators. 

3.1.2 Unpredictability 

Random and pseudorandom numbers generated for cryptographic applications should 

be unpredictable. In the case of PRNGs, if the seed is unknown, the next output 

number in the sequence should be unpredictable in spite of any knowledge of 

previous random numbers in the sequence. This property is known as forward 

unpredictability. It should also not be feasible to determine the seed from knowledge 

of any generated values (i.e., backward unpredictability is also required). No 

correlation between a seed and any value generated from that seed should be evident; 

each element of the sequence should appear to be the outcome of an independent 

random event whose probability is 1/2. 

To ensure forward unpredictability, care must be exercised in obtaining seeds. The 

values produced by a PRNG are completely predictable if the seed and generation 

algorithm are known. Since in many cases the generation algorithm is publicly 

available, the seed must be kept secret and should not be derivable from the 

pseudorandom sequence that it produces. In addition, the seed itself must be 

unpredictable. 

3.1.3 Random Number Generators (RNGs) 

The first type of sequence generator is a random number generator (RNG). An RNG 

uses a nondeterministic source (i.e., the entropy source), along with some processing 

function (i.e., the entropy distillation process) to produce randomness. The use of a 

distillation process is needed to overcome any weakness in the entropy source that 

results in the production of non-random numbers (e.g., the occurrence of long strings 

of zeros or ones). The entropy source typically consists of some physical quantity, 

such as the noise in an electrical circuit, the timing of user processes (e.g., key strokes 

or mouse movements), or the quantum effects in a semiconductor. Various 

combinations of these inputs may be used. 

The outputs of an RNG may be used directly as a random number or may be fed into a 

pseudorandom number generator (PRNG). To be used directly (i.e., without further 

processing), the output of any RNG needs to satisfy strict randomness criteria as 

 35



measured by statistical tests in order to determine that the physical sources of the 

RNG inputs appear random.  

For example, 

a physical source such as electronic noise may contain a superposition of regular 

structures, such as waves or other periodic phenomena, which may appear to be 

random, yet are determined to be non-random using statistical tests. 

For cryptographic purposes, the output of RNGs needs to be unpredictable. However, 

some physical sources (e.g., date/time vectors) are quite predictable. These problems 

may be mitigated by combining outputs from different types of sources to use as the 

inputs for an RNG. 

However, the resulting outputs from the RNG may still be deficient when evaluated 

by statistical tests. In addition, the production of high-quality random numbers may be 

too time consuming, making such production undesirable when a large quantity of 

random numbers is needed. To produce large quantities of random numbers, 

pseudorandom number generators may be preferable. 

3.1.4 Pseudorandom Number Generators (PRNGs) 

The second generator type is a pseudorandom number generator (PRNG). A PRNG 

uses one or more inputs and generates multiple “pseudorandom” numbers. Inputs to 

PRNGs are called seeds. In contexts in which unpredictability is needed, the seed 

itself must be random and unpredictable. Hence, by default, a PRNG should obtain its 

seeds from the outputs of an RNG,i.e., a PRNG requires a RNG as a companion. 

The outputs of a PRNG are typically deterministic functions of the seed; i.e., all true 

randomness is confined to seed generation. The deterministic nature of the process 

leads to the term “pseudorandom.” Since each element of a pseudorandom sequence 

is reproducible from its seed, only the seed needs to be saved if reproduction or 

validation of the pseudorandom sequence is required. 

Ironically, pseudorandom numbers often appear to be more random than random 

numbers obtained from physical sources. If a pseudorandom sequence is properly 

constructed, each value in the sequence is produced from the previous value via 

transformations which appear to introduce additional randomness. A series of such 

transformations can eliminate statistical autocorrelations between input and output. 

Thus, the outputs of a PRNG may have better statistical properties and be produced 

faster than an RNG. 

3.1.5 Testing 
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Various statistical tests can be applied to a sequence to attempt to compare and 

evaluate the sequence to a truly random sequence. Randomness is a probabilistic 

property; that is, the properties of a random sequence can be characterized and 

described in terms of probability. The likely outcome of statistical tests, when applied 

to a truly random sequence, is known a priori and can be described in probabilistic 

terms. There are an infinite number of possible statistical tests, each assessing the 

presence or absence of a “pattern” which, if detected, would indicate that the 

sequence is nonrandom. Because there are so many tests for judging whether a 

sequence is random or not, no specific finite set of tests is deemed “complete.” In 

addition, the results of statistical testing must be interpreted with some care and 

caution to avoid incorrect conclusions about a specific generator. 

A statistical test is formulated to test a specific null hypothesis (H0). For the purpose 

of this document, the null hypothesis under test is that the sequence being tested is 

random. Associated with this null hypothesis is the alternative hypothesis (Ha) which, 

for this document, is that the sequence is not random. For each applied test, a decision 

or conclusion is derived that accepts or rejects the null hypothesis, i.e., whether the 

generator is (or is not) producing random values, based on the sequence that was 

produced. 

For each test, a relevant randomness statistic must be chosen and used to determine 

the acceptance or rejection of the null hypothesis. Under an assumption of 

randomness, such a statistic has a distribution of possible values. A theoretical 

reference distribution of this statistic under the null hypothesis is determined by 

mathematical methods. From this reference distribution, a critical value is determined 

(typically, this value is "far out" in the tails of the distribution, say out at the 99 % 

point). During a test, a test statistic value is computed on the data (the sequence being 

tested). This test statistic value is compared to the critical value. If the test statistic 

value exceeds the critical value, the null hypothesis for randomness is rejected. 

Otherwise, the null hypothesis (the randomness hypothesis) is not rejected (i.e., the 

hypothesis is accepted). 

3.1.6 Considerations for Randomness, Unpredictability and Testing 

The following assumptions are made with respect to random binary sequences to be 

tested: 

1. Uniformity: At any point in the generation of a sequence of random or 

pseudorandom bits, the occurrence of a zero or one is equally likely, i.e., the 
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probability of each is exactly 1/2. The expected number of zeros (or ones) is n/2, 

where n = the sequence length. 

2. Scalability: Any test applicable to a sequence can also be applied to subsequences 

extracted at random. If a sequence is random, then any such extracted subsequence 

should also be random. Hence, any extracted subsequence should pass any test for 

randomness. 

3. Consistency: The behavior of a generator must be consistent across starting values 

(seeds). It is inadequate to test a PRNG based on the output from a single seed, or an 

RNG on the basis of an output produced from a single physical output. 
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CHAPTER 4 

 RANDOM NUMBER GENERATION TESTS 
 

The NIST Test Suite is a statistical package consisting of 16 tests that were developed 

to test the randomness of (arbitrarily long) binary sequences produced by either 

hardware or software based cryptographic random or pseudorandom number 

generators. These tests focus on a variety of different types of non-randomness that 

could exist in a sequence. Some tests are decomposable into a variety of subtests. The 

16 tests are: 

1. The Frequency (Monobit) Test, 

2. Frequency Test within a Block, 

3. The Runs Test, 

4. Test for the Longest-Run-of-Ones in a Block, 

5. The Binary Matrix Rank Test, 

6. The Discrete Fourier Transform (Spectral) Test, 

7. The Non-overlapping Template Matching Test, 

8. The Overlapping Template Matching Test, 

9. Maurer's "Universal Statistical" Test, 

10. The Lempel-Ziv Compression Test, 

11. The Linear Complexity Test, 

12. The Serial Test, 

13. The Approximate Entropy Test, 

14.The Cumulative Sums (Cusums) Test, 

15. The Random Excursions Test, and 

16. The Random Excursions Variant Test. 

The order of the application of the tests in the test suite is arbitrary. However, it is 

recommended that the Frequency test be run first, since this supplies the most basic 

evidence for the existence of non-randomness in a sequence, specifically, non-

uniformity. If this test fails, the likelihood of other tests failing is high. (Note: The 

most time-consuming statistical test is the Linear Complexity test). 

A number of tests in the test suite have the standard normal and the chi-square ( χ2 ) 

as reference distributions. If the sequence under test is in fact non-random, the 

calculated test statistic will fall in extreme regions of the reference distribution. The 
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standard normal distribution (i.e., the bell-shaped curve) is used to compare the value 

of the test statistic obtained from the RNG with the expected value of the statistic 

under the assumption of randomness. The test statistic for the standard normal 

distribution is of the form z = (x - μ)/σ, where x is the sample test statistic value, and 

μ and σ2 are the expected value and the variance of the test statistic. The χ2  

distribution (i.e., a left skewed curve) is used to compare the goodness-of-fit of the 

observed frequencies of a sample measure to the corresponding expected frequencies 

of the hypothesized distribution. The test statistic is of the form χ2  = ∑((oi-ei)2/ei), 

where oi and ei are the observed and expected frequencies of occurrence of the 

measure, respectively. 

For many of the tests in this test suite, the assumption has been made that the size of 

the sequence length, n, is large (of the order 103 to 107). For such large sample sizes 

of n, asymptotic reference distributions have been derived and applied to carry out the 

tests. Most of the tests are applicable for smaller values of n. However, if used for 

smaller values of n, the asymptotic reference distributions would be inappropriate and 

would need to be replaced by exact distributions that would commonly be difficult to 

compute. 

4.1 Frequency (Monobit) Test 

4.1.1 Test Purpose 

The focus of the test is the proportion of zeroes and ones for the entire sequence. The 

purpose of this test is to determine whether the number of ones and zeros in a 

sequence are approximately the same as would be expected for a truly random 

sequence. The test assesses the closeness of the fraction of ones to ½, that is, the 

number of ones and zeroes in a sequence should be about the same. All subsequent 

tests depend on the passing of this test; there is no evidence to indicate that the tested 

sequence is non-random. 

4.1.2 Test Description 

(1) Conversion to ±1: The zeros and ones of the input sequence (∈) are converted to 

values of –1 and +1 and are added together to produce Sn = X1 + X2+ …X3 , where 

Xi= 2∈i –1. 

For example, if ∈ = 1011010101, then n=10 and Sn = 1 + (-1) + 1 + 1 + (-1) + 1 + (-

1)+ 1 + (-1) + 1 = 2. 

(2) Compute the test statistic sobs =|Sn| / n1/2

For the example in this section, sobs =|2| /101/2=.632455532. 
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(3) Compute P-value = erfc (sobs/ 2
1/2) , where erfc is the complementary error 

function . 

For the example in this section, P-value = erfc (0.632455532/21/2 =0.527089. 

4.1.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.1.4 Input Size Recommendations  

It is recommended that each sequence to be tested consist of a minimum of 100 bits 

(i.e., n ≥ 100). 

4.2 Frequency Test within a Block 

4.2.1 Test Purpose 

The focus of the test is the proportion of ones within M-bit blocks. The purpose of 

this test is to determine whether the frequency of ones in an M-bit block is 

approximately M/2, as would be expected under an assumption of randomness. For 

block size M=1, this test degenerates to test1, the Frequency (Monobit) test. 

4.2.2 Test Description 

(1) Partition the input sequence into N = |n/M| non overlapping blocks. Discard any 

unused bits. 

For example, if n = 10, M = 3 and ∈ = 0110011010, 3 blocks (N = 3) would be 

created, consisting of 011, 001 and 101. The final 0 would be discarded. 

(2) Determine the proportion πI of ones in each M-bit block using the equation 

∏i  = 
M

M

j
jMi∑

=
+−∈

1
)1(

    For 1  ≤ i ≤  N. 

For the example in this section, ∏1 = 2/3, ∏2 = 1/3, and  ∏3 = 2/3. 

(3) Compute the χ2 statistic: χ2 (obs) = 4 M (∏∑
=

N

i 1
i – ½)2

(4) Compute P-value = igamc (N/2, χ2(obs)/2 ) , where igamc is the incomplete 

gamma function for Q(a,x) . 

Note: that Q(a,x) = 1-P(a,x). 

4.2.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 
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4.2.4 Input Size Recommendations 

It is recommended that each sequence to be tested consist of a minimum of 100 bits 

(i.e., n ≥ 100). Note that n ≥ MN. The block size M should be selected such that M ≥ 

20, M > .01n and N < 100. 

4.3 Runs Test 

4.3.1 Test Purpose 

The focus of this test is the total number of runs in the sequence, where a run is an  

uninterrupted sequence of identical bits. A run of length k consists of exactly k 

identical bits and is bounded before and after with a bit of the opposite value. The 

purpose of the runs test is to determine whether the number of runs of ones and zeros 

of various lengths is as expected for a random sequence . In particular, this test 

determines whether the oscillation between such zeros and ones is too fast or too 

slow. 

4.3.2 Test Description 

Note: The Runs test carries out a Frequency test as a prerequisite. 

(1)Compute the pre-test proportion ∏ of ones in the input sequence: ∏ = /n j
j

∈∑

For example, if ∈ = 1001101011, then n=10 and ∏  = 6/10 = 3/5. 

(2) Determine if the prerequisite Frequency test is passed: If it can be shown that |∏ -

1/2|≥ τ , then the Runs test need not be performed (i.e., the test should not have been 

run because of a failure to pass test 1, the Frequency (Monobit) test). If the test is not 

applicable, then the P-value is set to 0.0000. Note that for this test, τ = 2/n1/2 has been 

pre-defined in the test code. 

(3) Compute the test statistic Vn(obs) = r(k)+1 , where r(k)=0 if ∈∑
−

=

in

ik
k=∈k+1, and 

r(k)=1 otherwise.  

(4) Compute P-value = erfc [(
∏ ∏

∏ ∏
−

−−

)1(22

)1(2)(|

n

nobsVn
] 

4.3.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.3.4 Input Size Recommendations 

 42



It is recommended that each sequence to be tested consist of a minimum of 100 bits 

(i.e., n ≥ 100). 

4.4 Test for the Longest Run of Ones in a Block 

4.4.1 Test Purpose 

The focus of the test is the longest run of ones within M-bit blocks. The purpose of 
this test is to determine whether the length of the longest run of ones within the tested 
sequence is consistent with the length of the longest run of ones that would be 
expected in a random sequence. 
 Note that an irregularity in the expected length of the longest run of ones implies that 

there is also an irregularity in the expected length of the longest run of zeroes. 

Therefore, only a test for ones is necessary.  

4.4.2 Test Description 

(1) Divide the sequence into M-bit blocks. 

(2) Tabulate the frequencies vi of the longest runs of ones in each block into 

categories, where each cell contains the number of runs of ones of a given length. 

For the values of M supported by the test code, the vi cells will hold the following 

counts: 
 
Vi M=8 M=128 M=104 

V0 ≤1 ≤4 ≤10 

V1 2 5 11 

V2 3 6 12 

V3 ≥4 7 13 

V4  8 14 

V5  ≥9 15 

V6   ≥16 

 

(3) Compute χ2 (obs) = ∑ ∏
∏

=

−k

i i

ii
N

Nv

0

2)(
 = 4.882605 

(4) Compute P-value = igamc (k/2, χ2 (obs)/2) 

4.4.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 
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4.4.4 Input Size Recommendations 

It is recommended that each sequence to be tested consist of a minimum of bits as 

specified in the table .  

Minimum n M 

128 8 

6272 128

750,000 104

 

4.5 Binary Matrix Rank Test 

4.5.1 Test Purpose 

The focus of the test is the rank of disjoint sub-matrices of the entire sequence. The 

purpose of this test is to check for linear dependence among fixed length substrings of 

the original sequence.  

4.5.2 Test Description 

(1)Sequentially divide the sequence into M·Q-bit disjoint blocks; there will exist 

N=[n/MQ] such blocks. Discarded bits will be reported as not being used in the 

computation within each block. Collect the M·Q bit segments into M by Q matrices. 

Each row of the matrix is filled with successive Q-bit blocks of the original sequence 

∈. 

For example, if n = 20, M = Q = 3, and ∈ = 01011001001010101101, then partition 

the stream into N = [n/3.3]=2 matrices of cardinality M·Q (3·3 = 9). Note that the last 

two bits (0 and 1) will be discarded. The two matrices are 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010
110
010

 and  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
101
010

 Note that the first matrix consists of the first three bits in row 1, the second set of 

three bits in row 2, and the third set of three bits in row 3. The second matrix is 

similarly constructed using the next nine bits in the sequence. 

(2) Determine the binary rank ( Rl ) of each matrix, where l = l….,N . The rank of the 

first matrix is 2 (R1 = 2), and the rank of the second matrix is 3 (R2 = 3). 

(3) Let FM = the number of matrices with  Rl= M (full rank), 

FM-1 = the number of matrices with R l= M-1 (full rank - 1), 
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N – FM - FM-1 = the number of matrices remaining. For the example in this section, FM 

= F3 = 1 (R2 has the full rank of 3), FM-1 = F2 = 1 (R1 has rank 2), and no matrix has 

any lower rank. 

(4) Compute χ2(obs) . 

(5) Compute P -value = e-χ2(obs) /2. = 0.741948(for this section) 

4.5.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.5.4 Input Size Recommendations 

The probabilities for M = Q = 32 have been calculated and inserted into the test code. 

Other choices of M and Q may be selected, but the probabilities would need to be 

calculated. The minimum number of bits to be tested must be such that n ≥38MQ (i.e., 

at least 38 matrices are created). For M = Q = 32, each sequence to be tested should 

consist of a minimum of 38,912.  

4.6 Discrete Fourier Transform (Spectral) Test 

4.6.1 Test Purpose 

The focus of this test is the peak heights in the Discrete Fourier Transform of the 

sequence. The purpose of this test is to detect periodic features (i.e., repetitive patterns 

that are near each other) in the tested sequence that would indicate a deviation from 

the assumption of randomness. The intention is to detect whether the number of peaks 

exceeding the 95 % threshold is significantly different than 5 %. 

4.6.2 Test Description 

(1) The zeros and ones of the input sequence (∈) are converted to values of –1 and +1 

to create the sequence X = x1, x2, …, xn, where xi = 2∈i – 1. 

For example, if n = 10 and e = 1001010011, then X = 1, -1, -1, 1, -1, 1, -1, -1, 1, 1. 

(2) Apply a Discrete Fourier transform (DFT) on X to produce: S = DFT(X). A 

sequence of complex variables is produced which represents periodic components of 

the sequence of bits at different frequencies  

(3) Calculate M = modulus(S´) ≡ |S'|, where S´ is the substring consisting of the first 

n/2 elements in S, and the modulus function produces a sequence of peak heights. 

(4) Compute T = n1/ 3 = the 95 % peak height threshold value. Under an assumption of 

randomness, 95 % of the values obtained from the test should not exceed T. 

(5) Compute N0 = .95n/2. N0 is the expected theoretical (95 %) number of peaks 

(under the assumption of randomness) that are less than T.  
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(6) Compute N1 = the actual observed number of peaks in M that are less than T. For 

the example in this section, N1 = 4. 

(7) Compute d = 
2/)05.0)(95.0(

)N-N( 01
n

 

(8) Compute P-value = erfc ( )2/|| d . 

4.6.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.6.4 Input Size Recommendations 

It is recommended that each sequence to be tested consist of a minimum of 1000 bits 

(i.e., n ≥ 1000). 

4.7 Non-overlapping Template Matching Test 

4.7.1 Test Purpose 

The focus of this test is the number of occurrences of pre-specified target strings. The 

purpose of this test is to detect generators that produce too many occurrences of a 

given non-periodic (aperiodic) pattern. For this test and for the Overlapping Template 

Matching test of Section 2.8, an m-bit window is used to search for a specific m-bit 

pattern. If the pattern is not found, the window slides one bit position. If the pattern is 

found, the window is reset to the bit after the found pattern, and the search resumes. 

4.7.2 Test Description 

(1) Partition the sequence into N independent blocks of length M. 

For example, if e = 10100100101110010110, then n = 20. If N = 2 and M = 10, then 

the two blocks would be 1010010010 and 1110010110. 

(2) Let Wj (j = 1, …, N) be the number of times that B (the template) occurs within the 

block j. Note that j = 1,…,N. The search for matches proceeds by creating an m-bit 

window on the sequence, comparing the bits within that window against the template. 

If there is no match, the window slides over one bit , e.g., if m = 3 and the current 

window contains bits 3 to 5, then the next window will contain bits 4 to 6. If there is a 

match, the window slides over m bits, e.g., if the current (successful) window contains 

bits 3 to 5, then the next window will contain bits 6 to 8. 

(3) Under an assumption of randomness, compute the theoretical mean μ and variance 

σ2

μ = (M-m+1)/2m    ,  σ2 = M(1/2m- 2m-1/22m) 
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(4) Compute χ2(obs.) = ∑
=

−N

j

jW

1 2

2)(

σ

μ  

(5) Compute P-value = igamc (N/2, χ2(obs.)/2). Note that multiple P-values will be 

computed, i.e., one P-value will be computed for each template. For m = 9, up to 148 

P-values may be computed; for m = 10, up to 284 P-values may be computed. 

4.7.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.7.4 Input Size Recommendations 

The test code has been written to provide templates for m = 2, 3,…,10. It is 

recommended that m = 9 or m = 10 be specified to obtain meaningful results. 

Although N = 8 has been specified in the test code, the code may be altered to other 

sizes. However, N should be chosen such that N ≤ 100 to be assured that the P-values 

are valid. The test code has been written to assume a sequence length of n = 106 

(entered via a calling parameter) and M = 131072 (hard coded). If values other than 

these are desired, be sure that M > 0.01 . n and N = ⎣ ⎦Mn / . 

4.8 Overlapping Template Matching Test 

4.8.1 Test Purpose 

The focus of the Overlapping Template Matching test is the number of occurrences of 

pre specified target strings. Both this test and the Non-overlapping Template 

Matching test of Previous test use an m-bit window to search for a specific m-bit 

pattern. As with the test in Previous test, if the pattern is not found, the window slides 

one bit position. The difference between this test and the test in Previous test is that 

when the pattern is found, the window slides only one bit before resuming the search. 

4.8.2 Test Description 

(1) Partition the sequence into N independent blocks of length M. 

For example, if ∈ = 10111011110010110100011100101110111110000101101001, 

then n = 50. If K = 2, M = 10 and N = 5, then the five blocks are 1011101111, 

0010110100, 0111001011, 1011111000, and 0101101001 . 

(2) Calculate the number of occurrences of B in each of the N blocks. The search for 

matches proceeds by creating an m-bit window on the sequence, comparing the bits 

within that window against B and incrementing a counter when there is a match. The 
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window slides over one bit after each examination, e.g., if m = 4 and the first window 

contains bits 42 to 45, the next window consists of bits 43 to 46. Record the number 

of occurrences of B in each block by incrementing an array vi (where i = 0,…5), such 

that v0 is incremented when there are no occurrences of B in a substring, v1 is 

incremented for one occurrence of B,…and v5 is incremented for 5 or more 

occurrences of B. 

(3) Compute values for l and h that will be used to compute the theoretical 

probabilities πI corresponding to the classes of v0: 

μ = (M-m+1)/2m                      η = λ/2 

(4) Compute χ2(obs) = ∑ (vi-Nπi)2
 /Nπi  , where π0 = 0.367879, π1 = 0.183940, π2 = 

0.137955, π3 = 0.099634, π4 = 0.069935 and π5 = 0.140657 after computation. 

(5) Compute P-value = igamc(5/2, χ2(obs)/2) 

4.8.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.8.4 Input Size Recommendations 

The values of K, M and N have been chosen such that each sequence to be tested 

consists of a minimum of 106 bits (i.e., n ³ 106). Various values of m may be selected, 

but for the time being, NIST recommends m = 9 or m = 10. If other values are 

desired, please choose these values as follows: 

• n ≥  MN. 

• N should be chosen so that N · (min πi) > 5. 

• l = (M-m+1)/2m ≈ 2 

• m should be chosen so that m ≈  log2 M 

• Choose K so that K  ≈ 2l. Note that the πi values would need to be 

• recalculated for values of K other than 5. 

4.9 Maurer’s “Universal Statistical” Test 

4.9.1 Test Purpose 

The focus of this test is the number of bits between matching patterns (a measure that 

is related to the length of a compressed sequence). The purpose of the test is to detect 

whether or not the sequence can be significantly compressed without loss of 

information. A significantly compressible sequence is considered to be non-random. 

4.9.2 Test Description 
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(1)The n-bit sequence (e) is partitioned into two segments: an initialization segment 

consisting of Q L-bit non-overlapping blocks, and a test segment consisting of K L-bit 

non-overlapping blocks. Bits remaining at the end of the sequence that do not form a 

complete L-bit block are discarded. 

        Initialization Segment                           Test Segment 

                QΧL bits                                 KΧL                 Discard 

| L-bits |L-bits|…..|L-bits|L-bits|L-bits|L-bits|….|L-bits|L-bits|L-bits|           

                         n bits  

               Q blocks           K Blocks 

 

The first Q blocks are used to initialize the test. The remaining K blocks are the test 

blocks (K =    - Q). ⎣ Ln / ⎦
(2) Using the initialization segment, a table is created for each possible L-bit value 

(i.e., the L-bit value is used as an index into the table). The block number of the last 

occurrence of each L-bit block is noted in the table (i.e., For i from 1 to Q, Tj= i, 

where j is the decimal representation of the contents of the ith  L-bit block). 

(3) Examine each of the K blocks in the test segment and determine the number of 

blocks since the last occurrence of the same L-bit block (i.e., i – Tj). Replace the value 

in the table with the location of the current block (i.e., Tj= i). Add the calculated 

distance between re-occurrences of the same L-bit block to an accumulating log2 sum 

of all the differences detected in the K blocks (i.e., sum = sum + log2(i – Tj)). 

(4) Compute the test statistic:  fn = 1/k  , where T∑
+

+=
−

KQ

Qi
jTi

1
2 )(log j is the table entry 

corresponding to the decimal representation of the contents of the ith L-bit block.  

(5) Compute P-value = erfc ⎟
⎠

⎞
⎜
⎝

⎛ − |
2

)(|
σ

LueepectedValfn ,where erfc is error function. 

and expectedValue(L) and σ  are taken from a table of precomputed values. Under an 

assumption of randomness, the sample mean, expectedValue(L), is the theoretical 

expected value of the computed statistic for the given L-bit length. The theoretical 

standard deviation is given by  σ = c
K

Liance )(var , 

where c = 0.7 – 0.8/L +(4 +32/L) K –3/L/15 

4.9.3 Decision Rule (at the 1 % Level) 

 49



If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.9.4 Input Size Recommendations 

This test requires a long sequence of bits [n ≥ (Q + K)L] which are divided into two 

segments of L-bit blocks, where L should be chosen so that 6 ≤ L ≤ 16. The first 

segment consists of Q initialization blocks, where Q should be chosen so that Q = 10⋅ 

2L . The second segment consists of K test blocks, where K = ⎡ ⎤Ln /  - Q ≈ 1000 ⋅ 2L. 

The values of L, Q and n should be chosen from the table. 

4.10 Lempel-Ziv Compression Test 

4.10.1 Test Purpose 

The focus of this test is the number of cumulatively distinct patterns (words) in the 

sequence. The purpose of the test is to determine how far the tested sequence can be 

compressed. The sequence is considered to be non-random if it can be significantly 

compressed. A random sequence will have a characteristic number of distinct 

patterns. 

4.10.3 Test Description 

(1) Parse the sequence into consecutive, disjoint and distinct words that will form a 

"dictionary" of words in the sequence. This is accomplished by creating substrings 

from consecutive bits of the sequence until a substring is created that has not been 

found previously in the sequence. The resulting substring is a new word in the 

dictionary. 

Let Wobs = the number of cumulatively distinct words. 

(2) Compute P-value = ½ erfc 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
22σ

μ Wobs  where μ = 69586.25 and σ 

=(70.448718)1/2 when n = 106. For other values of n, the values of m and s would 

need to be calculated. Note that since no known theory is available to determine the 

exact values of μ and σ, these values were computed (under an assumption of 

randomness) using SHA-1. The Blum-Blum-Shub generator will give similar results 

for μ  and σ2. 

4.10.4 Decision Rule (at the 1 % Level) 
If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.10.5 Input Size Recommendations 
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It is recommended that each sequence to be tested consist of a minimum of 1,000,000 

bits (i.e., n ≥ 106). 

4.11 Linear Complexity Test 

4.11.1 Test Purpose 

The focus of this test is the length of a linear feedback shift register (LFSR). The 

purpose of this test is to determine whether or not the sequence is complex enough to 

be considered random. Random sequences are characterized by longer LFSRs. An 

LFSR that is too short implies non-randomness. 

4.11.2 Test Description 

(1) Partition the n-bit sequence into N independent blocks of M bits, where n = MN. 

(2) Using the Berlekamp-Massey algorithm5, determine the linear complexity Li of 

each of the N blocks (i = 1,…,N). Li is the length of the shortest linear feedback shift 

register sequence that generates all bits in the block i. Within any Li-bit sequence, 

some combination of the bits, when added together modulo 2, produces the next bit in 

the sequence (bit Li + 1). 

For example, if M = 13 and the block to be tested is 1101011110001, then Li = 4, and 

the sequence is produced by adding the 1st and 2nd bits within a 4-bit subsequence to 

produce the next bit (the 5th bit). The examination proceeded as follows: 

The first 4 bits and the resulting 5th bit:    

Bit 
1 

Bit 
2 

Bit 
3 

Bit 
4 

Bit 
5 

1 1 0 1 0 
1 0 1 0 1 
0 1 0 1 1 
1 0 1 1 1 
0 1 1 1 1 
1 1 1 1 0 
1 1 1 0 0 
1 1 0 0 0 
1 0 0 0 1 

Bits 2-5 and the resulting 6th bit: 

Bits 3-6 and the resulting 7th bit: 

……. 

Bits 9-12 and the resulting 13th bit: 

For this block, the trial feedback algorithm works. If this were not the case, other 

feedback algorithms would be attempted for the block (e.g., adding bits 1 and 3 to 

produce bit 5, or adding bits 1, 2 and 3 to produce bit 6, etc.). 
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(3) Under an assumption of randomness, calculate the theoretical mean μ: 

μ = M/2 + ( )
36

1)1(9 +−+ M  - ⎟
⎠
⎞

⎜
⎝
⎛ +

2M
9/23/M  

here μ = 6.777222. 

(4) For each substring, calculate a value of Ti, where Ti
  = (-1)M•(Li - μ) +2/9. 

Here T I =2.999444. 

(5) Record the Ti values in v0,…, v6 as follows: 

If: Ti ≤ -2.5                           Increment vo by one 

-2.5 < Ti ≤  -1.5                    Increment v1 by one 

-1.5 < Ti ≤  -0.5                    Increment v2 by one 

-0.5 < Ti ≤  0.5                     Increment v3 by one 

0.5 < Ti ≤  1.5                       Increment v4 by one 

1.5 < Ti ≤ 2.5                        Increment v5 by one 

Ti > 2.5                                Increment v6 by one 

(6) Compute χ2(obs) = ∑
= Π

Π−k

i i

ii
N

nv

0

2)(
 , where π0 = 0.01047, π1 = 0.03125, π2 = 

0.125, π3 = 0.5, π4 = 0.25, π5 = 0.0625, π6 = 0.02078 are the probabilities computed 

by the equations in Section 3.11. 

(7) Compute P-value = igamc (K/2, χ2(obs)/2) 

4.11.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.11.4 Input Size recommendations 

Choose n ≥ 106. The value of M must be in the range 500 ≤ M ≤ 5000, and N ≥ 200 

for the χ2 result to be valid . 

4.11.5 Example 

(input)                       ∈  = “the first 1,000,000 binary digits in the expansion of e” 

(input)                       n = 1000000 = 106, M = 1000 

(processing)               v0 = 11; v1 = 31; v2 = 116; v3 = 501; v4 = 258; v5 = 57; v6 = 26 

(processing)              χ2 (obs) = 2.700348 

(output)                     P-value = 0.845406 

(conclusion) Since the P-value ≥   0.01, accept the sequence as random. 

4.12 Serial Test 
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4.12.1 Test Purpose 

The focus of this test is the frequency of all possible overlapping m-bit patterns across 

the entire sequence. The purpose of this test is to determine whether the number of 

occurrences of the 2m m-bit overlapping patterns is approximately the same as would 

be expected for a random sequence. Random sequences have uniformity; that is, every 

m-bit pattern has the same chance of appearing as every other m-bit pattern. Note that 

for m = 1, the Serial test is equivalent to the Frequency test . 

4.12.2 Test Description 

(1) Form an augmented sequence ∈‘: Extend the sequence by appending the first m-1 

bits to the end of the sequence for distinct values of n. 

For example, given n = 10 and ∈ = 0011011101. If m = 3, then ∈´ = 001101110100. 

If m = 2, then ∈´ = 00110111010. If m = 1, then ∈´ = the original sequence 

0011011101. 

(2) Determine the frequency of all possible overlapping m-bit blocks, all possible 

overlapping (m-1)-bit blocks and all possible overlapping (m-2)-bit blocks. Let v i ... i 

m denote the frequency of the m bit pattern i1…im; let vi ...v m-1 denote the frequency of 

the (m-1)-bit pattern i1…im-1; and let v i ... im-2  denote the frequency of the (m-2)-bit 

pattern i1…im-2. 

(3) Compute: Ψm
2 = 2m/n (v∑

mii ....1
i1….im – n/2m) 2 = 2m/n ∑

mii ....1

vi1….im-1
2 – n 

similarly for Ψm-1
2 and Ψm-2

2. 

(4) Compute ∇2Ψm
2 = Ψm

2 - Ψm-1
2

∇2Ψm
2 = Ψm

2 - 2Ψm-1
2 + Ψm-2

2

(5) Compute: P-value1 = igamc (2m-2 - ∇Ψm
2) 

                     P-value2 = igamc (2m-3 - ∇2Ψm
2) 

4.12.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.12.4 Input Size Recommendations 

Choose m and n such that m <  -2. ⎣ ⎦nlog2

4.13 Approximate Entropy Test 

4.13.1 Test Purpose 

As with the Serial test of Section 2.12, the focus of this test is the frequency of all 

possible overlapping m-bit patterns across the entire sequence. The purpose of the test 
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is to compare the frequency of overlapping blocks of two consecutive/adjacent 

lengths (m and m+1) against the expected result for a random sequence. 

4.13.2 Test Description 

(1) Augment the n-bit sequence to create n overlapping m-bit sequences by appending 

m-1 bits from the beginning of the sequence to the end of the sequence. 

For example, if ∈ = 0100110101 and m = 3, then n = 10. Append the 0 and 1 at the 

beginning of the sequence to the end of the sequence. The sequence to be tested 

becomes 010011010101. (Note: This is done for each value of m.) 

(2) A frequency count is made of the n overlapping blocks (e.g., if a block containing 

∈j to ∈j+m-1 is examined at time j, then the block containing ∈j+1 to ∈j +m is examined 

at time j+1). Let the count of the possible m-bit ((m+1)-bit) values be represented as 

Ci
m ,where i is the m-bit value. 

(3) Compute Ci
m =# i/n for each value of i. 

(4) Compute ϕm = where π = C∑
−

=
ΠΠ

12

0
log

m

i
ii

3
j , and j=log2 i. 

 (5) Repeat steps 1-4, replacing m by m+1. 

 (6) Compute the test statistic: χ2 = 2n[log 2 – ApEn(m)] , where ApEn(m) = φ(m) - 

φ(m+1)

 (7) Compute P-value = igamc(2m-1,χ2/2 ). 

4.13.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.13.4 Input Size Recommendations 

Choose m and n such that m <  -2. ⎣ ⎦n2log

4.14 Cumulative Sums (Cusum) Test 

4.14.1 Test Purpose 

The focus of this test is the maximal excursion (from zero) of the random walk 

defined by the cumulative sum of adjusted (-1, +1) digits in the sequence. The 

purpose of the test is to determine whether the cumulative sum of the partial 

sequences occurring in the tested sequence is too large or too small relative to the 

expected behavior of that cumulative sum for random sequences. This cumulative 

sum may be considered as a random walk. For a random sequence, the excursions of 
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the random walk should be near zero. For certain types of non-random sequences, the 

excursions of this random walk from zero will be large. 

4.14.2 Test Description 

(1) Form a normalized sequence: The zeros and ones of the input sequence (∈) are 

converted to values Xi of –1 and +1 using Xi = 2∈ i – 1. 

For example, if ∈ = 1011010111, then X = 1, (-1), 1, 1, (-1), 1, (-1), 1, 1, 1. 

(2) Compute partial sums Si of successively larger subsequences, each starting with X1 

(if mode = 0) or Xn (if mode = 1). 

(3) Compute the test statistic z =max1≤k≤ n|Sk|, where max1≤k≤n|Sk| is the largest of the 

absolute values of the partial sums Sk. 

(4) Compute P-value = 1- ∑
−
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where φ is the Standard Normal Cumulative Probability Distribution Function . 

4.14.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.14.4 Input Size Recommendations 

It is recommended that each sequence to be tested consist of a minimum of 100 bits 

(i.e., n ≥ 100). 

4.15 Random Excursions Test 

4.15.1 Test Purpose 

The focus of this test is the number of cycles having exactly K visits in a cumulative 

sum random walk. The cumulative sum random walk is derived from partial sums 

after the (0,1) sequence is transferred to the appropriate (-1, +1) sequence. A cycle of 

a random walk consists of a sequence of steps of unit length taken at random that 

begin at and return to the origin. The purpose of this test is to determine if the number 

of visits to a particular state within a cycle deviates from what one would expect for a 

random sequence. This test is actually a series of eight tests (and conclusions), one 

test and conclusion for each of the states: -4, -3, -2, -1 and +1, +2, +3, +4. 

4.15.2 Test Description 
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(1) Form a normalized (-1, +1) sequence X: The zeros and ones of the input sequence 

(∈) are changed to values of –1 and +1 via Xi = 2∈i – 1. 

For example, if ∈ = 0110110101, then n = 10 and X = -1, 1, 1, -1, 1, 1, -1, 1, -1, 1. 

(2) Compute the partial sums Si of successively larger subsequences, each starting 

with X1. 

Form the set S = {Si}. 

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

Sk = X1 + X2 + X3+…+Xk

. 

. 

Sn = X1 + X2 + X3+….+Xk+…+Xn

(3) Form a new sequence S' by attaching zeros before and after the set S. That is, S' = 

0, s1,s2, … , sn, 0. 

(4) Let J = the total number of zero crossings in S', where a zero crossing is a value of 

zero in  that occurs in S’ after the starting zero. J is also the number of cycles in S’, 

where a cycle of S’is a subsequence of S’ consisting of an occurrence of zero, 

followed by no zero values, and ending with another zero. The ending zero in one 

cycle may be the beginning zero in another cycle. The number of cycles in S ' is the 

number of zero crossings. If J < 500, discontinue the test. 

 (5) For each cycle and for each non-zero state value x having values –4 ≤x ≤ -1 and 1 

≤ x ≤4, compute the frequency of each x within each cycle. 

(6) For each of the eight states of x, compute vk(x) = the total number of cycles in 

which state x occurs exactly k times among all cycles, for k = 0, 1, …, 5 (for k = 5, all 

frequencies ≥ 5 are stored in v5(x)). Note that  . jxv
k

k =∑
=

)(
5

0

(7) For each of the eight states of x, compute the test statistic χ2 = 

∑
= Π

Π−5

0

2

)(
))()((

k k

kk
xj

xjxv
 , where πk(x) is the probability that the state x occurs k times 

in a random distribution .  

(8) For each state of x, compute P-value = igamc(5/2,χ2 (obs)/ 2  . Eight P-values will 

be produced. 
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4.15.3 Decision Rule (at the 1 % Level) 

If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.15.4 Input Size Recommendations 

It is recommended that each sequence to be tested consist of a minimum of 1,000,000 

bits (i.e., n ≥ 106). 

4.16 Random Excursions Variant Test 

4.16.1 Test Purpose 

The focus of this test is the total number of times that a particular state is visited (i.e., 

occurs) in a cumulative sum random walk. The purpose of this test is to detect 

deviations from the expected number of visits to various states in the random walk. 

This test is actually a series of eighteen tests (and conclusions), one test and 

conclusion for each of the states: -9, -8, …, -1 and +1, +2, …, +9. 

(1) Form a normalized (-1, +1) sequence X: The zeros and ones of the input sequence 

(∈) are changed to values of –1 and +1 via Xi = 2∈i – 1. 

For example, if ∈ = 0110110101, then n = 10 and X = -1, 1, 1, -1, 1, 1, -1, 1, -1, 1. 

(2) Compute the partial sums Si of successively larger subsequences, each starting 

with X1. 

Form the set S = {Si}. 

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

Sk = X1 + X2 + X3+…+Xk

. 

. 

Sn = X1 + X2 + X3+….+Xk+…+Xn

(3) Form a new sequence S' by attaching zeros before and after the set S. That is, S' = 

0, s1,s2, … , sn, 0. 

 (4) For each of the eighteen non-zero states of x, compute ξ(x) = the total number of 

times that state x occurred across all J cycles. 

(5) For each ξ(x), compute P-value = erfc ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
− 

)2||4(2
|)(|

xJ
Jxξ . Eighteen P-values are 

computed. 

4.16.2 Decision Rule (at the 1 % Level) 
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If the computed P-value is < 0.01, then conclude that the sequence is non-random. 

Otherwise, conclude that the sequence is random. 

4.16.3 Input Size Recommendations 

It is recommended that each sequence to be tested consist of a minimum of 1,000,000 

bits (i.e., n ≥ 106). 
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CHAPTER 5 

Algorithm  

 
Suppose in a system there are 4 Linear feedback shift registers and a 4Χ1 MUX. Each 

shift register will generate a PN sequence. The length of sequence will depend on the 

size of shift register and the total period of the system will be the LCM of the periods 

of the 4 shift registers. The output stream bits produced by LFSRs  is passed in the 

4Χ1 MUX . We convert these bits into decimal which will vary from 0 to15.  

In MUX  modulo 4 operation is performed, in which if the mod 4 of the sum is 1 then 

first stream is taken as final keystream,  if mod4 of sum is 2 then second stream is 

taken as keystream, if mod4 of sum is 3 then third stream is taken as keystream, if 

mod4 of sum is 4 then fourth stream is taken as keystream. 

This keystream is  mixed with the input data bits(plain text) using the XOR operation. 

This will be the output sequence bit (ciphertext). 

 

                                         

 

 

           

 

 

                    P 

           

               K 

                                                                                                                        ⊕       C 

           

 

 

 

 

 

Mathematically if X1,X2,X3,X4 are the output sequence bit of the 4 shift registers 

R1, R2, R3 and R4 and P is the plain text(in ASCII) form . Then we can say  

LFSR4

LFSR3

LFSR2

 
 
 
 

MUX 
 

4Χ1 

LFSR1
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                         P ⊕ K = C  

Where value of  Keystream(K)  is calculated by using the function 

 

                        Sum modulo 4 = K 

 

Assuming 4 Linear Feed back shift registers of length  31,29,27 and 41 respectively . 

The primitive polynomials for each shift registers will be: 

1) x31+x3+1 = 0 

2) x29+x2+1 = 0 

3) x27+x5+x2+x+1 = 0 

4) x41+x3+1 = 0 

These sequences will be used as the tapping point ie for 31 stage shift register the 

tapping point will be 31 and 3rd . For 29 bit shift register tapping point will be 29 

and 2nd and so on. 

These potions are XOR ie for 31 stage shift register 31 and 3rd bit is XORed . In 

this way these are XOR and right shifted. 

Same operation is applied for each shift register.  

Suppose we get output bit X1 from LFSR R1, X2 from shift Register R2, X3 from 

shift Register R3 and X4 from Shift register R4 . 

These output stream bits are passed through the 4Χ1 MUX to decide the control 

bit. For deciding that we have applied Sum modulo 4 = K operation as described 

above. The output generated from 4Χ1 MUX will be the final keystream K 

This keystream K is  XOR with the input text P(this is converted into ASCII code) 

to get the cipher text. 

At the receiving end the system is again activated so that the 4 shift registers in the 

system will gain generate the sequence and the crypt bit will be XOR  to get back 

the initial input. 

 

       

For Encryption of plain text the function used is P ⊕ K=C 

Where P is plain input text, C is the Cipher text and K is the Key stream given by 

Keystream K = Sum modulo 4 

i) if sum is 0 then consider first stream as keystream. 
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ii) if sum is 1 then take second stream as keystream. 

iii) If sum is 2 then take third stream as keystream. 

iv) If sum is 3 then take  fourth stream as keystream. 

Similarly for Decryption the function used is C ⊕ K=P 

 

Using NIST test suite most randomness  tests were passed by the keystream K. Report 

of which is shown further. 

While designing the stream cipher many more options are also consider and tested  

few of them are listed below : 

i) K = (X1&X2) X3 X4 ⊕ ⊕

ii) K = (X1&X2) (X2&X3)⊕ ⊕ (X3&X4) ⊕ (X4&X1) 

iii) K = (X1&X2&X3) ⊕ (X2&X3&X4) ⊕ (X4&X1&X2) 

iv) K=  X1 ⊕ X2 ⊕ X3 X4 ⊕

Where X1,X2,X3,X4 are the output bits generated from the LFSRs without MUX. 

These ciphers fails many tests of NIST so have been ruled out. 

Period of Key Sequence: For the LFSR1 , Time period(T1) will be 231 -1  

For LFSR2 , time period (T2) = 229 –1  

For LFSR3 , time period (T3) = 227
 –1 

For LFSR4 , time period (T4) = 241
 –1 

 

Using Knuth algorithm 

GCD(2p –1  , 2q –1) = 2GCD(p,q) –1  

 

The GCD of above LFSRs is  

GCD(T1,T2,T3,T4) = 2GCD(31,29,27,41) –1  

                               =21 –1  

                               = 2 –1 = 1 

Feeding of shift register(Key generation) : User is asked to enter 16 character 

password so that  128 bits can be generated. Out of this each shift register is feeded 

with bits sequentially i,e first 31st bits for first shift register, next 29 bits for second 

shift register , next 27 bits for 3rd shift register, and next 41 bits for 4th shift register. 

 

Same operation is applied at the receiving end too for decryption of  bits to get the 

original plain text. 
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CHAPTER 6.  

Conclusion and Comparison 

Machine Configuration: 

Number 
of clients 

Machine/CPU # of 
CPUs 

Memory Disk Software 

1 Intel Pentium 
IV 2.4GHz 

1 256MB 40 GB Red Hat Linux 9. 

 

 

 

Performance Test Results: The method that was tested encrypts the data first and 

then decrypts the encrypted bytes.  

We performed the tests with a data size of 20MB, 40MB, 60MB, 80MB, and 100MB 

to see how the size of data impacts performance. As we increases the size of the test 

data, the rate of encryption become constant. So we conclude that : 

• For our algorithm the rate of encryption is 400 Mbits per sec. 

• For RC4 Algorithm the rate of encryption is 300 Mbits per sec. 
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CHAPTER7 

7.1Test Results using NIST test Suite 

------------------------------------------------------------------------------ 

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF 

PASSING SEQUENCES 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

 C1  C2  C3  C4  C5  C6  C7  C8  C9 C10  P-VALUE  PROPORTION  STATISTICAL TEST 

------------------------------------------------------------------------------ 

  8     8     9    9   13    14   14    9    8    8                0.739918   1.0000    Frequency 

  9     3    10  11  14    10   12    15   7    9               0.304126   0.9800    Block-Frequency 

 11    8    10  13   8      9    13    12   8   8                0.911413   0.9900    Cusum 

 11    9     7    8   10    10   10    12  15   8               0.851383   1.0000    Cusum 

 13    9     4   10  16    12   11    10   8   7                0.350485   1.0000    Runs 

 12   11    8   14  10     8    10    12   6   9                0.834308   0.9900    Long-Run 

  9     9    17  10   8      9    5     13  13   7                0.289667   1.0000    Rank 

  6     9    10  14  10    10  11    10   8  12                0.897763   1.0000    FFT 

 16   13   13   6    7     11   4      8  13   9                 0.162606   0.9900    Aperiodic-Template 

 18   13   14  12   5      6    8      5  12   7                 0.040108   1.0000    Aperiodic-Template 

 10    8    13  12   4     13  12     6  12  10                0.474986   1.0000    Aperiodic-Template 

 15    9    10   9   10     9   13     7   6   12                0.678686   0.9800    Aperiodic-Template 

 10   11   11   6   14    12  13     6  10   7                 0.616305   0.9700    Aperiodic-Template 

 10   13   13  12  10    11   5      6  10  10                0.699313   0.9900    Aperiodic-Template 

 11    6    13   7    7     11  16    11   4  14                0.145326   0.9900    Aperiodic-Template 

  5     6    10  10  14     9   13    12  10  11               0.616305   0.9900    Aperiodic-Template 

 11    9     8   11   9     11   5     11  13  12               0.851383   1.0000    Aperiodic-Template 

 12    11   9    8   14     7   16    10   7    6                0.383827   0.9800    Aperiodic-Template 

  8      7    7   10  12    12  12     8    8  16                0.554420   0.9800    Aperiodic-Template 

 12    16  12  13   6      6   13    11   5   6                 0.137282   0.9900    Aperiodic-Template 

  8      8   10   9   11    11  14     7   11  11               0.924076   0.9800    Aperiodic-Template 

  9      5    8   14  15    10  11    13   6   9                 0.366918   1.0000    Aperiodic-Template 

 10    11  14  10  10    10   4     11   9  11                0.779188   0.9900    Aperiodic-Template 

 15   8    9    7   11     7    13     9    7   14                 0.494392   1.0000    Aperiodic-Template 

 10   9    8    5    9     10   15    14   8   12                 0.534146   0.9800    Aperiodic-Template 

 12  16  16  10   5      6     9      6    9   11                 0.137282   0.9800    Aperiodic-Template 

 10   7   13  13  11     7     7      8   14  10                 0.678686   0.9900    Aperiodic-Template 

 63



 14   7   10  14   6     13    8    10    8   10                 0.595549   1.0000    Aperiodic-Template 

  6   12  10   8   14    11   11    7    11  10                 0.816537   1.0000    Aperiodic-Template 

  9   11  10  10  13     7     8    13    12   7                 0.867692   1.0000    Aperiodic-Template 

  9   14  10   8  10      5    12   11    14   7                 0.574903   1.0000    Aperiodic-Template 

  8   14   6   12   6      7    11  10     14   12               0.474986   0.9800    Aperiodic-Template 

 12  10  12  12   9    12    7    10       6   10               0.897763   0.9900    Aperiodic-Template 

 12  14   7   10   5    11   10    8      10   13               0.657933   1.0000    Aperiodic-Template 

  3    6    7   11   9    14   13   13     18   6                 0.025193   1.0000    Aperiodic-Template 

 10   6   11  15  11    5    15    9       9    9                 0.383827   0.9800    Aperiodic-Template 

  5  10   12   7   15   13    8    13      6   11                0.334538   0.9800    Aperiodic-Template 

 12   6   15   8   9      7    11    8      12  12                0.616305   0.9900    Aperiodic-Template 

 11   5   13  12  13    9    11    6       8   12                0.595549   0.9600    Aperiodic-Template 

 11   7   11  10   8     9    14   13      7   10                0.834308   0.9900    Aperiodic-Template 

  6   6    8    13  15   13   13   11      9    6                 0.304126   1.0000    Aperiodic-Template 

 11  10   8   15   7    13   13    5     10    8                 0.474986   1.0000    Aperiodic-Template 

 10   6   7    13   9    12   12   12     9    10                0.851383   0.9800    Aperiodic-Template 

 10  12  13  16   5     9    10    7     10    8                 0.455937   1.0000    Aperiodic-Template 

  9   8    8    11   7    14    7   13     13   10                0.719747   1.0000    Aperiodic-Template 

 10   8  12    9    6    11   11  13      9    11                0.924076   1.0000    Aperiodic-Template 

 14   8   8     4   13   11    8    9      12   13                0.455937   0.9900    Aperiodic-Template 

  6   19  6     7   12    8    14   7       6    15                0.020548   0.9900    Aperiodic-Template 

  5   11  8    12  11    9    12   8       14  10                0.739918   1.0000    Aperiodic-Template 

  8   11  14  10   9     9    12    9       6   12                0.851383   1.0000    Aperiodic-Template 

 10  12  11  12   8     6     7     5      10  19                0.108791   0.9900    Aperiodic-Template 

  9    8   14  10  14   14    6     3       9   13                0.171867   0.9900    Aperiodic-Template 

 14   8   14  14  10    7     7     7       5   14                0.213309   0.9800    Aperiodic-Template 

 11  10  12  15   8    11    7    10      5   11                0.637119   0.9900    Aperiodic-Template 

 12  16  13   7   7      8    14   10     7    6                  0.262249   0.9900    Aperiodic-Template 

 10  11  12   4  16     5    11   11     9    11                0.304126   1.0000    Aperiodic-Template 

 11   9   15  10  10    7     9    10    10    9                 0.924076   0.9800    Aperiodic-Template 

 14  11  12  13  11   7    10   9      5      8                 0.637119   0.9600    Aperiodic-Template 

 11   9   15  11  12   6    11   7      5    13                 0.419021   1.0000    Aperiodic-Template 

  6   13  14  13  14   7     7    9      5    12                 0.249284   1.0000    Aperiodic-Template 

  9   11   9    11   8   9     6   10    15   12                 0.798139   0.9900    Aperiodic-Template 

 10  15  12    8   12   8    5   11     9    10                 0.657933   1.0000    Aperiodic-Template 

  6   9    12    9   17   8   13   8     8    10                  0.419021   1.0000    Aperiodic-Template 

  8  14    8    11  11  13   9    5    14     7                  0.474986   0.9900    Aperiodic-Template 

 64



 14  10   4    10   9   12   8    8    13    12                 0.554420   1.0000    Aperiodic-Template 

 12  10  15    3    7   16   7   12   11     7                  0.102526   1.0000    Aperiodic-Template 

 13  14  12    7    8   10   5    9    11    11                 0.637119   0.9900    Aperiodic-Template 

  7   10  12   11   9    9   14   9     11   8                   0.924076   0.9800    Aperiodic-Template 

  7   13  12   14   9   15   7    8     8     7                   0.437274   0.9800    Aperiodic-Template 

 13   12   9   10  10   9   10   12   11   4                   0.779188   0.9800    Aperiodic-Template 

  8     7    9    7   11   11  12  15  13   7                    0.616305   1.0000    Aperiodic-Template 

 10   10   10   7  10    8   11  10   6   18                   0.401199   0.9900    Aperiodic-Template 

  8    12    9   11 10   10   7   14   10   9                   0.935716   0.9800    Aperiodic-Template 

 11   10   11   9  11   10  11   6    10  11                  0.987896   1.0000    Aperiodic-Template 

 10   17    7    9   6    14  12  11   4  10                    0.153763   0.9800    Aperiodic-Template 

 10    6     8    8   12  14  13  11  10   8                    0.759756   0.9900    Aperiodic-Template 

 11   11    8    7    8   13  10   7   17   8                    0.437274   0.9900    Aperiodic-Template 

  7     9    13  13   4   13   7   10  12  12                   0.437274   0.9900    Aperiodic-Template 

 10   10   11  10  12   8    6    9   14  10                   0.897763   0.9900    Aperiodic-Template 

 10   9     11    6   12   4    8   12  12  16                  0.304126   1.0000    Aperiodic-Template 

 13   9      9    14   7  12    9    7   11   9                   0.816537   0.9900    Aperiodic-Template 

 13  11    13   10   6  10  10   14    8    5                  0.534146   0.9900    Aperiodic-Template 

 16  13    13    6    7  11   4     9    12   9                  0.202268   0.9900    Aperiodic-Template 

 12   9     11    6   9   12  12   11   8    10                 0.935716   1.0000    Aperiodic-Template 

 11  10    13    9  10   5   6     11  15   10                 0.554420   0.9900    Aperiodic-Template 

  9   12    11  10   4   12  11    11  11    9                 0.834308   0.9900    Aperiodic-Template 

  5   9      7    13  17  12  11    8  10       8                0.304126   0.9700    Aperiodic-Template 

  8  14    10    8   11    9  17   10   8       5                0.319084   0.9900    Aperiodic-Template 

  5  10    14    9    9    11  11  12   9     10                0.834308   0.9900    Aperiodic-Template 

 11   9     5    17   7     9   10    9  13    10                0.383827   1.0000    Aperiodic-Template 

  9    8     7     7   10   10    9    9  18    13                0.366918   0.9700    Aperiodic-Template 

  8   12    8   14   8   11    10  12  10     7                0.867692   0.9800    Aperiodic-Template 

 10   9    10  12  12  13     8    8   9       9                0.971699   0.9800    Aperiodic-Template 

 12   10   8    9   10  13     5    8  12    13                0.739918   0.9900    Aperiodic-Template 

 13    6  12   11  12   6     8    12   8    12                0.678686   0.9900    Aperiodic-Template 

  8   11  16    9    6   15   10    7    8    10                0.383827   0.9900    Aperiodic-Template 

 10    9  12    8    8   11    8    12   9    13                0.955835   0.9900    Aperiodic-Template 

 14    6  14   10    7    9    11   13  10    6                0.494392   0.9600    Aperiodic-Template 

  7     8    9   15   10  17    8    7     8   11                0.304126   1.0000    Aperiodic-Template 

  8    10  11  10   13  11   11  10    7    9                 0.978072   1.0000    Aperiodic-Template 

 13   11   9   10     9   6    13   10   14   5                0.554420   0.9900    Aperiodic-Template 
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 13   7    10   9      6   7    11   18    8   11               0.249284   0.9800    Aperiodic-Template 

 12   8   12    9    10   8     7    11   11  12               0.955835   0.9700    Aperiodic-Template 

 10   9    9     8    12  12    6    14   11   9                0.851383   1.0000    Aperiodic-Template 

 15   6   9      9      9  10   11    8    13  10               0.759756   1.0000    Aperiodic-Template 

  7   11  11   14     9    7    7    10   14  10               0.719747   0.9900    Aperiodic-Template 

  7    9   13   14     9   11  16    8     7    6                0.334538   1.0000    Aperiodic-Template 

  7    9    8    10      9   10  10   12    9   16               0.779188   1.0000    Aperiodic-Template 

 12  11   9     6       6    7   12   18   10   9                0.236810   0.9900    Aperiodic-Template 

  8   11   9    17     10   8   17    5     5   10               0.071177   0.9800    Aperiodic-Template 

 10  10  12    7      12  10  10    8    13    8               0.946308   0.9800    Aperiodic-Template 

  7   12  13  10      11   9    7    11    8    12              0.897763   1.0000    Aperiodic-Template 

 10  12  12  13      15   6    5    5    12    10              0.262249   0.9900    Aperiodic-Template 

 13   8   9    14      11  10   5    9    10    11              0.759756   0.9700    Aperiodic-Template 

 11   9   4     9       12  17  10   9      9   10               0.401199   1.0000    Aperiodic-Template 

 10  12  14   7       12  12   9    7      8     9               0.816537   1.0000    Aperiodic-Template 

  9  10    9   11      12  10   9    7    15     8               0.867692   0.9900    Aperiodic-Template 

 13   7    6   17       9   10   7    8    13   10               0.304126   0.9700    Aperiodic-Template 

 12   4  14   13     12    5    6   13   15     6               0.066882   0.9900    Aperiodic-Template 

  6   14  11  10     14    9    9     7    9    11               0.719747   1.0000    Aperiodic-Template 

 13  12  10  11       8    7   12    9    7    11              0.897763   0.9700    Aperiodic-Template 

  5   11   8   11       9   11  11   12   9    13              0.851383   1.0000    Aperiodic-Template 

  8   16   3    6      14   12  10   10   7    14              0.090936   0.9900    Aperiodic-Template 

 12   9   7    12     12    7   12   11    9    9               0.924076   0.9800    Aperiodic-Template 

  9  15   5    10     10    8   10   14   10   9               0.616305   1.0000    Aperiodic-Template 

 13  11  11   9    15     9   9     7      9     7                0.759756   1.0000    Aperiodic-Template 

 13  13   5    9     9     10   6    8     13   14               0.437274   0.9900    Aperiodic-Template 

  4   13  10   13    7     12  10   8     14     9              0.455937   1.0000    Aperiodic-Template 

 10   3   12    4    12    12    9   16   10   12              0.129620   0.9800    Aperiodic-Template 

  9   9     8    18    7      9    13  10   10    7               0.366918   0.9900    Aperiodic-Template 

 12   8  13    9      9      7    11  11     6  14               0.719747   0.9900    Aperiodic-Template 

 10   13   9   8      8     14   10  10     8  10               0.924076   1.0000    Aperiodic-Template 

  9    8   12   15   12     6    13   8      9   8                0.616305   0.9700    Aperiodic-Template 

 10   16   8    6     7     11    6    9     15  12              0.262249   1.0000    Aperiodic-Template 

 14   11  10   9     8     12   13   2      12   9              0.319084   1.0000    Aperiodic-Template 

 13   8   15  10   10      8    12   6       7  11              0.616305   0.9800    Aperiodic-Template 

  7   5    6    10   19     11    9    7     16  10              0.037566   0.9700    Aperiodic-Template 

  8  18   6    10  10       8     6    12    9   13              0.224821   0.9800    Aperiodic-Template 
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  7  10  10   10   4      18    11   13   14    3              0.030806   0.9900    Aperiodic-Template 

  9  16  14   16   6      10    11    5     7     6              0.075719   0.9900    Aperiodic-Template 

 11  11  12   5   15     11     9    12   10    4              0.366918   0.9900    Aperiodic-Template 

 10  11   8   17  12      7      7      8   10  10              0.534146   0.9900    Aperiodic-Template 

  8  10   10    5    9     11    12    10  14  11              0.816537   0.9700    Aperiodic-Template 

 12   9    7     8    7     11     7     13  11  15              0.616305   0.9900    Aperiodic-Template 

 11  17   8     5   11     6     11    10  12    9              0.334538   1.0000    Aperiodic-Template 

 10  10   4    13  12     8     12    16   6     9              0.275709   1.0000    Aperiodic-Template 

 14   5  14    11   7      9     12     6  13    9               0.366918   0.9900    Aperiodic-Template 

 13   9  14     7   14     9      9      8   8     9               0.719747   1.0000    Aperiodic-Template 

 15  11   8    11   7    12     14     8   5     9               0.437274   0.9900    Aperiodic-Template 

  6  13   9     12   7    14      8    10  11   10              0.739918   1.0000    Aperiodic-Template 

 14   8   9      4   12   14      8    10  10   11              0.514124   0.9800    Aperiodic-Template 

 13  10   6     5     9   18     10   12   5    12              0.096578   0.9900    Aperiodic-Template 

  9   4    18    8    13   9      10   10  12    7               0.171867   0.9900    Aperiodic-Template 

 11   9   11   10     9   13     11    7   11    8              0.971699   0.9900    Aperiodic-Template 

 10   6   11   10    8     8      17   10   8    12             0.514124   1.0000    Aperiodic-Template 

 13  11  13   10    6    10     10   14   8     5              0.534146   0.9900    Aperiodic-Template 

 11   8   10   14   13    6      12    8    6    12             0.595549   0.9900    Periodic-Template 

 12   9   7     13   12    7       9    14   11    6             0.637119   0.9800    Universal 

 34  14   8     7    12  14       3     5     2     1             0.000000 * 0.9300 *  Apen 

  5   6    3     2    6      7        7    6     6   11              0.202268   0.9831    Random-Excursion 

  5   1    7     7    8      6        6    4     6    9               0.304126   0.9831    Random-Excursion 

  5   7    7     7    6      4        5    7     5    6               0.924076   0.9492 *  Random-Excursion 

  5   5    8     2    8      5       7    11    2    6               0.080519   1.0000    Random-Excursion 

 10   5   3     6    2      5       7    10    7    4               0.102526   0.9831    Random-Excursion 

  6   7    7     6    8      7       4     3     7    4               0.678686   1.0000    Random-Excursion 

 10   4   2     3    3      5       8     4   10  10               0.014550   1.0000    Random-Excursion 

  8   8    7     5    3      2       9     3    9    5                0.115387   1.0000    Random-Excursion 

  5   9    7     8    7      4       6     5    5    3                0.554420   1.0000    Random-Excursion-V 

  5   6  10   10    7      2       5     4    6    4                0.145326   1.0000    Random-Excursion-V 

  5   7    6     11   7      5      3     5    3    7                0.249284   0.9831    Random-Excursion-V 

  6   4    6     6    10     6      9     6    4    2                0.249284   0.9831    Random-Excursion-V 

  3   8    6     4     8      7      9     0    6    8                0.071177   1.0000    Random-Excursion-V 

  5   4    8     4     6      6      6     5    7    8                0.798139   0.9831    Random-Excursion-V 

  6   7    5     5     7      4      6     5    9    5                0.798139   0.9831    Random-Excursion-V 

  8   7    7     4     6      6      6     4    5    6                0.867692   0.9831    Random-Excursion-V 
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 11   6   7     6     5      5      6     1   7     5                0.181557   0.9831    Random-Excursion-V 

  6   11   3    4     8      5     11    4   5     2                0.021999   0.9831    Random-Excursion-V 

  5   7     5    8     4      8      9     6   4    3                 0.437274   0.9831    Random-Excursion-V 

  7   2     2   10    9    10      6     4   5    4                 0.032923   0.9661    Random-Excursion-V 

  5   2     8    8     4     8       6     3   8    7                 0.275709   0.9661    Random-Excursion-V 

  5   2    9     6     6     4       6     8   7    6                 0.474986   0.9831    Random-Excursion-V 

  6   3    6     7     3    13      3     5   6    7                 0.042808   0.9831    Random-Excursion-V 

  4  10   2     6     5     5      10    3   4  10                 0.032923   0.9831    Random-Excursion-V 

  5   6    7     3     4     9        7    5   8    5                 0.554420   0.9831    Random-Excursion-V 

  6   5    7     6     5     6        6   11  4    3                 0.366918   0.9831    Random-Excursion-V 

 12  11  10  12    8     5      18    7  10   7                 0.213309   1.0000    Serial 

 11   9   11  11  16    11      7     7  11   6                 0.574903   1.0000    Serial 

 13   7   17  10   9     12     10    7    6   9                 0.366918   0.9800    Lempel-Ziv 

 13  11  10  11   5      8      10   13  11   8                0.798139   0.9800    Linear-Complexity 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - 

The minimum pass rate for each statistical test with the exception of the random 

excursion (variant) test is approximately = 0.960150 for a sample size = 100 

binary sequences. 

The minimum pass rate for the random excursion (variant) test is approximately 

0.951139 for a sample size = 59 binary sequences. 

For further guidelines construct a probability table using the MAPLE program 

provided in the addendum section of the documentation. 

- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -  

7.2 RESULT of Randomness Testing for Keystream on Mulyankan Software of 

DRDO  

 

 

RESULT FOR keystream 

Total Length of Sequence=100000000 

BLOCK size =10000000 

Level of significance :  0.05 

 

 

  Name of Test   # Blocks Passed   Failed 
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  ------------   --------              ------   ------ 

 

  Frequency   10     10   0 

  Serial     10     9   1 

  Poker5    10     10   0 

  Poker7    10     10   0 

  Runs    10     9   1 

  Atcr-1    10     9   1 

  Atcr-n/4   10     10   0 

  K-S     10     10   0 

 

 

 

 

 

 

 

Appendix –A Source Code : 
 

Encryption 

#include<stdio.h> 

#include<string.h> 

#include <curses.h> 

#include<stdlib.h> 

#define max1 100000000 

//max1 is the number of characters in the file 

struct abc 

{ 
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unsigned int bin:8; 

}; 

 

struct b 

{ 

unsigned int a:4; 

unsigned int t:4; 

}; 

 

int R1[31],R2[29],R3[27],R4[41]; 

int z[max1]={0}; 

unsigned char data[max1]; 

//The Register are of length 31,29,27 and  41  respectively 

//THE PRIMITIVE POLYNOMIALS ARE STORED IN THESED REGISTERS 

int key[16]; 

int cipher[6]; 

char infile[20]; 

char input[16]; 

//For the  XOR Operations I have assumed that if the total No. of 1 is odd then the 

//result will be 1 ELSE 0. 

 

void fillTheShiftRegisters(void); 

void sshiftTheRegisterR1(void); 

void sshiftTheRegisterR2(void); 

void sshiftTheRegisterR3(void); 

void sshiftTheRegisterR4(void); 

void eencrypt(void); 

void decrypt(void); 

void fun(char num[]) 

{ 

//Feeding of shift registers 

struct b b1; 

int i=0,j,k; 

struct abc x[16]; 
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for(i=0;i<16;i++) 

x[i].bin=0; 

 

for(i=0;i<16;i++) 

{ 

int s=num[i]; 

b1.a=s%16; 

s=s/16; 

b1.t=s; 

x[i].bin=b1.t; 

x[i].bin=x[i].bin<<4|b1.a; 

} 

j=30; 

for(k=0;k<3;k++) 

{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R1[j--]=1; 

else 

R1[j--]=0; 

} 

} 

for(i=7;i>0;i--) 

{ 

if((x[3].bin)&(1<<i)) 

R1[j--]=1; 

else 

R1[j--]=0; 

} 

 

R2[28]=x[3].bin&1?1:0; 

j=27; 

for(k=4;k<=6;k++) 
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{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R2[j--]=1; 

else 

R2[j--]=0; 

} 

} 

for(i=7;i>=3;i--) 

{ 

if((x[7].bin)&(1<<i)) 

R2[j--]=1; 

else 

R2[j--]=0; 

} 

j=26; 

for(i=3;i>=0;i--) 

{ 

if((x[7].bin)&(1<<i)) 

R3[j--]=1; 

else 

R3[j--]=0; 

} 

for(k=8;k<=9;k++) 

{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R3[j--]=1; 

else 

R3[j--]=0; 

} 

} 
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for(i=7;i>0;i--) 

{ 

if((x[10].bin)&(1<<i)) 

R3[j--]=1; 

else 

R3[j--]=0; 

} 

 

R4[40]=x[10].bin& 0x01?1:0; 

 

j=39; 

for(k=11;k<=15;k++) 

{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R4[j--]=1; 

else 

R4[j--]=0; 

} 

} 

} 

int main(){ 

 

 int i=0; 

 int count=0; 

       // fillTheShiftRegisters(); 

 FILE *fp; 

 char ch; 

 printf("PLEASE ENTER THE INPUT TEXT OF ONLY 16 CHARACTERS 

):-\n"); 

        scanf("%s",input); 

  

 fun(input); 
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 printf("\nEnter the input plain text file name:"); 

 scanf("%s",infile); 

 fp=fopen(infile,"rb"); 

 i=0; 

 printf("\nContent of the plain text file is: "); 

    printf("\n-------------------------------------------\n"); 

 

  while(!feof(fp)) 

 { 

 ch='\0'; 

 fread(&ch,sizeof(ch),sizeof(ch),fp); 

 printf("%c",ch); 

 data[i++]=ch; 

 } 

       printf("\nThe number of character in the file is%d",i-1); 

       eencrypt();printf("\n"); 

         return 0; 

} 

void eencrypt() 

{ 

int i,p[8]={0},j=0,k=0,n=0; 

struct abc a,aa; 

int sum =0; 

int count=0; 

unsigned char ch,che; 

FILE *fp1,*fp3; 

printf("\n--------you are going to encrypt the file now-----------\n"); 

printf("\nEnter the encrypt file name:"); 

scanf("%s",infile); 

fp1=fopen(infile,"wb"); 

a.bin=0; 

aa.bin=0; 

fp3=fopen("keystream","w"); 

for(i=0;i<100000000;i++) 
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{ 

// Calculation of Keystream 

if(k==8) 

k=0; 

if (R1[30]==1) 

sum+=1; 

if (R2[28]==1) 

sum+=2; 

if (R3[26]==1) 

sum+=4; 

if (R4[40]==1) 

sum+=8; 

sum= sum/4; 

if(sum==0) 

z[i]=R4[40]; 

if(sum==1) 

z[i]=R3[26]; 

if(sum==2) 

z[i]=R2[28]; 

if(sum==3) 

z[i]=R1[30]; 

sum=0; 

 

fprintf(fp3,"%d",z[i]); 

sshiftTheRegisterR1(); 

sshiftTheRegisterR2(); 

sshiftTheRegisterR3(); 

sshiftTheRegisterR4(); 

ch=data[i/8]; 

a.bin=ch; 

n=((a.bin)&(0x01<<k))?1:0; 

p[j]=(z[i]^n)?1:0; 

k++; 

j++; 
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if(k==8) 

{ 

aa.bin=0; 

for(n=7;n>=0;n--) 

{ 

aa.bin=aa.bin|p[n]; 

if(n==0) 

break; 

aa.bin=aa.bin<<1; 

} 

che=aa.bin; 

aa.bin=0; 

j=0; 

} 

 

} 

//end of the for loop 

 

fclose(fp1); 

 

fp1=fopen(infile,"rb"); 

printf("This is the content of the file outfile \n"); 

printf("------------------------------------------\n"); 

while(!feof(fp1)) 

 { 

 ch='\0'; 

 fread(&ch,sizeof(ch),sizeof(ch),fp1); 

 count++; 

 printf("%c",ch); 

 } 

printf("\nThe number of charactre in the file is  %d",count-1); 

fclose(fp1); 

} 
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void decrypt() 

{ 

    FILE *fp, *fp1; 

    char str[max1]; 

    unsigned char ch,che; 

    int j=0,k=0,n=0,i = 0; 

    int p[8]={0}; 

    int length; 

    struct abc a,aa; 

    //time_t ltime1, ltime2; 

    printf("\nYou are going to decrypt the file now\n"); 

    printf("\nEnter name of file to be decrypted: "); 

    scanf("%s", infile); 

 

    fp = fopen(infile,"rb"); 

    if(fp == NULL) 

    { 

 printf("\nInput file is not present in the current directory"); 

 exit(0); 

  

    } 

    printf("\nContent of the file to be decrypted is : "); 

    printf("\n-------------------------------------------\n"); 

 

    while(!feof(fp)) 

    { 

 ch = '\0'; 

 fread(&ch, sizeof(ch), sizeof(ch), fp); 

 printf("%c", ch); 

 str[i++]=ch; 

 

    } 

    printf("\n-------------------------------------------"); 
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    length=i-1; 

    fclose(fp); 

    printf("\nNumber of characters in the cipher text is: %d\n", length); 

 

    printf("\nEnter name of output plain text file: "); 

    scanf("%s", infile); 

    fp1 = fopen(infile,"wb"); 

    if (fp == NULL) 

    { 

 printf("\nOutput file can not open"); 

 exit(0); 

     } 

    printf("\n\nDecrypted text is: "); 

    printf("\n-------------------------------------------\n"); 

 a.bin=0; 

 aa.bin=0; 

  

for(i=0;i<(8*strlen(str));i++) 

{ 

if(k==8) 

k=0; 

ch=str[i/8]; 

a.bin=ch; 

n=((a.bin)&(0x01<<k))?1:0; 

p[j]=(z[i]^n)?1:0; 

k++; 

j++; 

 

if(k==8) 

{ 

aa.bin=0; 

for(n=7;n>=0;n--) 

{ 
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aa.bin=aa.bin | p[n]; 

if(n==0) 

break; 

aa.bin=aa.bin<<1; 

} 

che=aa.bin; 

fwrite(&che, sizeof(che), sizeof(che), fp1); 

aa.bin=0; 

j=0; 

}//end of if 

 

}//end of for loop 

 

//    printf("\nNumber of characters in plain text: %d",length); 

fclose(fp1); 

  //  printf("\nTime taken for Decryption: %ld", ltime2 - ltime1); 

  fp1=fopen(infile,"rb"); 

printf("This is the content of the new plain text file is \n"); 

printf("\n------------------------------------------\n"); 

while(!feof(fp1)) 

 { 

 ch='\0'; 

 fread(&ch,sizeof(ch),sizeof(ch),fp1); 

 printf("%c",ch); 

//  printf("\n%c  %x\n",ch,ch); 

 //data[i++]=ch; 

 } 

printf("\nnumber of characters in the file %d\n",strlen(str)); 

 

    fclose(fp1); 

    //return 0; 

} //end of decrypt 
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// THIS FUNCTION CALCULATES THE XOR OF THE TAP POINTS AND THEN 

//SHIFTS THE REGISTER 

void  sshiftTheRegisterR1(){ 

// I AM NOW CALCULATING THE DIGITS AT 31 13 7 6 3 AND 1 AND 

//XORING THEM AND RETURNING THE RESULT AND SHIFTING THE 

//DIGITS 

 int x31,x13,x7,x6,x3; 

 int x,i; 

 x31=R1[30]; 

 x13=R1[12]; 

 x7=R1[6]; 

 x6=R1[5]; 

 x3=R1[2]; 

 x=(x31^x13^x7^x6^x3); 

 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=30;i>0;i--) 

 R1[i]=R1[i-1]; 

 //STORE THE XOR IN MSB 

 R1[0]=x; 

  

} 

 

void sshiftTheRegisterR2(){ 

 int x29,x2; 

 int xor,i; 

 x29=R2[28]; 

 x2=R2[1]; 

 xor=(x29^x2); 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=28;i>0;i--) 

 R2[i]=R2[i-1]; 

 

 R2[0]=xor; 
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   } 

 

void sshiftTheRegisterR3(){ 

 int x27,x5,x2,x1; 

 int xor,i; 

 x27=R3[26]; 

 x5=R3[4]; 

 x2=R3[1]; 

 x1=R3[0]; 

 xor=(x27^x5^x2^x1); 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=26;i>0;i--) 

 R3[i]=R3[i-1]; 

 R3[0]=xor; 

  

} 

 

void sshiftTheRegisterR4(){ 

 int x41,x3; 

 int xor,i; 

 x41=R4[40]; 

 x3=R1[2]; 

 xor=(x41^x3); 

 

 //for(i=40;i>=0;i--) 

 //printf("%d",R4[i]);printf("\n"); 

 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=40;i>0;i--) 

 R4[i]=R4[i-1]; 

 

 //for(i=40;i>=0;i--) 

 //printf("%d",R4[i]);printf("\n"); 
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 R4[0]=xor; 

 //for(i=40;i>=0;i--) 

 //printf("%d",R4[i]);printf("\n"); 

 

} 
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Decryption 
#include<stdio.h> 

#include<string.h> 

//#include<conio.h> 

#include<stdlib.h> 

#define max1 100000000 

//max is the number of characters in the file 

struct abc 

{ 

unsigned int bin:8; 

}; 

struct b 

{ 

unsigned int a:4; 

unsigned int b:4; 

}; 

 

int R1[31],R2[29],R3[27],R4[41]; 

 

int z[8*max1]={0}; 

 

int c_num; 

 

unsigned char data[max1]; 

//The register are of length 31,29,27 and 41 respectively. 

//THE PRIMITIVE POLYNOMIALS ARE STORED IN THESED REGISTERS 

char name[20]; 

//char input[16]="ABCDEFGHIJKLMNOP"; 

char input[16]; 

// FOR THE  XOR OPERATIONS I HAVE ASSUMED THAT IF THE TOTAL NO. OF 1 IS ODD 

THEN THE //RESULT WILL BE 1 ELSE 0. 

 

void sshiftTheRegisterR1(void); 

void sshiftTheRegisterR2(void); 
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void sshiftTheRegisterR3(void); 

void sshiftTheRegisterR4(void); 

//void eencrypt(void); 

void decrypt(void); 

void fun(char num[]) 

{ 

//Feeding of shift registers 

struct b b1; 

int i=0,j,k; 

struct abc x[16]; 

for(i=0;i<16;i++) 

x[i].bin=0; 

 

for(i=0;i<16;i++) 

{ 

int s=num[i]; 

b1.a=s%16; 

s=s/16; 

b1.b=s; 

x[i].bin=b1.b; 

x[i].bin=x[i].bin<<4|b1.a; 

} 

j=30; 

for(k=0;k<3;k++) 

{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R1[j--]=1; 

else 

R1[j--]=0; 

} 

} 

for(i=7;i>0;i--) 
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{ 

if((x[3].bin)&(1<<i)) 

R1[j--]=1; 

else 

R1[j--]=0; 

} 

 

R2[28]=x[3].bin&1?1:0; 

j=27; 

for(k=4;k<=6;k++) 

{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R2[j--]=1; 

else 

R2[j--]=0; 

} 

} 

for(i=7;i>=3;i--) 

{ 

if((x[7].bin)&(1<<i)) 

R2[j--]=1; 

else 

R2[j--]=0; 

} 

j=26; 

for(i=3;i>=0;i--) 

{ 

if((x[7].bin)&(1<<i)) 

R3[j--]=1; 

else 

R3[j--]=0; 

} 
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for(k=8;k<=9;k++) 

{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R3[j--]=1; 

else 

R3[j--]=0; 

} 

} 

for(i=7;i>0;i--) 

{ 

if((x[10].bin)&(1<<i)) 

R3[j--]=1; 

else 

R3[j--]=0; 

} 

 

R4[40]=x[10].bin& 0x01?1:0; 

 

j=39; 

for(k=11;k<=15;k++) 

{ 

for(i=7;i>=0;i--) 

{ 

if((x[k].bin)&(1<<i)) 

R4[j--]=1; 

else 

R4[j--]=0; 

} 

} 

} 

void main(){ 
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 int i=0; 

           //fillTheShiftRegisters(); 

 //printf("%s",input); 

 FILE *fp; 

 char ch; 

 //clrscr(); 

 printf("PLEASE ENTER THE INPUT TEXT ONLY 16 CHARACTERS ):-

\n"); 

     scanf("%s",input); 

  

 fun(input); 

      /* for(i=30;i>=0;i--) 

 printf("%d",R1[i]);printf("\n"); 

 for(i=28;i>=0;i--) 

 printf("%d",R2[i]); printf("\n"); 

 for(i=26;i>=0;i--) 

 printf("%d",R3[i]); printf("\n"); 

 for(i=40;i>=0;i--) 

 printf("%d",R4[i]); printf("\n"); 

 */ 

 printf("\nEnter the cipher text file name:"); 

 scanf("%s",name); 

 fp=fopen(name,"rb"); 

 i=0; 

 printf("\n Content of the cipher text file is: "); 

    printf("\n-------------------------------------------\n"); 

 //j=0; 

 c_num=0; 

  while(!feof(fp)) 

 { 

 ch='\0'; 

 fread(&ch,sizeof(ch),sizeof(ch),fp); 

 printf("%c",ch); 

 data[c_num]=ch; 
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 c_num++; 

 } 

  printf("\nThe number of character in the file is: %d\n",c_num-1); 

 fclose(fp); 

 printf("\nThe content of the data array \n"); 

 //for(i=0;i<c_num;i++) 

 //{ 

 // printf("%c",data[i]); 

 //} 

 printf("\n\n"); 

      decrypt(); 

 getch(); 

 exit(0); 

} 

void decrypt() 

{ 

int i,p[8]={0},j=0,k=0,n=0; 

struct abc a,aa; 

int count=0; 

int sum=0; 

unsigned char ch,che; 

 

FILE *fp1; 

printf("\nyou are going to decrypt the file now\n"); 

printf("\nEnter the decrypted file name:"); 

scanf("%s",name); 

fp1=fopen(name,"wb"); 

a.bin=0; 

aa.bin=0; 

printf("\n Here there data file length %d",strlen(data)); 

for(i=0;i<(8*(c_num-1));i++) 

{ 

if(k==8) 

k=0; 
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//z[i]=R1[30]^R2[28]^R3[26]^R4[40]; 

// Calculation of Keystream 

if(R4[40]==1) 

sum+=1; 

if(R3[26]==1) 

sum+=2; 

if(R2[28]==1) 

sum+=4; 

if(R1[30]==1) 

sum+=8; 

 

sum=sum/4; 

 

if(sum==0) 

z[i]=R1[30]; 

if(sum==1) 

z[i]=R2[28]; 

if(sum==2) 

z[i]=R3[26]; 

if(sum==3) 

z[i]=R4[40]; 

sum=0; 

 

sshiftTheRegisterR1(); 

sshiftTheRegisterR2(); 

sshiftTheRegisterR3(); 

sshiftTheRegisterR4(); 

ch=data[i/8]; 

a.bin=ch; 

n=((a.bin)&(0x01<<k))?1:0; 

p[j]=(z[i]^n)?1:0; 

//printf("n=%d z[%d]=%d p[%d]=%d \n",n,i,z[i],j,p[j]); 

k++; 
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j++; 

 

if(k==8) 

{ 

aa.bin=0; 

for(n=7;n>=0;n--) 

{ 

aa.bin=aa.bin|p[n]; 

//printf("hello %x %d\n",aa.bin,p[n]); 

if(n==0) 

break; 

aa.bin=aa.bin<<1; 

} 

che=aa.bin; 

//printf(" HI  %x   %x   \n",che,aa.bin); 

fwrite(&che, sizeof(che), sizeof(che), fp1); 

aa.bin=0; 

j=0; 

} 

 

}//end of the for loop 

 

fclose(fp1); 

 

fp1=fopen(name,"rb"); 

printf("This is the content of the file decrypted file \n"); 

printf("------------------------------------------\n"); 

while(!feof(fp1)) 

 { 

 ch='\0'; 

 fread(&ch,sizeof(ch),sizeof(ch),fp1); 

 count++; 

 printf("%c",ch); 

 } 
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printf("\n The number of character in the file is %d",count-1); 

fclose(fp1); 

} 

 

// THIS FUNCTION CALCULATES THE XOR OF THE TAP POINTS AND THEN 

SHIFTS THE REGISTER 

void  sshiftTheRegisterR1() 

{ 

// I AM NOW CALCULATING THE DIGITS AT 31 13 7 6 3 AND 1 AND  

//XORING THEM AND RETURNING THE RESULT AND SHIFTING THE  

//DIGITS 

 int x31,x13,x7,x6,x3; 

 int x,i; 

 x31=R1[30]; 

 x13=R1[12]; 

 x7=R1[6]; 

 x6=R1[5]; 

 x3=R1[2]; 

 x=(x31^x13^x7^x6^x3); 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=30;i>0;i--) 

 R1[i]=R1[i-1]; 

 R1[0]=x; 

} 

 

void sshiftTheRegisterR2(){ 

 int x29,x2; 

 int xor,i; 

 x29=R2[28]; 

 x2=R2[1]; 

 xor=(x29^x2); 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=28;i>0;i--) 

 R2[i]=R2[i-1]; 
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 R2[0]=xor; 

 

} 

 

void sshiftTheRegisterR3(){ 

 int x27,x5,x2,x1; 

 int xor,i; 

 x27=R3[26]; 

 x5=R3[4]; 

 x2=R3[1]; 

 x1=R3[0]; 

 xor=(x27^x5^x2^x1); 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=26;i>0;i--) 

 R3[i]=R3[i-1]; 

 R3[0]=xor; 

 

} 

 

void sshiftTheRegisterR4() 

{ 

 int x41,x3; 

 int xor,i; 

 x41=R4[40]; 

 x3=R1[2]; 

 xor=(x41^x3); 

 

 //NOW RIGHT SHIFT THE REGISTER 

 for(i=40;i>0;i--) 

 R4[i]=R4[i-1]; 

 R4[0]=xor; 

} 
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Appendix –B Snapshots 
 
 
 

 
 
 
 

Screen for generating keys and Reading the input file to be Encrypted 
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Content of Text file to be Encrypted 
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Encrypted Message 

 

 
 

 
Screen for generating keys and Reading the input file to be Decrypted 
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Content of Encrypted file to be Decrypted 
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Decrypted Message(original Plain text)
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